Mem. Fac. Educ. Kumamoto. Univ.
Nat. Sci., No.46. 1—7, 1997

Perturbation Method for ¢*-Field Equation
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(Received September 1, 1997)

The McLaughlin-Scott perturbation theory for soliton equation is applied to a ¢*field equation. A
set of ordinary differential equations, which express time evolution of soliton parameters, is obtained.
Inter-chain interracion is also considered.
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1. Introduction

The ¢*field equation is frequently used as an equation which expresses structural phase
transition. For example, it is well-known that this equation is a good model for describing
dimerization in trans-polyacetylene."* The ¢*-field equation is in the same class of the sine-Gordon
equation. The unperturbed equation has a soliton solution and properties of soliton dynamics have
been studied in many papers.®

In real systems effects of impurities and dissipation cannot be ignored. It is considered that
soliton is trapped by impurities and locally oscillates when the external periodic force is applied.
In a perturbed sine-Gordon equation system we have shown that such an oscillation bifurcates to
chaos.*~* The McLaughlin-Scott perturbation theory is a useful method to study soliton dynamics
under these situations.’

In this paper, we apply the McLaughlin-Scott perturbation theory to a perturbed ¢*field
equation and derive a set of ordinary differential equations similar to the sine-Gordon equation
system.

2. One-Soliton Solutions of ¢*-Field Equation

The unperturbed ¢*-field equation is described as

$ee— Paxt+ U’ () =0, (1

where .
U($)=5(¢*~ 1) 2)
and
U'($)=2¢°— ).

As is shown in Eq.(2), the potential U(¢) has double minima. In order to solve Eq.(1), we rewrite
Eq.(1) as

d’¢
2__ ’ —
(w—1) 22 +U($)=0 (3)
by using a variable transformation :
E=x—ut.

Multiplying d¢/dé to Eq.(3) and integrationg once, we obtain
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R <,d¢,>“l -
=D gE ) +U@®=o0, )
where we choose an integral constant as 0. Further integration of Eq.(4),
dp _ . [ dE _
A N
yields
5+X0
===
==

by putting ¢ =tanhz, where xo is an integral constant. As a result one-soliton solution can be
written by
X ut+ x
¢(x,l):tanh[iﬁg—o}, )
where + denotes the kink solution and — the anti-kink solution. The kink expresses the solution
that the field ¢ varies from —1 to +1 and propagates with the velocity #. The soliton position X

is represented by xo— ut.

3. Perturbation Method for ¢*-Field Equation

We consider the following perturbed equation :

¢tt7¢xx+ U/(¢):6f, (6)
where f is the perturbation described as
f=—a¢—26(x = g) U'(¢)— 7(1+ GeosQr). (7

Here the first term of the right hand side of Eq.(7) denotes the dissipation, the second term the
inhomogeneous potential mede by impurities placed at g; and the third term the external force.
Equation (6) can be rewritten by

W+ N(W)=¢f, ®
where
w=(3)
N( W):<7axx£ U'(+) ;>1><§t>
and
r=(;)

For one-kink state a vector W can be written by

t
/ tanh[ i*ﬁ(% — ’é udt — Xo)}

rt

N S ;<,_
\F \/_]—uz sech[i T X jo

Time evolution of soliton parameters py is expressed by an equation,

udt—xo>
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AW oW dp,
dt % Opr. dt
In this case we choose as
pl - X(), pZ_ u
When we introduce a vector b, as
) 4 ( Pex >
b]—J\ Txe —
and
_ ow - ¢tu>
b=J 5, ‘< bu
with

Eq.(8) can be written by a form of an inner product,

<bj,2 oW dp. N(W)>:e(bj,f).

op. dt
where j=1, 2 and the inner product is defined as an integral,
(F.G)= [F{(0)G(x)dx.

Using relations,

ow

t
b 8960

and

from Eq.(14) we obtain the following integrals.

Jax[ubi— bl B [l pudet bl — ot U($))]

=—¢ / dxfdx
and

Jaxl gt pupl 2

:~€fdxf¢u

3.1 Calculation of Eq.(15)

The first term of the left hand side of Eq.(15) is rewitten by

Ll(é): /dX [¢tx¢u" ¢x¢tu]_f;;—
__lu’fdx[¢tt¢u“ ¢t¢tu]%
= @ (g e+ U (9104

because of

1
¢tx ~ _7¢tt

fdx B+ pul— Prx+ U'($))]

(10)

(1

(12)

(13)

(14)

(15)

(16)
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and
b~
X u t.
Integrating by parts :
[pusud= ] — [Beadr,
we obtain
du
p_ 1 _d 2 2
=L L fa oot Toir v L

The integrand of this equation is the Hamiltonian density :
1 1
H($) =5+ ¢+ Ul).

Calculation of this integral is carried out as follows. From an integration for rest soliton,

JaxHo)
= [av (o456~ 17]
:/dx [% sech‘*(x-—xO)Jr% sech*(ox — x0) ]
4

:?’
and Lorentz transformation, the Hamiltonian is calculated as

Jano =%

and hence we obtain

4 u

=3 5wy (”’

The second term of the left hand side of Eq.(15) is equal to zero because the integrand is an odd
function.
The right hand side of Eq.(15) can be rewritten as

— efdxftﬁx: E[de¢z.
The first term of this equation is calculated to be
1
Rip=— o [dzg
= aT_u—L;ff dxsech’™ ﬂ—_—ufxi
4"
J1—u?

The second and third terms can be calculated as

RE =Sy [dvs (e —a) U ()t

- _ i __*,___ [ gi— Ul — Xo XO 4 — >
B (e A
h4 qJ xO

\/l—uE

= e L




Perturbation Method 5

and
RE= =7 (1 + Geostar) [drg,

—Xo

N

i

_ﬁtAli h2 X

J=i2 y(1+ GcosQt) |sec
2y(1+ GeosQr)

I
-+

From Eq.(17) and these results with respect to the right hand side, Eq.(15) can be described
as

du I —Xo he q;— Ut —Xo

du _ -2, 4 U E
ar au(l—u’) 3 ? wtanh m sec \/Fl—‘uz

i% y(1—1?)**(14 GeosQt), (18)

where -+ denotes the kink and — the anti-kink.

3.2 Calculation of Eq.(16)
The first term of the left hand side of Eq.(16) is calculated as

fdx[¢tu¢x Pupixl—7 dxo
~(~ s "+ /dx[¢zu¢x+ b ] P
= [t (pp0- Lo

4 d [ u  \dxo

3 du\J1—u?) dt
4 1 dXo

3 (1—ud)¥ dr -
The second term vanishes because the integrand is an odd function.
In the right hand side of Eq. (16), beacuse

M(X*MT*XO) X —ut—
== ; ech
¢U (1__u2)3/2 \/7_
is an odd function, the first and third terms become to be zero. The second term is calcu-
lated as

R =—3 1, [dxd (g,-x) U ($) b

2u
(1 2)3/22#](% utfxo)tan

i — ;— Ut —

—u? 1— uz
From these calculations Eq. (16) can be written by
dx 3 ut — xo N )
Tt‘): -5 u%} ,u,,-(qj—ut—xO)tanh ﬁl ech* =7 (19)
If we put
X =x0+ut, (20)

we finally obtain a set of ordinary differential equations :
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du N =X L= X
dr au(l U) D) (1 u )%]/thanhl \/T—? sech m
i*%-y(l—u2)3’2(l+Gcoth) 2
dx 3 o a—X L= X
o U u; 1 ;(g;— X )tanh = sech S (22)
For ¢;=0 and y;= u this equation is simplified to be
du _ N R _X___ 4___/\/:
P/ au (1—u®) + > (—u )tanh = sech S
i%*y(l —u?)¥ (14 GcosQt) (23)
ax 3 - X L X
_‘dt =u D /.lllXtdnh \/_1-:? sech \/1—:55 (24)

4. Inter-chain Interaction

Now we consider a two-chain system, in which two solitons can couple with each other
through inter-chain interaction. This situation can be described as a coupled form of ¢*-field
equation :

pP— X+ U (¢V) =—ap?P =2 n;0(x—q;) U (¢D) —y(1+ GeosQt) +x (P —¢P), (25)

¢ — R+ U (¢?) = —ad® =2 ;6 (x—q;) U ($?) —y(1+ GeosQt) +x (¢ —¢?), (26)

Here x expresses the strength of coupling. Hereafter, we only consider one-kink solution,
X— U;— X;

¢'Y=tanh \/l—ij:tanh@),; (27)
For w, ~ t, ~ 0, we can approximate

B~ 61+ Xi— X
An interaction term in the right hand side of Eq. (15) can be calculated as

R =2 / dx [tanh (@1 Xi— X,) —tanh@:] 4.

=— x/d@ [tanh (®;+ Xi— X2) —tanh®, ] sech’®

_ tanh (X; — X») 4
- "f 40 11 anh@tanh (X, — X, Sh'®

= —%ktanh(Xl—Afz) .

Therefore, we obtain for interaction terms as

<‘Z“> = xtanh (X2 — X)), (28)

t /1

( ‘fi“2> = xtanh (X, — Xa) | (29)
t )1

Similarly, for Eq. (16) because the interaction term is calculated as

R = K/dx [tanh (@;+ X1— X,) —tanh®: ] ¢,
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= xu/d@[tanh (®;+ Xi— X>) —tanh®; ] Bsech’®

. tanh (X, — Xo)
'””f 40 | anh@tanh (X, — X
=)

) @sech’®

then the interaction terms give no contribution :

ﬁ) _ (it) _
< dt 1*0, dt 1_0'

Hence, the inter-cain interaction terms can be added to a set of ordinary differential equations such
as

du, _ o, 3 o X1 L X
4 0[1(1(1 U1)+ 2/.1(] ) tanh \/I—uf sech m

i—;—y(l — ) ¥ (1+ GeosQt) + xtanh (X,— X1) (30)
Xm — ___3_ 4_/Y_1:‘ 4 iXL —
dl =U Z/ZUIXltaIlh \/T— u12 sech m (31)
dup . ) _3_ 2 Xs 4 Xz
dr ~ el )t p () tanh s seeht A

i%y(l—-uzz) 2(14 GeosQt) + xtanh (X1 — Xz) (32)
a6 _, 3 D
dl — U 2}1M2X2tanh v/‘]‘_']/{;g sech ﬁ— u22 (33)

where we show the case in which one impurity is placed at x=0.

5. Conclusion

We show that a perturbed ¢*-field equation which is a partial differential equation can be
reduced to a set of ordinary differential equations by applying the McLaughlin-Scott perturbation
theory. Time evolution of soliton position and velocity can be investigated by solving equations
btained in the pesent paper. Moreover, when the inter-chain interaction exists, we can also show
a reduced form by similar manner.
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