Computer simulation of decay kinetics of solitons and polarons in linear chain lattices
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Abstract

The diffusion-limited collisional decay process of solitons and polarons excited in a linear chain lattice is simulated numerically. The
dependence of the survival function on the initial density and lattice disorder is examined. In the uniform chain, if the initial density N, is
sufficiently low, the probability of solitons surviving at a time ¢ agrees well with Torney and McConnell’ s solution S(T)=exp(8C)erfc(87)"2,
C=N,?Dt, for the unimolecular chemical reaction in a continuous medium, where D is the diffusion constant; the lattice effect appears with
increasing N, as the slowing down of the initial decay. The survival probability of polarons is also given by a universal function
S(0)=(1+33C) " within errors of +2%. As the lattice disorder evolves, S(T) transforms into the Kohlrausch law S(T) = exp{-(‘gto)"}, 0<p
< 1, for both solitons and polarons, consistent with the experiment for long-lived photoexcited solitons in an MX chain compound.
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1. Introduction

Photoexcited solitons [1] and polarons [2] in conducting
polymers show an extremely nonexponential time decay.
According to the recent decay measurement of the photoinduced
midgap absorption in an MX chain compound [3], the density N(f)
of long-lived solitons obeys the -logt law or the Kohlrausch law

S(r) = N(1)/N, = exp{-(t/t) ¥} withO<B<1, (1)

where N, is the initail density of photoexcited solitons, ? is the time
delay and 7 is the 1/e decay time. The experiment shows that T
depends strongly on temperature, whereas f is a constant of 0.27 -
0.54 depending on samples. These facts suggest that the solitons
walk randomly in the MX chain by hopping over irregular energy
barriers until they collide with antisolitons to coalesce.

To understand these novel dynamical properties we perform a
numerical simulation of the diffusion-limited pair coalescence of
solitons and polarons in disordered one-dimensional lattices.

2. Results and Discussion

The calculation is carried out by the standard method. We deal
with a chain ring of 10,000 lattice sites. Initially, 500 to 5,000
particles are placed randomly in the ring on the basis of the
binomial, unimolecular and bimolecular occupation for solitons
and polarons, respectively. Then we let the particles hop randomly
to adjacent sites. The probability of hopping from the site i to the
adjacent site j=i+1 is assumed to be given by v = vﬂexp(-EijfkT ) at
temperature 7, where v, is set to be 10%step and the energy barrier
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Fig. 1. Survival probability S(T) of solitons in the
uniform chain. The markers are the calculated values
and the dotted line shows S™(T). The inset shows S(T)
and S™(T) for 0<C<0.3.

E, is assumed to be fluctuated randomly around the mean value E;
with a Gaussian width 0. We deal with the range of T between 200
and 300 K by fixing £ at 0.4 eV and permitting o to vary from 0 to
0.1eV. This choice of the value for £, does not lose the generality,
because the physical conditions of the medium are specified by the



ratios E/kT and o/E,. Once two solitons or oppositely charged
two polarons come on the same lattice site, they are removed.
Interactions between particles are ignored in the present study.

To begin with, we calculate S(f) for solitons in the uniform
lattice ring (0=0) under various conditions of the initial density and
temperature. Figure 1 shows the plot of the results, in which T =
N;?Dt with D = a*vexp(-E /KT ) is taken as the variable, where a
denotes the lattice constant. Torney and McConnell’s survival
function, S™(T) = exp(8F)erfc(8L)'? [4], erfc denoting the
complementary error function, is also drawn along with the
calculated values. S™(T) is the solution for the unimolecular
chemical reaction in a continuous ring. It gives S(T) of solitons in
the limiting case of Ny — 0 of our lattice ring model.
Consequently, although the result of our calculation agrees well
with S™(C) in a wide range of C, there is a significant disagreement
inthe initial part. As N a approaches zero, this lattice effect tends
to be smeared, and thus S(C) approaches S™(T) asymptotically.
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Fig. 2. Variation of S(T) of solitons with o.

S(T) is nonexponential, reflecting the nonlinearity of the
geminate coalescence. It becomes still more nonexponential if the
energy barriers are irregular. Figure 2 shows the results of
calculation for the case of Nja = 0.2. We see that as o increases,
S(C) transforms into the Kohlrausch law, S(T) = exp{-(T/¢ )"}, as
expected. The Kohlrausch law holds in the variation of T over
more than several orders, as shown in Fig. 3. The argument f
decreases from ~0.5 to 0.25 with increasing o from small values to
0.1 eV(=0.25E ). This fact explains the aforementioned sample
dependence of B well. Also the decay parameter T, depends on o.
As far as Noa < 0.1, the lattice effect is sufficiently small that ©
varies with N and D as ND'ZD"l with the coefficient T, It is
noteworthy that the decay time < is not a material constant.

Figure 4 shows S(T) of polarons in the case of 0=0. We find
that S(T) is given by a universal function of T also in this
bimolecular recombination process. If Noa < 0.2, S(€) can be
expressed well in terms of an empirical formula S(Z) = (1+33%) 4,
the error being smaller than +2% for any value of T. As Na
increases beyond 0.2, the initial part of S(T) deviates upward
because of the lattice effect. For € > 1, since the self assembling
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Fig. 3. Log(-logS(1)) versus logt for the case of
0=0.25E, at different temperatures.
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Fig. 4. S(T) of polarons in the uniform chain. The
markers are the calculated values and the dotted line
shows the curve of (1+33C) " The solid lines are the
guides for the eye.

properties of polarons function to slow down their decay [5], S(T)
varies as T4, in contrast to the &2 variation of S(T) of solitons
for 0=0. If o exceeds 0.025E, the influence of the irregularity of
the energy barriers becomes significant, leading S(T) to obey the
Kohlrausch law, as observed in polymers [2].
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