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Open sets satisfying the strong meromorphic
approximation property

Makoto ABE

Abstract. By giving counterexamples we prove that a rationally
convex open set D of C", where n > 2, does not satisfy in general the
strong meromorphic approximation property in C". We also prove
that every open set D of a reduced Stein space X of dimension 1
satisfies the strong meromorphic approximation property in X.

1. Introduction

We say that an open set D of a reduced complex space X satisfies the
strong meromorphic approzimation property in X if for every holomorphic
function ¢ € £(D), for every compact set K of D and for every £ > 0 there
exist holomorphic functions f, g € 6(X) such that g # 0 on any irreducible
component of X, g #0on D and |l¢ — (f/9)|lx <e.

By the theorem of Behnke-Stein [5, Satz 13], which generalizes the ra-
tional approximation theorem of Runge [25], every open set D of an open
Riemann surface X satisfies the strong meromorphic approximation prop-
erty in X. More generally every open set D of a reduced Stein space X of
dimension 1 satisfies the strong meromorphic approximation property in X
(see Corollary 5.3).

On the other hand a Stein open set D of a reduced Stein space X is

meromorphically &(X)-convex if and only if for every holomorphic function
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p € O(D), for every compact set K of D and for every £ > 0 there exist
holomorphic functions f,g € €(X) such that ¢ # 0 on any irreducible
component of X, g # 0 on K and ||l — (f/g)||x < € (see Lemma 2.1).

An open set D of C" is meromorphically &(C")-convex if and only if D
is rationally convex. By giving counterexamples we prove that a rationally
convex open set D of C", where n > 2, does not satisfy in general the
strong meromorphic approximation property in C" (see Propositions 4.1
and 4.2). We classify Stein open sets in C" from the point of view of the
approximation property (see Theorem 3.2).

2. Preliminaries

Throughout this paper all complex spaces are supposed to be reduced
and second countable. Let X be a complex space. We denote by Ac the
sheaf on X of germs of active holomorphic functions (see Grauert-Remmert
[10, p. 97]). Then Ac(X) is the set of all f € 6(X) such that f # 0 on any
irreducible component of X. Let

2x(D):={(f/9)Ip | f € 6(X), g € Ac(X), g # 0 on D}

for every open set D of X. If X is a locally irreducible complex space
in which every strong Poincaré problem is solvable (see Kaup-Kaup (15,
p. 249]), then we have that 2x(D) = .#(X) N &(D) for every open set D
of X.

Let X be a complex space and let # C 6(X). Then X is said to be
F-convez if for every compact set K of X the holomorphically convez hull

Kz :={z € X ||f(@)| <|Ifllx for every f € F}

of K with respect to & is compact.

On the other hand a complex space X is said to be meromorphically
F-convez if for every compact set K of X the meromorphically convex
hull

Kz :={z € X | f(z) € f(K) for every f € F}
of K with respect to % is compact. The set Ky = yKx := f{,;(x) is

said to be the meromorphically convez hull of K in X (cf. Hirschowitz [14,
p. 49], Lupacciolu (16}, Coltoiu [6], Abe-Furushima [4] and Abe [1, 2, 3]).
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An open set D of a complex space X is said to be meromorphically %-
convez if D is meromorphically & |p-convex, that is, for every compact set
K of D the set K ND is compact. We have the following characterizations
of meromorphically €(X)-convex open sets in a Stein space X.

Lemma 2.1 (Abe [1, Theorem 12]) Let X be a Stein space and D an
open set of X. Then the following four conditions are equivalent.

(1) D is meromorphically 6(X)-convez.
(2) For every compact set K C D we have that Kx C D.
(3) For every compact set K C D we have that Kx = Kp.

(4) For every compact set K of D the set Kp is compact and for every
holomorphic function p € O(D), for every compact set K of D and
for every € > 0 there ezist holomorphic functions f € O(X) and
g € Ac(X) such that g # 0 on K and |l¢ — (f/9)ll; <e.

Let X be a complex space. Let fi, fo,..., fm € €(X)and g1.92,...,9m €
Ac(X). Let A := {9192 -gm = 0}. Let G be an open set of X \ A. Let
hy = fu/gu for p=1,2,...,m. Let Z1,2,,...,Z, be open sets of C. Let

W =Gn{ze X\A|huz) € Z, forevery p=1,2,...,m}

and assume that W € . Then the open set W is said to be a meromorphic
polyhedron of X (see Abe [1, p. 266]). We use this notation for W in the
following lemma.

Lemma 2.2. Let X be a Stein space and W a meromorphic polyhedron of
XwithZy=2y=-=2, =A, where A .= {t€ C||t| < 1}. Then for
every compact set K of W and for every ¢ € (W) there exist u € O(X)
and a monic monomiel v of g1,g2,...,gm such that |lp — (u/v)|x <e.

Proof. There exist n € N and 6,,60,...,8, € €(X) such that the re-
striction Yw, amxcn : W = A™ x C" is a closed holomorphic embedding,
where

Y= (h,hay ..., hm,01,00,...,8,) : X\ A= C™*™™"
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(see Abe [1, Lemma 8]). Since ¥(W) is an analytic set of a Stein manifold
A™ x C" and the function ¢ o (?/)W,w(u.'))—l : (W) — C is holomor-
phic, there exists @ € 6(A™ x C") such that @ = g o (UJW, d.(w))_l on
»(W). By considering the Taylor expansion of « at the origin there ex-
ists a polynomial function 3 on C™*" such that |la — B||,,x) < €. Since

B o is a polynomial of hy, ho,..., hy,01,600,...,0,, there exist a polyno-

mial u of f1, fo,.... fm,91,92..-.,9n.01,62,...,0, and a monic monomial
v of g1,92,...,9m such that S04 = u/v on X \ A. Then we have that
lle - (u/o)lx <. O

For every open set D of a complex space X the topology of uniform
convergence on compact sets gives the linear space 6(D) the structure of
Fréchet space (see Kaup-Kaup [15, E. 55j]). We say that an open set D of a
complex space X satisfies the strong meromorphic approzimation property
in X if the set 2x(D) is dense in (D), that is, for every holomorphic
function ¢ € £(D), for every compact set K of D and for every € > 0 there
exist holomorphic functions f € 6(X) and g € Ac(X) such that g # 0 on
D and ||¢ = (f/9)llx <€

Lemma 2.3. Let X be a Stein space and D an open set of X. Then the
following two conditions are equivalent.

(1) D is 2x(D)-convez.

(2) D is Stein and 2x(D) is dense in O(D).

Proof. (1) = (2). Since 2x(D) c 6(D), we have that Kp C f(_rgx([))
for every compact set K of D, where Kp:=K o(D)- Since by assumption
K 2x(D) is compact, the set Kp is also compact. It follows that D is
Stein. Take an arbitrary ¢ € &(D). Let K be a compact set of D and let
£ > 0. Since K 2y (D) is compact, there exists an open set E of X such that
RQX(D) C E €@ D. Take an arbitrary point p € F. Since p ¢ KQX(D),
there exist f(P) € #(X) and g'?) € Ac(X) such that ¢g» # 0 on D and
|h(’”(p)| > "h(p)"k” where AP = f(p)/g(p). Replacing f) by f(P)/c,
where |h(p)(p)| >c > ||h(”)||k,, we have that |h(p)(p)| >1> ||h(”)||K.
Then V, := {a‘ € D| |h,(")(:v)| > 1} is an open neighborhood of p. Since
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JF is compact, there exist finitely many points p1,p2,...,pm € OF such
that 0E C U;L, Vp,. Let f, = [P g, = gPu) and h, := fu./g, for
p=12...,m. Let A:={g192 - gm = 0}. Then the set

W:=En{ze X\ A||hu(z)] <1forevery p=1,2,...,m}

is a meromorphic polyhedron of X with 2, = Zo, = ... = Z,, = A and
we have that K ¢ W € E. By Lemma 2.2 there exist u € 6(X) and
a monic monomial v of g1, g2,...,gm such that |l¢ — (u/v)||, < €. Since

u/v € 2x(D), the proof of the denseness of 2x(D) in 6(D) completes.

(2) = (1). Since 2x(D) is dense in &(D), we have that RQX(D) = Kp
for every compact set K of D. Since D is Stein, the set Kp is compact. It
follows that D is 2x(D)-convex. O

Proposition 2.4. Let X be a complex space and D an open set of X. If
D is 2x(D)-convez, then D is meromorphically 6(X)-convez.

Proof. Take an arbitrary compact set K of D. Let p € D\K 2x(p)- There
exist u € O(X) and v € Ac(X) such that v # 0 on D and |m(p)| > ||m|
where m := uf/v. Let h := m(p)v — u. Then h € €(X) and h(p) = 0.
Assume that there exists a point y € K such that h(y) = 0. Then we have
that [m(p)| = |m(y)| < |Im|| g, which is a contradiction. It follows that
0 ¢ h(K) and thus we have that p ¢ Kx. Therefore Kx N D C RQX(D).
Since K g, (p) is compact, the closed set Kx N D of D is also compact.
Thus we proved that D is meromorphically (X )-convex. (]

The converse of Proposition 2.4 is not true in general. We have the
following example.

Example 2.1. Let P! = CU {oc} be the Riemann sphere. Let
X = (C x {0}) U ({0} x P'),
which is an analytic set of C x P! and is neither Stein nor irreducible. Let
D:={2eC|0< |2|] <1} x {0},

which is an analytic polyhedron of X. Let K := {z € C| |z| = 1/2} x {0}.
If g € Ac(X) and g # 0 on D, then g # 0 on {z € C||z| < 1} x {0}.
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We have that {2 € C|0< |z|] <1/2} x {0} C R’gx(D) by the maximum
modulus principle and K 2x(D) 1s not compact. It follows that D is not

2x(D)-convex. However the open set D is meromorphically £(X)-convex
(see Abe [1, Proposition 4]).

Even if X is an irreducible Stein space, the converse of Proposition 2.4
is not true in general (see Theorem 3.2 in Sect. 3 and Propositions 4.1 and
4.2 in Sect. 4). On the other hand an open set D of a Stein space X is
meromorphically &(X)-convex if and only if D is the union of an increasing
sequence {Dl,}?,o=l of open sets of X such that D, is 2x(D,)-convex for
every v € N (see Abe (2, Theorem 4.1]).

3. Classification of Stein open sets of C"

Let z1, 29,. .., 2, be the standard coordinates of C". As usual we denote
by Clz1, 22,. .., 2a] and by C(zy, 2, ..., 2,) the set of polynomial functions
on C" and the set of rational functions on C" respectively. We let

(D) :=C(z1,292,...,2n) N O(D)

for every open set D of C".

For every compact set K of C" the set RC[zl,zz....,zn] is said to be the
rationally convez hull of K (cf. Stolzenberg [28, p. 262] and Gamelin [9,
p. 69]).

An open set D of C" is said to be rationally conver in C" if D is mero-
morphically C[z1, 22, .. ., zn)-convex. Since f{C[zl.zz,...,z"] = Kcn for every
compact set K of C", an open set D of C" is rationally convex if and only
if D is meromorphically €(C™)-convex (see Abe [1, p. 265]).

We have the following lemma, the proof of which is not difficult and is
omitted.

Lemma 3.1. Let ny,ny € N and let n := ny +n9. Let D, be an open set of
C™ for eachv = 1,2 and let D := Dy x Do C C*. Then D is polynomially
convez (resp. Z(D)-convezr, 2cn(D)-convez or rationally convez) if and
only if D, is polynomially convez (resp. #(D, )-convez, Dcn.(D,)-conver
or rationally convez) for each v =1,2.
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We have the following theorem classifying Stein open sets of C" from the
point of view of the approximation property.

Theorem 3.2. Let D be an open set of C*. We have the following four
inclusions.

(a) If D is polynomially convex, then D is #(D)-convez.
(v) If D is #(D)-convez, then D is Q¢n(D)-convex.

(¢) If D is 2c»(D)-convez, then D is rationally conver.
(d) If D is rationally convex, then D is Stein.

If n > 2, then none of the converses of the four inclusions (a), (b), (c)
and (d) is true.

Proof. Since kgc,,(p) C K.,p(m C IA{C[ZI'Q,.__‘Z,‘] for every compact set K
of D, we have the inclusions (a) and (b). By Proposition 2.4 we have
the inclusion (c). The inclusion (d) is well-known (see Abe [1, Corollary
13} in more general situation). Let Dy C C? be one of the Examples 4.1,
4.2,4.3, 44, 4.5, 4.6 and 4.7 in Sect. 4. Then by Lemma 3.1 the open set
D := Dy xC2ofC" n > 2, gives an example which shows that the
converse of the inclusion (a), (b), (c) or (d) is not true. O

4. Examples
In this section we always denote by z and w the coordinates of C2.
Example 4.1. The Hartogs triangle
D= {(z,w) € C?| |z| < |w| < 1}

is an open set of C? which is #(D)-convex but not polynomially convex.
This example D is not simply connected.

Example 4.2. The Nishino domain

D := {(z,w)€C2|1< lz| < M, |w| <1} \ S,

where S := U {(zyw) eC? | (1 —t) 22 - 2tz + w =0} and M > 1,
0<t<1
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is #(D)-convex. Nishino [19, 21] proved that if M is sufficiently large, then
D is simply connected and is not polynomially convex.

Example 4.3. Let S be an irreducible transcendental hypersurface of C2
and let D := C2\ S. Then D is D¢ (D)-convex and is not Z(D)-convex
(cf. Nishino [20, p. 99]). This example D is not simply connected.

Problem 4.1. Does there exist a simply connected open set D of C" such
that D is Q¢ (D)-convex but not #(D)-convex?

Example 4.4. Let
D:=(C* xC)\ S, where § := {(z,w) €C'xC|w—e? =o}.

Then we have the following proposition.

Proposition 4.1. The open set D = (C* x C)\ S above is rationally con-
vezx in C? and is not Q¢2(D)-convez.

Proof. First we prove that D is rationally convex. Take an arbitrary com-
pact set K of D. Let K, be the image of K by the projection C2 — C,
(z,w) —» 2. Then ¢ := min(zlw)C_K |w— el/z| > 0 and § := mingeg, |2| >
0. Let Fn(z) := 3 5z Oz" k/k! € Clz] and fo(z,w) := z"w — Fy(2) €
Clz,w] for every n € N. Since the sequence of functions F,(z)/z" =
P (1/2)F Jk!, n € N, tends to the function e'/* on any compact set
of C*, there exists N; € N such that |F )/ 2" —e‘/zl < g/2 for every
z € K; and n > Nj. Take an arbitrary £ € C*. We have that
1
Z n+k (E )

n+k
X1 <wim (1)
c"’L(_)"“‘_el/lﬁl
ek \lg]/) allg™

It follows that |fn(£,e1/§)| = |£"e1/5 - Fn(§)| < el/¥l/n! for every n € N.
Since lim,_,o0 (1/6)™ /n! = 0, there exists Na € N such that (1/8)" /n! <

el/€ _

20
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ge~1/IEl/2 for every n > No. If (z,w) € K and n > N := max {Ny, Na},

then
F.(z n F,.(z R
|falz,w)| = [2” (w—ﬁ)\ > |2 |(|w—e"z - | ey )
ex esn el .
nf._ =\ /€
>0 (e=5) =55 > S > [ee )|

Therefore |f,zv(§,el/f)| < min,, y)ex | fn(z, w)| and we have that (€,el/%) ¢
Kc2. Thus we proved that K¢cz NS = (. On the other hand it is clear that
K2 ({0} x C) = 0. It follows that K¢z C D and the proof of the rational
convexity of D completes (see Lemma 2.1). Next we prove that D is not
Dc2(D)-convex. Since the function z — el/? has an essential singularity at
the origin z = 0, we have that § = SU ({0} x C), where § is the closure of
S in C2. Assume that S is an analytic set of C2. Then S is an irreducible
curve in C? since S is connected and non-singular. On the other hand we
have that {0} x C ¢ S. It contradicts the identity theorem for analytic sets
(see Grauert-Remmert [10, p. 167]). It follows that S is not an analytic
set of C2. Take a point £ € C*. Then L := {¢} x {w € C| |w —el/fl =1}
is a compact set of D. Take an arbitrary h = f/g € Zc2(D), where
f,g € €(C?) and g # 0 on D. Assume that {g =0} N (C* xC) # 0.
Since § is irreducible and {g = 0} N (C* x C) C S, we have that {g =0} N
(C* x C) = S by the identity theorem for analytic sets. Then we obtain
that § = {g = 0}. Since S is not an analytic set of C?, it is a contradiction.
It follows that ¢ # 0 on C* x € and the function & is holomorphic on
C* x C. By the maximum modulus principle we have that |A(§, w)| < [|A||,
if |w — e!/¢| < 1. Therefore {¢} x {w e C|0 < |w - el <1} c fz_agczu)).
Since (£,eY€) ¢ D, the set L 2.2(D) is not compact. Thus we proved that
D is not Z¢2(D)-convex. O

Example 4.5. Let D) := AxC* and D; := (C \ Z) x C, where A denotes
the unit disk in C. Although the open set D, is Z¢2(D,)-convex for each
v = 1,2, the disjoint union D := D; U Dy is not 2¢2(D)-convex by the
following proposition.

Proposition 4.2. The open set D = Dy U Dy above is rationally convex
in C? and is not Qc2(D)-convez.



16 M. ABE

Proof. First we prove that D is rationally convex. Take an arbitrary com-
pact set K of D. There exist numbers ¢ € (0,1), b > 0, ¢ > 1 and
d > 0 such that K; := KN D; C {(z,w) € C?||z| < a, |w| > b} and
Ky := KN Dy C {(2,w) € C?| |2| > ¢, |w| < d}. Take N; € N such that
a¥' < b/2 and M > b/2 +d. Let fo(z,w) := w — 2" € Clz,w] for every
n € N. If n > Ny, then |fn(z,w)| 2 |w| - |2|" > b—a™ > b—b/2 =b/2 for
every (z,w) € Kj and |fa(z,w)| 2 |2|" —|w| > c®*—d > (b/2+d)—d = b/2
for every (z,w) € Ka. It follows that min(, u)ex |fn(2, w)| > b/2if n > Ny,
Let £ € A and take N > N such that |fx(£,0)] = |€]Y < b/2. Then
|fn(€,0)| < ming, ek |fa (2, w)|. Therefore (£,0) ¢ Kez for every £ € A
and thus Kc2 N (A x {0}) = 0. Let (£,7) € 8A x C and f(z,w):=z—-€ €
Clz,w]. Since f(¢€.n7) = 0 € f(K), we have that (£,7) ¢ Kc2. Therefore
Ke2 N (A x C) = 0. Since C2\ D = (A x {0}) U (8A x C), we have that
Kc: € D. 1t follows that D is rationally convex (see Lemma 2.1). Next we
prove that D is not 2¢2(D)-convex. The set L := {0} x {w € C| |w| = 1}
is compact and is contained in D. Take an arbitrary h = f/g € 2¢2(D),
where f,g € 6(C?) and g # 0 on D. Since g # 0 on (C\ A) x {0}, the
number of the zero points of the function z — g¢(z,0) is finite and there
exists r € (0,1) such that g(2,0) # 0 for r < |2] < 1. On the other hand
the function z — g(z,w) has no zero points in A if w # 0. Therefore by
the Hurwitz theorem the function z — g(z,0) has no zero points in the disk
{z€ C||z| < r}. It follows that g # 0 on A x C and h is holomorphic on
A x C. By the maximum modulus principle we have that |h(0,w)| < ||R||,,
if lw| < 1. Therefore {0} x {weC|0< |w| <1} C i/gcz(D). Since
(0,0) € D, the set L 2.2(D) is not compact. Thus we proved that D is
not Z¢2(D)-convex. O

Problem 4.2. Does there exist a simply connected open set D of C™ such
that D is rationally convex but not Z¢»(D)-convex?

Example 4.6. Stein 26, p. 757] gave the following example. Let
D= ((C*)Q \ A’ where A = {(Z,'w) I (C~)2 l 2= wi} '

Then D is a Stein open set of C2. Let r and R be numbers such that
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eT"T<r<l< R<e" Let

al:={ei9|0§9$7r},a2:={ei9|—1r§9§0},

Br:={weC||w=r}, Bo:={weC]||w =R},
F={weC|r<|w <R}, and
K:= (a1 xB1)U(az x B)U({-1} x IN).

Then K is a compact set of D and we have that {1} x I' C K¢z (see
Proposition 4.3 below). Since (1,1) € AN({1} x I'), we have that K¢2 ¢ D.
It follows that D is not rationally convex in C? (see Lemma 2.1). This
example D is not simply connected. Oka [23] also gave a similar example
(see Nishino [20, p. 99]).

Proposition 4.3. For the sets I' and K above we have that {1} xI" C K¢a.
Proof. Take an arbitrary f € €(C?) such that f # 0 on K. Since the

function
/ fu (z w)
N 21n

is continuous and with discrete values on the connected set a,, it must be

constant on a, for each v = 1,2. On the other hand we have that

1 fu.( lw)
Na(=1) = Ny(=1) = 27“/32 e aw=o

because f(—1,w) # 0 for every w € I'. It follows that
Ni(1) = Ni(=1) = Na(-1) = No(1)

and thus we have that

L Suw(l,w)
27 Jg,—3, f(1,w)

dw = 0.

Therefore by the argument principle the function f(1,w) of w has no zero
points in I'. Thus we proved that f # 0 on {1} x I" for every f € £(C?)
such that f # 0 on K. This means that {1} x I" C K¢2. O
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Example 4.7. Let A denote the unit disk. Wermer [29] gave an example
of an open set of C® which is biholomorphic to A3 and is not rationally
convex in C? (see Stolzenberg [27]). Wermer [30] also gave a similar example
biholomorphic to A2, which is as follows. Let

K = {(z,w) € C? | w=7% |Re(z)| <1, [Im(2)| < 1} and
¥:C? = C% Y(z,w) = (2,(1 +i) w—i2uw? - 2%0?).

By Wermer [30] there exists an open neighborhood U of K such that U is
biholomorphic to A2, the set D := 9(U) is open in C2, the restriction map
Yy, p : U = D is biholomorphic and (1/2,0) € D whereas A x {0} C 4(K)
(see also Fornaess-Stensones [8, pp. 212-213] and Ohsawa (22, p. 81]). Then
the open set D is not rationally convex in C? because D is simply connected
and D N (C x {0}) is not simply connected (see Nishino [20, Remark 3.6]
and Abe [3, Corollary 6]). Especially D is not polynomially convex, which
is the original assertion of Wermer [30).

5. Stein space of dimension 1

A complex space X of dimension 1 is Stein if and only if X has no
compact irreducible component of dimension 1 by Narasimhan (18].

Lemma 5.1. Let X be a Stein space of dimension 1. Then for everyp € X
there ezists g € O(X) such that {g = 0} = {p}.

Proof. If p is an isolated point of X, then the assertion is clear. We
consider the case when p is not an isolated point of X. Let {X)},c be
the set of irreducible components of X. Take a point gy € X, \ {p} for
every A € A. Then the set {gx | A € A} U {p} is discrete in X. Since X is
Stein, there exists 7 € &(X) such that 7 =1 on {gx | A € A} and 7(p) = 0.
Since 7 Z 0 on X for every A € A, we have that dim, N(7) = 0 by the
active lemma (see Grauert-Remmert [10, p. 100]). It follows that there
exists a neighborhood U of p such that U N {r = 0} = {p}. We have that
HY(X,0*) = H%(X,Z) = 0 because X has the homotopy type of a CW-
complex of dimension < 1 (see Hamm [11, 12] and Hamm-Mihalache [13]).
It follows that there exist go € 6*(U) and g; € 0*(X \ {p}) such that
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T =g1/90 on U \ {p}. We define g € 6(X) by the equalities g = 7gg on U
and ¢ = g; on X \ {p}. Then we have that {g = 0} = {p}. O

Theorem 5.2. Let X be a Stein space of dimension 1. Then every open
set D of X is 2x(D)-conver.

Proof. Let K be a compact set of X. Take an arbitrary sequence {p,},-,
of points of R'gx(o). Since RQX(D) C KxND and Ky is compact, we may
assume without loss of generality that {p, }32, converges to a point p € D.
Assume that p € @D. Then p is not an isolated point of X. By Lemma
5.1 there exists g € €(X) such that {g = 0} = {p}. Let ¢ := minyex |g(z)|
and let h := §/g. We then have § > 0, h € 2x(D) and ||hl|; < 1.
If z € U := {|g| <8}, then |a(z)] > 1 > |||, and thus = ¢ Ko, (p)-
Therefore K 2x(p)NU = 0. It contradicts the fact that p is an adherent
point of RQX(D) in X. It follows that p € D. Since RQX(D) is a closed
set of D, we obtain that p € RQX(D). Thus we proved that k—’?x(D) is
compact. a

By the rational approximation theorem of Runge [25] (see Rudin [24,
Theorem 13.9]) every holomorphic function f on an open set D of C can be
uniformly approximated on every compact set K of D by rational functions
which are holomorphic on D. If moreover D is simply connected, then
every holomorphic function f on D can be uniformly approximated on
every compact set K of D by polynomial functions.

As usual a non-compact connected complex manifold of dimension 1 is
said to be an open Riemann surface. By Behnke-Stein [5, Satz 6] an open
set D of an open Riemann surface X is €(X)-convex if and only if no
connected component of X \ D is compact. Mihalache [17] generalized
this result to Stein spaces of pure dimension 1. Coltoiu-Silva [7] obtained
a generalization to complex spaces of pure dimension n with no compact
irreducible components.

Behnke-Stein (5, Satz 13] also proved that every holomorphic function
on an open set D of an open Riemann surface X can be uniformly ap-
proximated on every compact set K of D by meromorphic functions on
X which are holomorphic on D and have at most finitely many poles on
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8D. As a corollary to Theorem 5.2 we have the following meromorphic
approximation theorem in a Stein space of dimension 1.

Corollary 5.3. Let X be a Stein space of dimension 1. Then every open
set D of X satisfies the strong meromorphic approzimation property in X,
that is, for every ¢ € O(D), for every compact set K of D and for every
€ > 0 there exist m € .4 (X) N O(D) such that |lp — m||, <.

Proof. The assertion is a direct consequence of both Theorem 5.2 and
Lemma 2.3. O

We also have the following weak version of the meromorphic approxima-
tion theorem (cf. Rudin [24, Theorem 13.6)).

Corollary 5.4. Let X be a Stein space of dimension 1 and K a compact
set of X. Then for every ¢ € O(K) and for every € > 0 there exist
m e A (X)NO(K) such that ||p — m|, <e.

Proof. Take an open set D of X such that K C D and ¢ € (D). Then
we have the assertion by Corollary 5.3 or by Lemma 2.1. D
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