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ABSTRACT

A two-dimensional hybrid numerical method for solving elastoplastic problems in rock engi

neering is presented by coupling two existing methods, namely, the boundary element method

and the characteristics method. This method is called as the coupled Boundary Element -

Characteristics Method (BEM-CM). The formulation'of this method is presented in order to de

termine the boundary between elastic and plastic regions and calculate the displacement and

strain in the plastic region. It is shown that this method is one of accurate and effective meth

ods for estimating not only the shape and extent of the plastic region but also the state of the

displacement and strain in the plastic region around underground opening. Then, some typical

examples are solved in order to check the accuracy of the results by this method. Finally, the

effectiveness of the BEM-CM to the elastoplastic problem in rock engineering are presented and

discussed.

INTRODUCTION

In order to assess the stability of underground openings, it is necessary to clarify the state of

stress and deformation of the surrounding rock mass. Because that the shape and extent of

plastic region, the states of stress, displacement and"strain around the underground openings

induced by the excavation are govern the stability of the underground openings. For this pur

pose, various numerical techniques for elastoplastic problem have been proposed. The finite ele

ment method has been widely used up to date among others.ltl A coupled finite element-

boundary element method is also attractive.84 However, when the finite element method is

used, a numerical model has to be divided into numerous small elements to obtain a highly ac

curate solution for the elastoplastic analysis. Furthermore, a semi-analytical model which is a

combination of the analytical solution with the characteristics method was proposed to inves

tigate the two-dimensional elastoplastic behavior around a cylindrical opening.6 However,

since the analytical solution for the elliptic cavity is used to obtain the stress field in the elastic

region, it is difficult to apply this method to an opening of arbitrary shape and multiple open

ings.

This paper presents a new method for 'the elastoplastic analysis of the underground openings

in homogeneous and isotropic media.613 It is a two-dimensional coupled boundary element-

characteristics method (BEM-CM) to solve the passive earth pressure problem. The character

istics method (CM) is an accurate method to solve plastic equilibrium problems expressed as

hyperbolic-type partial differential equations.""" On the other hand, the boundary element

method (BEM) is effective for solving boundary value problems of infinite homogeneous elastic

domains."19

The coupled BEM-CM method makes full use of the advantages of the BEM and the CM and
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the analytical region is divided into two regions, namely elastic region and plastic region. The

former is analyzed by the BEM, and the latter is analyzed by the CM. Each region is independ

ently analyzed and the boundary between the elastic region and the plastic region is incremen

tally modified and expanded from the free surface until the stress state at the boundary between

the two regions satisfies a chosen yield function. Thus, this method enables the analysis of the

elastoplastic problem for an arbitrary opening shape and multiple openings because of adoption

of the BEM for the elastic region. Furthermore, the displacement and strain field in the plastic

region around the underground openings can be obtained in detail. However, since the associ

ated flow rule is adopted to compute the displacement and strain in the plastic region by the

CM, there has been a tendency that the displacement and strain are estimated more than actual

values.

In this paper, the formulation of the BEM-CM is described as well as the limitation of its ap

plicability. The application of this method to elastoplastic problems of the underground circu

lar opening under biaxial initial stress field is presented, and the non-associated flow rule is

introduced into the BEM-CM to calculate the displacement and strain field in the plastic region

around underground openings. It is shown that this method is one of accurate and effective

methods for estimating not only the shape and extent of the plastic region but also the states

of the displacement and strain in the plastic region around the underground opening.

Furthermore, this method is applied to the problems of rectangular opening, horse-shoe shaped

opening and rock slope. Then the shape and extent of the plastic region near the free surface and

the characteristics of the displacement and strain field in the plastic region are discussed.

FORMULATION OF BEM-CM

Coupling of BEM-CM

The BEM-CM is effective when the yielding of rock mass around underground openings is of

compression kind. However, the rock mass around the underground openings not only yields be

cause of compressive stresses but also fractures due to tensile stresses.

First of all, the limitation of the applicability of this method is discussed with the problem

of a circular opening as an example. According to the theory of elasticity, the tangential stress

a, on the wall of a circular opening under a biaxial initial stress field ct™ and a" (the compres

sive stress is defined by positive) is given as follows:

a, =o?+o?-2(o?-opcos 20 (1)

In regard to o,, tensile stresses are generated on the wall of the circular opening under the ini

tial stress field in region I, as shown in Figure 1. In the figure, Se is the uniaxial compressive

strength of rock mass. On the other hand, under the initial stress field in regions II, III and

IV, compressive stresses are generated on the whole circumference of the circular opening. In

particular, a compressive stress larger than Sc is generated on the whole circumference of the

circular opening in region IV and induced partially on the wall of the opening in region ffl.

Consequently, the boundary value problem under the initial stress field in regions ID and IV, of

which the ratio of horizontal initial stress to vertical initial stress, m is more than 1/3, can

be solved by the BEM-CM.

Now, let us consider an underground opening as illustrated in Figure 2 and suppose that the

ground surrounding the opening consists of elastic region Q, and the plastic region Q2 • The
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elastic region is assumed to behave as an isotropic and homogeneous linear elastic material and

the plastic region as an isotropic plastic material which is characterized by a yield function.

Figure 2(a) shows the full yielding of the circumference of the opening while Figure 2(b) shows

the partial yielding of the circumference of the opening, in which the surface consists of the

elastic segment Fj and the plastic segment P2. In both cases, the boundary between fij and

Q2 is defined by F3, which is so-called elastoplastic interface.

0.5 tO 1.5 0 0.33 0.5

(a) (b)

1.0

Figure 1 Classification of initial stress for the stress state on the circumference of

a circular opening.

(b)

Figure 2 Plastic region Q2 around an opening: (a) full yielding of the circumference;

(b) partial yielding of the circumference.

— 3—



If the yield function of the ground is specified by /(atf) =0 , defining aj as the stress tensor

in Qj and o% as the stress tensor in Q2. tne stress state within Q, is under the condition of

f(oy)<,0 and that in Q2 is the under the condition of f(oq) =0 . Considerations of equilibrium

demand that the stress components normal and parallel to F3 should be the same on both side

of F3, as well as the displacement components.

The main problem is how to determine the geometrical shape of the plastic region. For this

purpose, the CM is jointly used with the BEM, and the geometrical shape of the plastic region

is determined with an iterative procedure, which is the step-by-step widening of the plastic re

gion from the free surface. The CM is used to solve the equilibrium equation within the plastic

region and to determine the slip-line field as shown in Figure 3, which indicates an example of

the slip-line field around a complete opening in the case that the ground surrounding the opening

consists of a plastic material. On the other hand, the BEM is used to obtain the stress field in

the elastic region.

Firstly, F2 is evaluated with the condition of /(a^)^0 , after the elastic stress distribution

on the wall of the opening is calculated by the BEM. Secondly, the slip-line field in the area

ABC around the opening is analyzed by the CM, assuming that F2 is the base of the plastic re

gion as illustrated in Figure 3. Then the stress Oy within the area ABC is determined.

Subsequently, a curve P8 at a described distance from F2 in the area ABC is assigned as an ap

proximation of the elastoplastic interface. The distance is defined as the shortest distance from

the opening wall to the points where the slip lines calculated from adjacent discretized points on

F2 intersect each other. Therefore, this distance depends on the length of the boundary ele

ments. Then, the stress aj in the elastic region is analyzed by the BEM, applying the principle

of the superposition as illustrated in Figure 4.

Figure 3 Passive slip line field around an opening and curvilinear triangle ABC on

Base F2.



(c)

n

-pj

Oif=0

p*. ill

Figure 4 Principle of the superposition: (a) partial yielding of a circular opening;

(b) initial stress field; (c) stress change in elastic region.

In Figure 4, the state (a) shows a partial yielding of the circular opening, being subjected to

the initial stress field of? at infinity. The traction on the elastoplastic interface F3 is repre

sented by p . The state (b) shows the initial state of the elastic region, being subjected to the

initial stress at infinity. The traction p0 on F, and F8 is equivalent to o% . The state (c)

shows the stress change induced by the excavation and the appearance of the plastic region with

out the initial stress, namely, the traction —p0 on Fj and the traction —P0+p on F3. The

stress field within the elastic region of the state (a) is obtained by superposing the state (c) on

the state (b). Since the traction p can be calculated from the stress a£ by Cauchy's formula

in the elastic analysis, the continuity of the stress across F3 is always satisfied everywhere.

By examining the stress crj on Yx and F3, if there is a range of /(ap^O on Fi, it is added

to F2, and if there is a range of /(oy)^0 on F3, it is translated outwardly and subsequently

the plastic region slightly expands. The step-by-step widening of the plastic region and the repe

tition of the stress analysis for the elastic region is continued until the stress field satisfies the

condition f(.o£)<,0 everywhere in the elastic region. This is the fundamental concept of the pro

cedure to determine the geometrical shape of the plastic region.

Additionally, the effect of tunnel support system may be introduced into the BEM-CM as an

internal pressure acting on the wall of underground openings. In this case, the slip-line field

around the opening is calculated by assuming that the tractions on Fj , F2 and F3 are ps,

—po+p and —Pq+P+Ps , respectively, as shown in Figure 4(c).

The analysis of the displacement and strain field are subsequently performed. The CM is also

available for this analysis. At that time, the boundary condition of the displacement is given

on the elastoplastic interface. This is the displacement on F3 calculated by the BEM.

In addition, it can be noted that the hardening and softening effect of a material can be easily

incorporated in the BEM-CM, since the yield functions used in the plastic region and on the

elastoplastic interface can be independently introduced.

Stress field in plastic region

The stress field in the plastic region is obtained by the CM.1416 Mohr-Coulomb's criterion is

adopted as the yield function, which is expressed as

r = C+a tan 0 (2)
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where x and o are shear stress and normal stress, respectively, and C and 0 are cohesion and

internal frictional angle, respectively. Equation (2) can be rewritten in terms of principal

stresses ax and o^o^ ;><73 >0 , the compressive stress is defined by positive), as follows:

i~- ct3 =2Ccos (3)

or

x =Sc+qo3

(4)

where Sc is the uniaxial compressive strength.

If .we designate the inclination of ax from the a:-axis by jS as shown in Figure 5(b), the

stress components ax, av and t^ in the x—y co-ordinates, within the plastic region, maybe

expressed as

ax =crm(l+sin 0 cos 20) + C cos <f> cos 2£

ov =am(l -sin 4> cos 2j8) - C cos 0 cos 2j8

r«i = (<7m sin <f>+C cos 0)sin 2£

(5)

Mohr-Coulomb's criterion
y

N
*<* /S*

(b)

\

\

Slip line

field

Figure 5 Stress field in plastic region: (a) yield function; (b) x—y co-ordinates and

stress components; (c) slip line Si and S2; (d) slip line field of the base of T2.
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where 2am =a} + oz =ax+ay , and they have to satisfy the condition of equilibrium as

ox oy ox oy

Substituting Equation (5) into Equation (6), we obtain

where

Pt =l+sin0cos2jS

Ci =P2 = sin ^ sin 2/9

/?, = - T2 = -2(am sin 0+C cos 0)sin 20

Tx =R2 =2(crm sin 4>+C cos 0)cos 2/8

C2=l-sin0cos2/8

Equations (7) are hyperbolic-type partial differential equations for two variables am and /8 ,

and the characteristic curves are given by

f (8)

These characteristic curves coincide with the intersecting slip lines Si and St as shown in Figure

5(c).

Since Si and St intersect each other at angles 0—a and 0+a , respectively, the derivatives

of the slip lines are expressed as

and we obtain the following:

a

cos far- = s
ax

Thus, Equation (7) is simplified to

^=2(am tan

By supposing the segments dc and cb of two intersecting slip lines defined as in Figure 5(c),

Equation (11) is replaced by the following linear relations:
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tan 0+C)O9c-ySd)

*■*-*« = -2(ambtan 0+C)O9b-/Sc)

where the subscripts b, c andd refer to the nodal points in Figure 5(c). The first approximation

of omc and /Sc is obtained by solving Equations (12), because am and 0 at the nodal points b

and d are known. Then, the second approximation of amc and y9c is obtained from the fact that

the terms cr^tan^ and <7mbtan0 in Equations (12) are modified to 0.5(amc+arad)tan <f> and

0.5(amc+amb)tan^ respectively, using the first approximation of amc. The exact solution is

obtained after several iterations as described above. On the other hand, the co-ordinates (xc,

yc) of the nodal point c are obtained by linear difference relations given as

Vc-Va = Orc-gd)tan(PcoPd-a) on S,
(13)

b2 e+a) on S2

From the theory of the CM, it is known that, if all three stress components are prescribed

along the segment AB shown in Figure 5(d) and they satisfy the yield function, the stress state

on AB is sufficient to define the stress field uniquely within a curvilinear triangle ABC bounded

by the intersecting slip lines through A and B.

Stress field in elastic region

The stress field in the elastic region is obtained by the BEM.17"19 The boundary integral equa

tion for a two-dimensional boundary value problem can be expressed as follows:

where u<(po) is the component of displacement at the point po on the boundary T , u;(p) and

Pi (p) are the components of the displacement and the traction, respectively, at the point p on

P and u]i (p.po) and p'fi (p.po) are the fundamental solutions of the component in the direction

; of the displacement and traction at the point p, respectively, when a unit load acts on the

point po in the direction i. The boundary integral equation (14) is usually solved numerically by

discretizing it into a system of algebraic equations with the aid of a scheme similar to that in

the finite element method

[H]\u] = [L]\p\ (15)

where [H] and [L] are the coefficient matrices and \u\ and \p\ are the nodal displacement and

traction vectors.

In this paper, the boundary F of an underground opening is divided into boundary elements

of a given length, as shown in Figure 6(a), to obtain the elastic solution. If these elements are

sufficiently small, they will approximate the wall quite closely. In Figure 6(a), Po'is a nodal

point which is a middle point of the element, and Ql0 is the connecting point of the boundary

elements.

Figure 6(b) shows an example of the model in the case that a plastic region around the open

ing develops. Due to the step-by-step widening of the plastic region, the connecting point of the

element represented by Q[ in Figure 6(b) moves away from the wall along the line normal to
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the wall, for example, as depicted from Q*o to Q{ in Figure 6(b). Since the two pairs of the in

tersecting slip lines Si and Si can be drawn through the adjacent points C<+1 and Q{~1, the

point Q{ has to be confined within the area bounded by these slip lines as shown in Figure 6(c).

This geometrical condition is an indispensable condition for determining the stress field in the

plastic region.

(c)

Figure 6 Scheme of boundary element modeling: (a) circular opening model of

F =T{; (b) boundary model of F =F3; (c) geometrical condition for Q{.

Condition of elastoplastic solution

The stress field in the plastic region has to be uniquely determined by the plastic stress analy

sis, assuming F2 is the base of the plastic region. Therefore, it is required that the conditions,

that F3 exists within the region of ABC as shown in Figure 5(d), and the boundary point Q*

exists within the shaded area, which is bounded by four slip lines drawn through the two adja

cent boundary points Qi+l and Q{~1 in Figure 6(c), are satisfied.

In addition to the geometrical conditions stated above, the stress state obtained on F3 must

satisfy a chosen yield function. To monitor the convergence of the numerical procedure for

elastoplastic analysis, we introduce the stress ratio, s to approach the yield function as fol

lows:

a\—a'z
(16)

where ax—ct3 is the principal stress difference calculated by the BEM, and o\—a\ is the princi

pal stress difference which satisfies the .yield function under the condition a^raz. Therefore,

the elastoplastic solution is assumed to be achieved, when

s =1.0 on F3 and s <1.0 on Ft (17)

Displacement in plastic region

The displacement and strain field in the plastic region are also obtained by the CM."46 In this

method, Mohr-Coulomb's yield function is adopted to determine the stress field around

-9—



10

underground opening, which is expressed as

f=r-C-otan<f> (18)

where r and a are the shear and the normal stress respectively, and C and <f> are the cohesion

and the internal friction angle respectively. On the other hand, the plastic potential which is

different from the yield function is introduced to calculate displacement field in the plastic re

gion. Accordingly, the non-associated flow rule is used in this method. The plastic potential

which is of the same type as the yield function is defined at a plastic stress state as

g=T—Cp—atan<pN (19)

where CP is a constant dependent on the plastic stress state and <f>N is dilatancy angle.

Equations (18) and (19) are rewritten in terms of the principal stresses a, and oz(ox ^a3 >0 ,

the compressive stress is defined by positive) as

/ = (a,-a3) -2C cos <t>- (a,+a3)sin </> (20)

g - (crj - as) - 2CP cos <f>N- (a, -1- a3)sin <f>N (21)

Now the plastic potential is assumed by using the stress components a^ av and r^ in the

x—y co-ordinates as

9 =V(^x-^)2+4 ~2Cp cos &N- (<Jx+(Jy)sin $N (22)

The non-associated flow rule is defined in terms of the plastic potential expressed as

(23)

where A* is a constant, | | represents vector and the superscript p refers to the plastic strain,

The plastic strain components are defined as

(24)

where

Tt = <&=*£+£ = (££££ (25)

Designating the inclination of ax from the z-axis by (i as shown in Figure 7(a), the stress

components in the x—y co-ordinates, within the plastic region, are expressed as

— 10—



11

Figure 7 Method of characteristics for displacement analysis in plastic region: (a)

co-ordinates and stress component; (b) displacement along slip lines; (c)

slip lines Si and Si, and nodal points; (d) displacement analysis based on

the continuity of displacement on Fs.

and

ax—ov =(ffi—a3)cos 20 =2Tcos 2/3

Substituting equation (26) into equation (24), we obtain the following:

depx =A(cos 2)3—sin 0^)

dej = -A (cos 2)3+sin <f>N)

Then, the principal plastic strains are given as

f =A(1—sin^jy)

l = —A(l+sin <f>N)

— 11 —

(26)

(27)

(28)

(29)



12

Therefore, the constant A is obtained by the following equation:

A = d£*~2d 3 (30)

By eliminating the constant A in equation (28), we obtain the following:

de£-dej=2d7£,cot2i9

Then equation (31) is integrated as follows, by assuming the angle 0 to be constant at a cer

tain location in the plastic region

^^ sin 2/8

On the other hand, the displacement components, u and u are defined in the x—y co

ordinates in Figure 7(b), expressed as

u =wo+Aw, v =vo+Av (33)

where uo and Vo are the initial displacement components and Au and At; are the displacement

due to excavation. Under the initial stress condition, the initial displacement components are

given as

2Gu0 = {(l-v)os-vou}x+Txlp . .

2Gvo = {-MtvKl-iOaJiH-v K '

where G and v are the shear modulus and the Poisson's ratio respectively.

The total strain in the plastic region can be obtained as the sum of the elastic strain and the

plastic strain, and the strain components are defined by the following equations:

-W (35)

where the superscript e refers to the elastic component. From the elastic stress-strain relation

under the plane strain condition, the elastic strain components are given as follows:

2Ge'x =(.l

c = -W7z+(l-v)ay (36)

By substituting equations (35) into equations (32), we obtain

— 12 —



13

du . sin^jy du ■ sin fly dv . dv =h

dx sin 2/9 fly sin 28 dx dy

where

A =ej+ej+2ri^. (38)

Equations (37) are the hyperbolic-type partial differential equations for u and v, and the char

acteristics curves coincide with the slip lines Si and S2 in Figure 7(c), as expressed

^ ), a =-f-^- (39)

Since Si and Si intersect each other at angles B—a and B+a receptively, the derivatives of

the slip line are expressed as

* *s, <«, (4o)

and the displacement components in the x—y co-ordinates are represented by the displacement

components W\ and Wi along the slip lines Si and Si as shown in Figure 7(b)

u=Wi cos(/8-a) + W2 cos<j8+a)

By making use of equations (41) and the partial derivatives of equations (40), equations (37)

can be rewritten as two differential equations expressing the two variables of W\ and W% along

the slip lines.

dWx , . dWz ... , dB h

-dST+sm^^-W^0S^=Y
dW2 , . . dW{ , ... ^ dB h { '

If the segments, ad and db, of two intersecting slip lines are defined as shown in Figure 7(c),

equations (42) may be replaced by the linear differential equations for W\ and Wi, that is

la-Wld+sm*H<Wu-Wu)-cos*H

M- W2b+sin 4>N(Wxd- Wib)+cos <t>N

where ad and db imply the distance between the nodal points. Wu mans the displacement Wi at

the nodal point a. The first approximation of W\<* and Wid is obtained by solving equations

(43) and may be corrected by step-by-step method.
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NUMERICAL EXAMPLES

A circular opening

To demonstrate the accuracy of the solution of BEM-CM, the method is applied to a circular

underground opening of radius R under a biaxial initial stress field. The geometrical shapes of

the plastic region around the opening due to excavation are shown in Figure 8. The Mohr-

Coulomb's criterion is adopted as the yield function and initial stress field, a" and a" , are

varied in the analysis together with the plane strain condition. Figure 8(a) shows the result of

the shape and radius of the plastic region around the opening under the hydrostatic initial stress

field, m =o™/o™ =1.0 and n =a"/'Sc =2.5 , where Sc is theuniaxial compressive strength.

The shape and radius of the plastic region around the opening coincide with those by the analyti

cal solution" given by

R' r2{(q-l)n+in
R ~L o+l J (44)

where R' is the radius of the elastoplastic interface. Furthermore, it is confirmed that the

stress distribution around the opening agrees with the theoretical one as shown in Figure 9.

Figures 8(b) and 8(c) show the shapes of the plastic regions under the initial stress fields,

m =0.5, n =1.4 and m =0.5, n =2.5, in regions ffl and IV, as shown in Figure 1. The stress

states calculated on the boundary F =ri+r3 are plotted in the space of principal stresses, as

(a) mnOx/O?a}.0 , n

(c) /noOT/CfsO.5 , nnQy/Scs2S

Plastic region

Figure 8 Plastic region around a circular opening under a biaxial stress field: (a)ring

shaped plastic region under hydrostatic initial stress field; (b)partial yield

ing; (c)full yielding; (d)influence of the number of boundary elements, N.
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Plastic region

■ ■ <

Ox =Oy a Go

Elastic region tf/Scs2.Q

40#)

1.6 1.8
r/R

Figure 9 Stress distribution around a circular opening of radius R under hydrostatic

initial stress field a" , numerical results (filled circles) and analytical solu

tion (solid line), where r, 6 : polar co-ordinates, ar, ag : normal stresses.

10

Scs

($ s

10MPa

4.6

40°)

m=0.5

10

10 20

Sc=10MPa

(^ =40°)

10 20

30 40 50

/n=0.5

30 40

U\ , MPa

50

60

60

Figure 10 Comparison of analyzed stress on elastoplastic interface with Mohr-

Coulomb's criterion.
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shown in Figure 10. The stress states on F in both cases satisfy the yield function used in this

analysis at every point on the elastoplastic interface. Therefore, it is clarified that the

elastoplastic solution can be obtained by the BEM-CM with a high accuracy.

The influence of the number of boundary elements, iVis shown in Figure 8(d). In the case of

N =42 , the shape of the plastic region is not smooth in the vicinity where the elastoplastic in

terface intersects the wall of the opening. The shape of the plastic region becomes smooth as N

increases. This means that the finer subdivision of the boundary elements results in more accu

rate solutions. In addition, the number of iteration to obtain the elastoplastic solution in

Figures 8(a), 8(b) and 8(c) are 16, 7 and 19, respectively.

The BEM-CM is applied to the circular opening of the radius R under a hydrostatic initial

stress condition, namely m =a"//a^ =a~ and n =a^/Sc =o"/Sc, to confirm the accu

racy of the deformation around the opening. The shear modulus, G and the Poisson's ratio,

v of rock mass are 1.7GPa and 0.2 respectively. In the analysis, the dilatancy angle is changed.

The total displacement, ur in the radial direction is written as follows13:

(45)

where Se =2Ctan(f+f), q± tan2(f+■§-) and qN = tan2(f+^f).

co

CM

2.3

2.1

1.9

1.7 -

1.5

"20°

-

Plastic region

0n = 50°

/

\ 40°

< \ 30°

I L

, 0=40°;

'/

/Cavity/\

«•=

1

^B

Elastic

region

r

'1.148/?

1.00 1.05 1.10 1.15 1.20

r/R

Figure 11 Comparison of numerical results with the theoretical solutions concerning

the location of elastoplastic interface and the distribution around a circu

lar opening in the case of using the non-associated flow rule.
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Figure 11 shows the comparison of the numerical results with the theoretical solutions. In

this figure, the lateral axis is the distance from the opening wall and the longitudinal axis is the

normalized displacement, ur. The black circles are numerical results and the solid lines are the

theoretical solutions. The radius of the elastoplastic interface is 1.1481? and coincides with the

theoretical value calculated by equation (44). The numerical distribution of the displacement in

the plastic region shows a good agreement with the analytical one in the case of adopting the as

sociated flow rule. On the other hand, the difference between the both results becomes greater

with increasing the difference between the internal friction angle 0 and the dilatancy angle

<PN. Because that the integration pass of calculating displacement is not the same as that of cal

culating stress in the plastic region in the case of adopting the non-associated flow rule.

However the maximum error of the displacement on the opening wall is about 1% in the case of

4>N =0° . Therefore the proposed method is well performed for evaluating the deformation

around opening. It is noted that the degree of the deformation decreases with the reduction of

^fi-

lt is concluded that from this comparison the BEM-CM is an accurate and effective method

for estimating not only the shape and extent of the plastic region but also the states of the dis

placement and strain in the plastic region around underground opening.

DA=0.28/? Db=0A2R

A.
Plastic region

DA=0.3i/?

Figure 12 Plastic regions around parallel circular openings in the case of m —a™/a™

=1.0 and n -o^/Sc =1.5 and $ =40° : (a)two parallel openings; (b)three

parallel openings.
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Multiple Parallel circular openings

The BEM-CM is also effective for obtaining plastic regions around parallel openings. Figures

12(a) and 12(b) shows plastic regions around two and three parallel openings of radius R. The

initial stress field is m ~a^/a^ =1.0 and n =o™/Sc =1.5 . The depth of the plastic region

around a single circular opening under the same analytical condition is 0.26R. The greater the

number of openings, the larger the depth of the plastic region, particularly in the pillars be

tween openings.

Figure 13 shows the depth of the plastic region depending on the distance between two open

ings W at the points A and B. When two openings approach each other, the plastic region ex

tends remarkably in the pillar and the pillar is completely yielded in the case of DB/R =0.5 .

The difference bR between DB+R and R' given by Equation (44) is plotted in Figure 14 in the

case of DB/R >0.5 and m =o?/o™ =1.0 . In the figure, the difference AJ? and Ware nor

malized by R'. The relation between Ai? and Wis independent of n =o™/Sc and can be de

scribed by a single curve. This means that the extent of the plastic region in a pillar due to the

interaction of openings can be estimated from the radius of the elastoplastic interface R' by

Equation (44) under a hydrostatic initial stress field condition.

m=Ox°/Oy=2.0

10 15

(W-2R)/R

Figure 13 Depth of plastic regions at points A and B depending on the distance

between openings (n =a"/Se =1.5 and <f> =40° ).
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{W-2R*)/R%

Figure 14 Increase in depth of plastic region in pillar between openings.

Rectangular opening

Figure 15 shows the plastic region around a rectangular opening having corners of the same

radius of curvature for a hydrostatic initial stress field. The height and width of the opening

are Hv and Hx respectively. The plastic regions first appear at the corners with a small depth

and propagate along the surface of the opening as the initial stress n =o"/Sc is increased.

The depths of the plastic region at roof and sidewalls, defined by Dy and Dx, respectively, are

plotted in Figure 16 for a hydrostatic initial stress a0. When the plastic region extends on the

whole circumference of the opening with the increase of n, the depth of the plastic region in

creases rapidly because the rock within the isoceles triangle, the base of which is the straight

surface and the base angle is as given a , in Equation (8), has to yield under the uniaxial com

pression parallel to the straight surface. The yielding of a rectangular opening is characterized

by this rapid extent of a plastic region.

To examine the characteristics of the displacement and strain in the plastic region around

opening, the suggested method is applied to rectangular openings, having a different radius of

curvature at corners. The geometry of the openings is shown in Figure 17. The radiuses r0 of

curvature at corner of two openings are r^/Hy =0.026 in Case 1 and 0.15 in Case 2 respectively.

The analytical condition is described in the figure. Figure 18 shows the displacement of the

opening surface in the case of adopting the associated flow rule and Figure 19 is that in the case

of adopting the non-associated flow rule, 0 ^0W =0° . The state of elastoplastic displacement

of the opening surface is compared with that of elastic displacement in these figures. Au in the

figures represents the displacement. The slip lines are drawn in the plastic region around the

openings.

The place which the depth of the plastic region in both cases is largest is located at the center

of both side wall. Its depth in Case 2 is 85% of that in Case 1. The depth of the roof and floor

in Case 2 is 72% of that in Case 1. It is also found that the depth of the corner in Case 2 is
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(c)ms0x/0y=l0. n=CT//Sc»1.5 . (d)

Plastic region

Figure 15 Plastic regions around a rectangular opening in the case of Hs/Hy =0.6 ,

whereifs : width of opening; Hy : height of opening.

Figure 16 Depth of plastic region Dx and Dv shown in Figure 15(d), depending on

n =
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— Hx

0

Cavity

Analytical condition;

x x y o • o

Sc(Hyf 2)12G = 0.6238, v = 0.2, 0 = 40",

case 1 : ro IHy- 0.026, case 2 : ro/Hy= 0.15

Figure 17 A rectangular opening and co-ordinates, and analytical condition.

smaller than that in Case 1. In the case of using the associated flow rule as shown in Figure 18,

the elastic displacement of the opening surface maximizes at the center of the side wall. The

elastoplastic displacement of it is small at the corner and uniform through the wall. The value

of the displacement of the roof and floor in Case 2 is 88% of that in Case 1. It is confirmed that

the shape of the rectangular opening having a larger radius of curvature at the corner has a me

chanical advantage to decrease the depth of the plastic region and the displacement.

On the other hand, in the case of using the non-associated flow rule as shown in Figure 19, the

extent and shape of the plastic region coincide with those in Figure 18. Because that the excava

tion of the openings is assumed as whole excavation and that the stress and the displacement

field around opening are calculated independently in this analysis. Therefore, to simulate ac

tual excavation of the opening, incremental method is necessary to be adopted in the analysis.

The elastoplastic displacement decreases, comparing with that in Figure 18. The deformed

shape of the surface of the elastoplastic solution is almost the same as that of the elastic solu

tion. It is concluded that the non-dilatant rock mass behaves as the elastic rock mass having the

smaller elastic moduli than original ones.

The principal plastic strains is defined by ef and e§. The volumetric plastic strain (ef+ef)

is proportional to the maximum plastic shear strain (ef—£s)/2 as follows:

(46)

Accordingly, the dilatancy is proportional to the differential plastic strain (cf—e$) . In the

analysis, the maximum total shear strain (e,—£s)/2 and the maximum elastic shear strain

(e*—eS)/2 are calculated at the intersection of slip lines as follows:

= 1(WX

2 \dS2

2E

dW2\

S )
(47)
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(a)

<iu=6.4{S«(Wy/2)}/2G

Figure 18 Shape and extent of the plastic region, and displacement of the opening

wall in the case of using associated flow rule, dialatancy angle $N =40°

(the slip lines corresponding to the boundary element divided on the

elastoplastic interface are drawn in the plastic region): (a) Case 1; (b)

Case 2.

(a)
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Figure 19 Shape and extent of the plastic region, and displacement of the opening

wall in the case of using non-associated flow rule, dialatancy angle $#=

0° : (a) Case 1; (b) Case 2.
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(a)

Figure 20 Contour map of the maximum plastic shear strain (ef—ef) in the plastic

region in the case of using associated flow rule, dilatancy angle

<f>N =40° (unit of numerals in figure is 10"a): (a) Case 1; (b) Case 2.

where E is the Young's modulus. Consequently, the maximum plastic shear strain can be ob

tained as follows:

2 ~ 2 2
(48)

Figure 20 shows the contour map of in the plastic region in the case of 0 =<t>N =40° . The

maximum plastic shear strain is induced at the corner of the opening in both cases. The values

of those are 380X10"* in Case 1 and 65X10"8 in Case 2 respectively. The value in Case 1 is about

six times as large as that in Case 2. The concentration of the contour lines appears near the cor

ner of the opening in both cases. In Case 1, the interval of the contour lines is narrow. The ridge

in the contour map coincides with the slip line drawn through the corner of the opening. On the

other hand, in Case 2, the interval of the contour lines is more wide, then the value of decreases

gradually like a ripple. However the patterns of the contour map in the region less than 5 X

10" * are almost the same in both cases.

Assuming that the rock mass is fractured through the slip lines when the plastic shear strain

reaches its limitation, the fracture surface is considered to. be generate along the ridge in the

contour map in the plastic region and almost parallel to the elastoplastic interface. It is clear

that the shape of the opening in Case 1 pan be initiated the fracture surface around the opening

greater ease than that in Case 2. If the fracture surface should be generated in both cases, the

depth of the intersection of the fracture surface appeared at the center of the sidewall in Case

1 is greater than that in Case 2.

Horse-shoe shaped opening

The displacement and strain field around a house-shaped opening, which is excavated in a rock

mass under general biaxial stress state, are shown in Figure 21. The opening is 11.5m in width

and 8.5m in height. The radii of the upper part and the both sides of the floor of the opening are
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fl»20*

Analytical condition; # = 0n =40", v = 0.2, E= 200MPa
cr.o-3.5MPa

100cm

Displacement scale

cr,=-5.0MPa

Initial stress state

lastlc region

(b)

Figure 21 Solution of a horse-shoe shaped opening, which is 11.5m in width and 8.5m .

in height and the radii of the upper part and the both sides of the floor of

it are 5.75m and 0.05m, under biaxial initial state: (a) shape and extent

of the plastic region, and displacement of the opening wall; (b) contour

map of the maximum plastic shear strain (ef—£<J) in the plastic region

(unit of numerals in figure is 10~8).

5.75m and 0.05m.

The slip lines are drawn in the plastic region in Figure 21 (a). The depth of the plastic region

near the point A, which is the point in the plane perpendicular to the maximum initial principal

stress, is larger than that near the point B, which is in the plane parallel to the maximum ini

tial principal stress, in the arch of the opening. Comparing the elastoplastic displacement with

the elastic displacement, the former is larger than the latter. In particular, the different be

tween them is remarkable near the point-A. The latter is large near point A and small near the

point B. Conversely the former is small near the point A and large near the point B. Therefore,

when the back analysis is performed using the displacements in the plastic region, the direction

of the maximum initial principal stress may be made a mistaken estimation as that of the mini

mum initial principal stress.

The contour map of the plastic shear strain is shown in Figure 21 (b) with the shape of the

elastoplastic interface. The concentration of the plastic shear strain appears at the corners of

the opening. The ridge of the contour coincides with the slip lines drawn through the corners.

This result suggests that the fracture occurs through the corners of the opening and that the

fracture surface is not identified with the elastoplastic interface.

From these results, the forming smooth surface of the opening is important from the view

point of evading the concentration of the plastic shear strain. It is considered that the

shotcreate just after blasting in tunneling might involve the effect of evading the concentration

of the shear strain around tunnel. Furthermore, it is desired that the radius of curvature at the

corner should be large as much as possible when the opening is constructed.
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Rock slope

To investigate the progressive failure mechanism and the premonitory phenomena, the

elastoplastic behavior of drained homogeneous rock slope is analyzed using a numerical model

in Figure 22. Rock mass is assumed to be a dilatant Mohr-Coulomb's material with self weight,

and the associated flow rule is adopted to compute the displacement in the plastic region.

Symbols used in the following analysis and the initial condition are shown in Figure 22. Taking

the gravitation into account, the vertical and horiqoutal initial stresses are defined by

av=7z and aH =mav, where z is the depth from the upper ground surface and / is the unit

weight of the rock. In addition, the slope height is noted by the dimensionless parameter:

n =rH/c . In the BEM analysis, the horizontal displacement is districted on the boundary FI

and HA, and the vertical displacement is fixed to zero on the boundary HI. The segments BC

and DE are assumed as a circular arc having a radius, if/30 to avoid the singularity.

Figure 23 shows the elastoplastic interfaces in the case of 6 =70° with <f> =30° , depending

on the magnitude of m and n. When the value of m is small, the plastic region propagates up

ward from the toe of the slope, and the width of the plastic region increases with increasing the

value of n. On the other hand, in the case that the value of m is large, the plastic region ap

pears not only along the slope surface but also under the lower horizontal surface, and the depth

of the plastic region increases with increasing the value of n. These numerical solutions suggest

that the initial stress, particularly the horizontal initial stress, plays an important role in de

termining the extent of the plastic region.

Initial surface G

"T

Initial stress:

Elastic displacement

with excavation

Material constants:

E : Young's modulus , v : Poisson's ratio,

c :Cohesion , ft: Frictlonal angle.

-OW-

Figure 22 Modelling of rock slope, initial stress condition assumed and material con

stants.
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The displacement distribution within the plastic region can be minutely determined by the

present method, as illustrated in Figure 24. In the figure, each arrow indicates the direction

and the magnitude of the displacement. The direction of the displacement changes with the dis

tance from the slope surface. Namely, in the deeper region, the vectors are almost vertical in

Figure 23(a) and almost parallel to the slope surface in Figure 24(bj. Conversely, in the shal
low region, the vectors are intersecting with the slope surface having a angle which increases

with decreasing the value of m. These results indicate clearly that the expansile displacement

near the slope surface is caused by the dilatancy in the plastic region, and that the magnitude

of the expansile displacement is in inverse proportion to the internal friction angle, when the

associated flow rule is adopted in the analysis.

The plastic strain is directly computed using the displacement profile in Figure 24, as illus

trated in Figure 25. The contour of maximum plastic shear strain shows that the concentration

of the plastic shear strain appears in all cases at the toe of the slope. The ridge in the contour

map coincides with the slip line drawn through the toe of the slope. The numerical results in

Figure 25 suggest the occurrence of sliding failure through the toe of the slope. This is compati

ble with the centrifuge experiments21 in Figure 26. Then, it can be concluded that the analysis of

the plastic strain by the BEM-CM can provide the minute information to investigate the failure

mechanism of the rock slope.

Figure 23 The elastoplastic interface, depending on the parameter m =aH/av and

n =rH/c , in the case d =70° and <f> =30°
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■Hf

liiiilJ

Figure 24 Displacement within plastic region in the case of 0 =70°, n =0.2 and

n=yH/c =45: (a) m =0.2 ; (b) m=0.8.

(b)

Plastic
region

Figure 25 Contour map of the maximum plastic shear strain i?(e?—d$)/yH in the

plastic region, calculated by the displacement in Figure 24: (a) m =0.2 ;

(b) m =0.8.
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Ground surface
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Figure 26 Sliding failure of a wedge shaped area observed by the centrifuge experi

ment.

CONCLUSION

A new method (BEM-CM), which, is a coupling of the boundary element method and charac

teristics method, is proposed for elastoplastic problem in rock engineering. In this method, the

non-associated flow rule is introduced to calculate the displacement and strain field in plastic

region.

Firstly, the limitation of applicability of the method concerning the initial stress field was

discussed and it was indicated that the stress field around the opening should only allow com-

pressive yielding for which the ratio of horizontal initial stress to vertical initial stress should

be greater than 1/3. Then the formulation of this method was described in order to determine

the boundary between elastic and plastic regions and to calculate the displacement and strain in

the plastic region. Secondly, this method was applied to elastoplastic problems of a circular un

derground opening under the biaxial initial stress field. It was concluded that the depth of the

plastic region and the state of the stress within the rock mass around the opening were deter

mined with a high accuracy, and that this method was one of accurate and effective methods

for solving the excavation problem of underground openings. Thirdly; the plastic region around

parallel openings was analyzed by the BEM-CM. It was clarified that the extent of the plastic

region in the pillar between openings can be estimated from the analytical solution for a hydro

static initial stress field. From the results for a rectangular opening, it was shown that the

yielding around the rectangular opening is characterized by the rapid propagation of the plastic

region at the floor, roof and sidewalls with the increase of initial stress. Then, it was made

clear that the failure mechanism may be investigated from the distribution of the maximum

plastic shear strain. Furthermore, it was noted that the shotcreate just after blasting in tun

neling involve the effect of evading the concentration of the shear strain around tunnel due to

the forming smooth surface of it. Finally, it can be concluded that the present method pro

duces the results within acceptable engineering accuracy to specify the slip line which plays an

important role in the progressive failure of rock structure from the successful applications to

underground openings and rock slope.

In addition, the material behavior considered in the present paper is elastic-perfectly plastic.

-28—



29

Therefore, the stress field in plastic region as well as the interface between elastic region and

plastic region obeys the yield function. However, since these yield functions can be independ

ently introduced, it is possible that the hardening or softening effect of a material can be easily

incorporated in the BEM-CM.
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