
A COHOMOLOGICAL CRITERION FOR SPLITTING OF

VECTOR BUNDLES ON MULTIPROJECTIVE SPACE

CHIKASHI MIYAZAKI

Abstract. This paper is devoted to the study of a cohomological cri-
terion for the splitting of a vector bundle on multiprojective space. The
criterion extends a result of Ballico-Malaspina towards a generalization
of the Horrocks criterion on multiprojective space.

1. Introduction

This paper concerns a cohomological criterion for the splitting of vector
bundles on multiprojective space. The Horrocks theorem [3] says that a
vector bundle E on Pn

k is a direct sum of line bundles if and only if Hi(E(t)) =
0 for all 1 ≤ i ≤ n−1 and t. We will study vector bundles on X = Pn1

k ×Pn2
k .

In their paper [1, (1.3),(1.4)] Ballico and Malaspina give a cohomological
criterion for vector bundles on multiprojective space, see also [2]. We will
extend their result towards a framework of a generalization of Horrocks
criterion.

Throughout this paper k is an algebraically closed field. Our theorem
works on the multiprojective space X = Pn1

k × Pn2
k . For a coherent sheaf

F on X, we write F (a, b) = F ⊗ p∗1OPn1
k
(a) ⊗ p∗2OPn2

k
(b), where p1 and p2

are the first and second projections from X = Pn1
k × Pn2

k to Pn1
k and Pn2

k
respectively. Our main theorem is the following.

Theorem 1.1. Let E be a vector bundle on X = Pn1
k × Pn2

k , where n1 ≥ 2
and n2 ≥ 2. The vector bundle E is a direct sum of line bundles of OX ,
OX(0, 1), OX(0, 2), OX(1, 0) and OX(2, 0) twisted by line bundles of the
form OX(ℓ, ℓ) if and only if

Hi(E(j1 + t, j2 + t)) = 0

for all integers i, j1, j2 and t satisfying that 1 ≤ i ≤ n1 + n2 − 1, −i ≤
j1 + j2 ≤ 0, −n1 ≤ j1 ≤ 0 and −n2 ≤ j2 ≤ 0 except for (i, j1, j2) =
(n1,−n1, 0), (n1,−n1 + 1, 0), (n2, 0,−n2), (n2, 0,−n2 + 1).
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The theorem is obtained from an application of the multigraded
Castelnuovo-Mumford regularity. This idea extends to a possible step to-
wards a classification of ACM vector bundles on multiprojective space.

The author would like to thank the referee for his or her helpful comments.

2. Proof of the Main Theorem

We describe the multigraded Castelnuovo-Mumford regularity according
to [1] with some remarks, see also [4]. This ingenious definition yields the
corresponding property, which will play an important role for the proof of
the main result.

Definition 2.1. Let X = Pn1
k × Pn2

k , where n1 ≥ 0 and n2 ≥ 0. A coherent
sheaf F on X is said to be 0-regular if Hi(F (j1, j2)) = 0 for all integers i, j1
and j2 such that i ≥ 1, j1 + j2 = −i, −n1 ≤ j1 ≤ 0 and −n2 ≤ j2 ≤ 0.

Further, a coherent sheaf F on X is said to be (m1,m2)-regular if
F (m1,m2) is 0-regular.

Remark 2.2. Let F be a coherent sheaf on X = Pn1
k × Pn2

k . Assume that
F is 0-regular. For a generic hyperplane H1 of Pn1

k , F |L1 is 0-regular on
L1 = H1 × Pn2

k .

Remark 2.3. Let E be a vector bundle on X = Pn1
k ×Pn2

k . Assume that E
is 0-regular. Then E(m1,m2) is 0-regular for m1 ≥ 0, m2 ≥ 0. Further, E
is globally generated.

Now we will give the proof of our main theorem.

Proof of Theorem 1.1. In order to prove the “only if” part we need to
consider the vanishing of the cohomologies Hi(OX(a, b)⊗OX(j1+t, j2+t)) =
0 for (a, b) = (0, 0), (1, 0), (0, 1), (2, 0), (0, 2). In fact, Hn1(OX(j1+ t+a, j2+
t+b)) ̸= 0 if and only if j1+t+a ≤ −n1−1 and j2+t+b ≥ 0, in other words,
−j2− b ≤ t ≤ −n1− j1−a−1. Similarly, Hn2(OX(j1+ t+a, j2+ t+ b)) ̸= 0
if and only if −j1 − a ≤ t ≤ −n2 − j2 − b − 1. Thus we obtain that if
j1−n2+a−b ≤ j2 ≤ j1+n1+a−b for (a, b) = (0, 0), (1, 0), (0, 1), (2, 0), (0, 2),
all the required cohomologies vanish.

We will show the “if” part. There is an integer t such that E(t, t) is
0-regular but E(t− 1, t− 1) is not 0-regular.

First assume that Hn1+n2(E(−n1 + t − 1,−n2 + t − 1)) ̸= 0. Then we
have H0(E∨(−t,−t)) ̸= 0 by Serre duality, which gives a non-zero map
E(t, t) → OX . The (t, t)-regularity of E implies that E(t, t) is globally
generated. Then we have a non-zero map ⊕OX → E(t, t) → OX , which
must be surjective and split. Hence OX is a direct summand of E(t, t).

Thus we may assume that Hn1+n2(E(−n1+ t−1,−n2+ t−1)) = 0. Then
we have only to focus on the case of non-vanishing of the n1-th cohomologies
of the vector bundle E with some twist. The rest of the cases, that is, that
of the n2-th cohomologies, are similarly proved.
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Keeping in mind that E is (t, t)-regular but not (t − 1, t − 1)-regular,
we have only to consider the case either Hn1(E(−n1 + t, t − 1)) ̸= 0 or
Hn1(E(−n1 + t− 1, t− 1)) ̸= 0 from the assumption. Then we divide into 3
cases:

i) Hn1(E(−n1 + t, t− 1)) ̸= 0,
ii) Hn1(E(−n1 + t− 1, t− 2)) ̸= 0,
iii) Hn1(E(−n1 + t, t − 1)) = Hn1(E(−n1 + t − 1, t − 2)) = 0 but

Hn1(E(−n1 + t− 1, t− 1)) ̸= 0.

For the case i), there is a nonzero element s of Hn1(E(−n1 + t, t − 1)).
Let Ru be the polynomial ring in nu + 1 variables over k for u = 1, 2. Let
us take the Koszul complex

Ku• : 0 → Fu,nu+1 → Fu,nu → · · · → Fu,r → · · · → Fu,1 → Fu,0 → 0,

where Fu,r is a direct sum of nu+1Cr copies of Ru(−r) for u = 1, 2. Let us

consider the exact sequence p∗1(K̃1•)⊗E(t+1, t− 1), that is, 0 → E(−n1+
t, t− 1) → E(−n1 + t+ 1, t− 1)⊕n1+1 → · · · → E(t− r+ 1, t− 1)⊕n1+1Cr →
· · · → E(t, t − 1)⊕n1+1 → E(t + 1, t − 1) → 0. In order to construct a
surjective map

φ : H0(E(t+ 1, t− 1)) → Hn1(E(−n1 + t, t− 1))

we need to show Hi(E(t − i + 1, t − 1)) = 0 for i = 1, · · · , n1. In fact,
we see Hi(E(t − i + 1, t − 1)) = Hi(E(−i + 1,−1) ⊗ OX(t, t)) = 0 because
−i ≤ (−i + 1) + (−1) ≤ 0, −n1 ≤ −i + 1 ≤ 0 and −n2 ≤ −1 ≤ 0. Thus
there is a nonzero element g ∈ H0(E(t+1, t−1)) such that φ(g) = s(̸= 0) ∈
Hn1(E(−n1 + t, t− 1)).

Let us consider the exact sequence p∗2(K̃2•)⊗E∨(−t− 1,−t+1), that is,
0 → E∨(−t− 1,−n2− t) → E∨(−t− 1,−n2− t+1)⊕n2+1 → · · · → E∨(−t−
1,−t−r+1)⊕n2+1Cr → · · · → E∨(−t−1,−t)⊕n2+1 → E∨(−t−1,−t+1) → 0.
In order to construct a surjective map

ψ : H0(E∨(−t− 1,−t+ 1)) → Hn2(E∨(−t− 1,−n2 − t))

we need to show Hi(E∨(−t−1,−t−i+1)) = 0 for i = 1, · · · , n2, equivalently
Hi(E(−n1 + t, n1 + t − i − 2)) = 0 for i = n1, · · · , n1 + n2 − 1 by Serre
duality. In fact, we see Hi(E(−n1 + t, n1 + t− 2− i)) = Hi(E(−n1 +1, n1 −
i − 1) ⊗ OX(t − 1, t − 1)) = 0 because −i ≤ (−n1 + 1) + (n1 − i − 1) ≤ 0,
−n1 ≤ −n1 + 1 ≤ 0 and −n2 ≤ n1 − i − 1 ≤ 0. By taking a dual element
s∗ ∈ Hn2(E∨(−t− 1,−n2− t)) corresponding to s ∈ Hn1(E(−n1+1, t− 1)),
we have a nonzero element f ∈ H0(E∨(−t−1,−t+1)) such that ψ(f) = s∗(̸=
0) ∈ Hn2(E∨(−t − 1,−n2 − t)). The elements g and f can be regarded as
elements of Hom(OX(0, 2), E(t+1, t+1)) and Hom(E(t+1, t+1),OX(0, 2))
respectively. Let us consider the commutative diagram:

H0(E(t+ 1, t− 1))⊗H0(E∨(−t− 1,−t+ 1)) → H0(OX)
↓ ↓

Hn1(E(t− n1, t− 1))⊗Hn2(E∨(−t− 1,−t− n2)) → Hn1+n2(OX(−n1 − 1,−n2 − 1)),
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where the left vertical map is φ ⊗ ψ, the right vertical isomorphism gives
the canonical element. Thus we have that f ◦ g is an isomorphism. Hence
OX(0, 2) is a direct summand of E(t+ 1, t+ 1).

For the case ii), there is a nonzero element s of Hn1(E(−n1 + t − 1, t −
2)). Then we take the corresponding element s∗ of Hn2(E∨(−t,−n2 − t +
1)) by Serre duality. As in the case i) we will have surjective maps φ :
H0(E(t, t− 2)) → Hn1(E(−n1 + t− 1, t− 2)) and ψ : H0(E∨(−t,−t+2)) →
Hn2(E∨(−t,−n2 − t + 1)). As in the same procedure by Koszul complex,
we have only to prove that Hi(E(t − i, t − 2)) = 0 for 1 ≤ i ≤ n1 and
Hi(E(−n1 + t − 1, n1 + t − i − 3)) = 0 for n1 ≤ i ≤ n1 + n2 − 1. In fact,
we see Hi(E(t − i, t − 2)) = Hi(E(−i + 1,−1) ⊗ OX(t − 1, t − 1)) = 0 by
assumption because −i ≤ (−i + 1) + (−1) ≤ 0, −n1 ≤ −i + 1 ≤ 0 and
−n2 ≤ −1 ≤ 0. On the other hand, we see Hi(E(−n1 + t − 1, n1 + t −
i − 3)) = Hi(E(−n1 + 1, n1 − i − 1) ⊗OX(t − 2, t − 2)) = 0 by assumption
because −i ≤ (−n1 + 1) + (n1 − i − 1) ≤ 0, −n1 ≤ −n1 + 1 ≤ 0 and
−n2 ≤ n1 − i − 1 ≤ 0. Then the maps g and f regarded as elements of
H0(E(t, t − 2)) and H0(E∨(−t,−t + 2)) satisfying φ(g) = s and ψ(f) = s∗

give a splitting map from OX(−t,−t+ 2) to E. Hence OX(0, 2) is a direct
summand of E(t, t).

For the case iii), there is a nonzero element s of Hn1(E(−n1+t−1, t−1)).
As in the case i), to construct a surjective map

φ : H0(E(t, t− 1)) → Hn1(E(−n1 + t− 1, t− 1))

we need to show Hi(E(t − i, t − 1)) = 0 for i = 1, · · · , n1. In fact, we see
Hi(E(t−i, t−1)) = Hi(E(−i+1, 0)⊗OX(t−1, t−1)) = 0 for i ̸= n1 because
−i ≤ (−i + 1) + 0 ≤ 0, −n1 ≤ −i + 1 ≤ 0 and −n2 ≤ 0 ≤ 0. Also, we see
Hn1(E(−n1 + t, t− 1)) = 0 by assumption. Thus there is a nonzero element
g ∈ H0(E(t, t − 1)) such that φ(g) = s( ̸= 0) ∈ Hn1(E(−n1 + t − 1, t − 1)).
Similarly, to construct a surjective map

ψ : H0(E∨(−t,−t+ 1)) → Hn2(E∨(−t,−t− n2))

we need to show Hi(E(t−n1−1, t+n1−2−i)) = 0 for i = n1, · · · , n1+n2−1.
In fact, we see Hi(E(−n1 + t− 1, n1 + t− i− 2)) = Hi(E(−n1 +1, n1 − i)⊗
OX(t − 2, t − 2)) = 0 for i ̸= n1 because −i ≤ (−n1 + 1) + (n1 − i) ≤ 0,
−n1 ≤ −n1+1 ≤ 0 and −n2 ≤ n1− i ≤ 0. Also, we see Hn1(E(t−n1−1, t−
2)) = 0 by assumption. By taking a dual element s∗ ∈ Hn2(E∨(−t,−t−n2))
corresponding to s ∈ Hn1(E(t − n1 − 1, t − 1)), we have a nonzero element
f ∈ H0(E∨(−t,−t+ 1)) such that ψ(f) = s∗(̸= 0) ∈ Hn2(E∨(−t,−t− n2)).
The elements g and f can be regarded as elements of Hom(OX(0, 1), E(t, t))
and Hom(E(t, t),OX(0, 1)) respectively. As in the case of i), we have that
f ◦ g is an isomorphism. Hence OX(0, 1) is a direct summand of E(t, t).

Therefore the assertion is proved. □
Remark 2.4. Summing up the proof, we should note that an essential point
is to use the assumption Hn1(F (1, 0)) = Hn1(F (0,−1)) = 0 for a vector
bundle F with Hn1(F ) ̸= 0. Then F has a direct summand OX(−n1− 1, 0).
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In fact, we applied this procedure to the cases i) F = E(−n1 + t, t− 1), ii)
F = E(−n1 + t− 1, t− 2) and iii) F = E(−n1 + t− 1, t− 1).

Finally we state a general result proved similarly as in Theorem 1.1.

Theorem 2.5. Let E be a vector bundle on X = Pn1
k × Pn2

k , where n1 ≥ 1
and n2 ≥ 1. Let r1 and r2 be integers such that 0 ≤ r1 ≤ n1 and
0 ≤ r2 ≤ n2. The vector bundle E is a direct sum of line bundles of OX ,
OX(0, 1), · · · ,OX(0, r1), OX(1, 0), · · · OX(r2, 0) twisted by line bundles of
the form OX(ℓ, ℓ) if and only if

Hi(E(j1 + t, j2 + t)) = 0

for all integers i, j1, j2 and t satisfying that 1 ≤ i ≤ n1 + n2 − 1, −i ≤
j1 + j2 ≤ 0, −n1 ≤ j1 ≤ 0 and −n2 ≤ j2 ≤ 0 except for either i = n1 and
j2 ≥ j1 + n1 − r1 + 1, or i = n2 and j2 ≤ j1 − n2 + r2 − 1.

Outline of the Proof of Theorem 2.5. The “only if” part is easily
shown by calculating cohomologies.

In order to show the “if” part we take the minimal integer t such that
E(t, t) is 0-regular. In case Hn1+n2(E(−n1 + t− 1,−n2 + t− 1) ̸= 0, we see
that OX is a direct summand of E(t, t) as in the proof of Theorem 1.1.
In particular, the case r1 = r2 = 0 is done. So we may assume that
Hn1+n2(E(−n1 + t − 1,−n2 + t − 1) = 0. From the assumption possible
nonvanishing parts for the non-0-regularity of E(t − 1, t − 1) appear in the
n1-th or n2-th cohomologies. Thus we have only to consider the set of pairs
(j1, j2) with Hi(E(j1 + t, j2 + t)) ̸= 0 for i = n1, n2.

Let us put S = {(j1, j2)|j1 ≥ −n1−1, j1+n1−r1+1 ≤ j2 ≤ −j1−n1−1}.
Note that S is nonempty if r1 ≥ 1, and we have −n1 ≤ j1 ≤ −n1/2− 1 and
−n1 ≤ j2 ≤ −1 for (j1, j2) ∈ S. Since E(t − 1, t − 1) is not 0-regular, we
may assume there are some (j1, j2) ∈ S such that Hn1(E(j1+ t, j2+ t)) ̸= 0.
If not, there are nonvanishing n2-th cohomologies and then we can proceed
similarly. For pairs (j1, j2) and (k1, k2) in S we define a total order (j1, j2) <
(k1, k2) if either i) j2 − j1 < k2 − k1 or ii) j2 − j1 = k2 − k1 and j1 < k1.
For example, in the case of (1.1), S consists of (−n1− 1,−2), (−n1− 1,−1)
and (−n1,−1) in the increasing order.

Now, back to the proof, we take the minimal (j1, j2) ∈ S such that
Hn1(E(j1+t, j2+t)) ̸= 0. By taking F = E(j1+t, j2+t), we have H

n1(F ) ̸=
0 and Hn1(F (1, 0)) = Hn1(F (0,−1)) = 0 from the minimality of (j1, j2)
in S and the assumption. Then the corresponding proof of Theorem 1.1
works for F = E(j1 + t, j2 + t) as described in Remark 2.4. Indeed, by
using Hn1(F (1, 0)) = 0, we have a surjective map φ : H0(F (n1 + 1, 0) →
Hn1(F ). Similarly, by using Hn1(F (0,−1)) = 0, we have a surjective map
ψ : H0(F∨(−n1 − 1, 0)) → Hn2(F∨(−n1 − 1,−n2 − 1)). Then there are
elements f ∈ H0(F (n1+1, 0)) and g ∈ H0(F∨(−n1−1, 0)) such that φ(f)⊗
ψ(g) gives a canonical element via Hn1(F )⊗Hn2(F∨(−n1 − 1,−n2 − 1)) →
Hn1+n2(OX(−n1 − 1,−n2 − 1)). Thus the corresponding maps f : OX →
F (n1 + 1, 0) and g : F (n+ 1, 0) → OX satisfy that g ◦ f is an isomorphism.
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Hence OX(−j1−n1−1,−j2) is a direct summand of E(t, t). Repeating this
procedure, therefore, yields the assertion.

□
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