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Derivation of General Equations of Chemical Potentials for Non-ideal Solutions
Consisting of Multicomponent Polymer Homologue and Single Solvent

Kenji KAMIDE*
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General equations of the chemical potentials of the solvent Az and of thepolymer with the molar
volume ratio to the solvent X 7 (i.e., the X-mer) Ayyi are derived for multicomponent polymer homologue
in single solvent system through use of their pseudo-excess functions Az" and Azyf*, which are calculated
using the polymer-solvent thermodynamic interaction parameter ¥, semi-empirically determined as functions
of temperature, polymer concentration and polymer molecular weight.
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Enthalpy, entropy, and the Gibbs free energy of mixing for ideal multicomponent polymer
homologue solution which is formed by ‘random’ mixing of long liner chain polymer solute molecule
with single solvent wihtout any enthalpy change (i.g., the ‘random’ mixing-athermal solution ; here
after refered simply to as quasi-ideal solution)AH 7%, AS?“ and AG“, can be given by":
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where R is the gas constant, 7', The Kelvin temperature, No and Nx;, the mole numbers of the
solvent and X;-mer, respectively, ¥ and vx;, the volume fractions of the solvent and X;-mer, o and
nx:, (1.e., the molar volume ratio of i-th componentof the polymer to the solvent), m, total number
of components existing in the polymer. If v and vx; in Eq 2 and Eq 3 are replaced by the mole
fractions of the solvent and X;-mer, no and nx;, or when X;=1 for all i(i=1~m), Eq 2 and 3 reduce
straightforward to those for truly ideal solution

Chemical potentials of solvent and polymer (X;-mer), Au?® and Aux,”@, for the above
quasi-ideal solution are derived by differenciations of AG* (Eq 3) by N and by Ny, respectively
in the form: ?
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Here v is the overall polymer volume fraction <E ZIVXi).

For real solution, the Gibbs free energy of mixing AG is
AG=AG™+AG™* (6)
where AG™ is the pseudo-excess function, which is defined, for the sake of convenience, by the
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difference of the thermodynamic quantities (in this case AG) between real polymer solution and
quasi-ideal solution.
Chemical potnetials Ao and Apx;: for the real polymer solution are :

NG 1
_ 3AG> O ( 1) } | PE
AﬂXZ‘( aNXz T,P,?ij(j}‘i)_"R rl lﬂ i (Xl 1)+Xi 1 AXn / v +AMXZ (8)
Here Au™ and Apx/™ are the pseudo-excess chemical potentials for the solvent and X.-mer,

respectively. Flory regarded Eq 7 as Au® (in this notation)(see Eq 41 of reference 1)). This is
apparently overestimation of the excess chemical potential and should be substracted with RT /n
M. Kamide’s treatment, given in his book(chapter 1)?, is rather obscure because he did not keep
strict distinction between ideal and quasi-ideal solutions threughout the chapter,

Comparison of Eq 6 with Eq 7 or Eq 8 leads to the following relations : ?
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Here, x is the polymer-solvent interaction parameter. Noe that in derivation of Eq 10 van
Laar-Scatchard type heat of dilution is assumed and in other words AG™ is regarded to be
exclusively caused by the heat of dilution AH(=AH™=AH*, AH" is the excess function).

All possible disparities of real non-quasi-ideal polymer sclutions from the hypothesis employed
in the theory, such as the ‘random’ mixing of polymer chains with solvents on lattice sites and van
Laar-Scatchard type expression of the heat of mixing, will reflect on y parameter in Eq 10. Then,
x experimentally determined should be considerd as the summation of the entropy term xs and the
enthalpy term x :

X = Xs+ X (12)
xp=x=AHy/(RTv3)=AH;/(RTv?)

x is the Flory’s enthalpy parameter, depending phenomenologically on both 7" and v (Eq :3)
and AH, is the partial molar heat of dilution.

X =Ko+ K1Vp + xaVE+ o (13)
%0 lim {AHo/(R Tvﬁ)} (14)

x can be experimentally determined by (1) temperature dependence of vapour pressure and



General Eq. of Chemical Potentials for Polymer Solutions 215

membrance osmometry, (2) critical solution temperature 7. and critical solution concentration vg°
for a series of solutions of polymers, (3) temperature dependence of the second virial coefficient in
the vicinity of the Flory theta temperature 8 and (4) calorimetry. Kamide et al. indicated for
atactic polystyrene (PS)-cyclohexane (CH) and PS-trane-decalin (D) systems that excellent agree-
ment (£0.02) was confirmed between ky values at § deduced by the above methods at the same
molecular weight and ko depends significantly on the average molecular weight.”

x can be semi-empirically expressed as*~*

X:xO<l+§1ijPj> (15)
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p; is concentration-dependence parameter, Yoo is a parameter independent of vp and X, £, a
molecular weight-dependence parameter, X,, the number-average X, ¢q, Flory entropy parameter,
G,Folry theta temperature, ko, the parameter independent of 7" and X.

If we can assume that all virial coefficients vanish at 7= & for upper critical solultion point,
we obtain®

x0=1/2 (19)
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These are the theoretically predicated values for x and p; (j=1, *-, n), provided that all te

hypothesis in the theory are accepted. p1 and p. can be experimentallydetermined by the following
methods? : (1) osmotic pressure, (2) isothermal distillation, (3) vapour pressure, (4) ultracentrifuge,
(5) coexisting curve (i.e., binodal curve), (6) cloud point curve and (7) critical solution point. Note
that applicability of methods (1)~(4) are severly limited to rather rough estimation of py only and
method (7), proposed by Koningsveld et al.'” and by Kamide and his coworkers®®, gives the (most
accurate and reliable values of py and p, and this method was successfully applied by) Kamide et
al. to the literature data on uppr and/or lower critical solution points of ten polystyrene-solvent
pairs and sixteen polyethylene-solvent pairs in very systematic manner®.
Combination of Eq 10 with Eq 15 and 16 yields

A= RTxOo<l +§—><1 + ;P#ﬁ)vg 21)
Substitution of Eq 21 into Eq 9a yields
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From Eq 22 and l1a, we obtain
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This is Kamide et al.’s approach, proposed in 1970'Y. We can also derive Eq 23 from Eq 11d and
Eq 12. This is an alternaive route to derive Eq 23 [Approach of Kurata'”, who first derived Eq
l1d in 1975] .

Therefore, Auo (Eq 7) and Aux; (Eq 8) can be generally expressed as
A= Apd+ Aud*
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Of course it can be shown that Eq 24 and 25 satisfy the Gibbs-Duhem relations (Eq26) uncondition-
ally.
Nod(A/lo) + izleXid(AAﬂXi) =0 (26)

Eq 24 and 25 correspond to Eq 4 and Eq 5 of reference 6).
Table 1 summarises some characteristics of three typical solutions and their relations.
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Table | Some characteristics of three typical solutions

Solutions Characteristics

ideal random mixing (solute=solvent in size)
zero heat of mixing

quasi-ideal ‘random’ mixing (solute’solvent in size) excess
zero heat of mixing X function
real non-‘random’ mixing (solute >> solvent in size)
non-zero heat of mixing pseudo-excess
function
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