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Abstract

A nonlinear system is called OFEP(Output Feedback Exponentially Passive) if there ex-
ists an output feedback control such that the resulting closed-loop system is EP(Exponentially
Passive). The sufficient conditions for a nonlinear system to be OFEP are given as follows:

(1) the system has a relative degree of 1.

(2) the system is globally exponential minimum-phase.

(3) the nonlinearities of the controlled system satisfy the Lipschitz condition.

(4) the coefficients in the control input term are known or bounded.

Under these conditions one can design a robust adaptive control system based on high
gain output feedback with a simple controller structure and high robustness with respect
to disturbances and unmodelled dynamics. However, since most practical systems do not
satisfy the OFEP conditions, the OFEP conditions have imposed very severe restrictions
to practical applications of OFEP based adaptive output feedback control.

The objective of this work is to expand the applicable class of the output feedback
based robust adaptive control to a wider class of nonlinear systems, including uncertain
nonlinear systems with non-Lipschitz nonlinearities, uncertain and unbounded coefficients
in the control input terms and uncertain nonlinear systems having a higher order relative
degree, etc.

In this thesis. a basic controller design method for OFEP nonlinear systems is reviewed
in chapter 2 in order to help the understanding of the following chapters. The definitions
of OFEP and relative degree, and a basic algorithm for robust adaptive output feedback
control for OFEP nonlinear systems are presented. In chapter 3. a robust adaptive
output feedback controller is designed for uncertain nonlinear systems with non-Lipschitz
nonlinearities. This controller can be also applied for the systems with unknown and
unbounded functions in the control input term. Chapter 4 presents a controller design
scheme for nonlinear systems with nonparametric uncertainties and a higher order relative
degree based on a high gain state feedback control. Although the control scheme requires
all states of the controlled system. a wider class of controlled systems can be stabilized by
this method. In chapter 5, a robust adaptive output feedback control system is designed
for non-OFEP nonlinear systems with a higher order relative degree and non-Lipschitz
nonlinearities. This output feedback control system is designed by introducing a virtual
control input filter instead of a state observer. This control system is developed in chapter
6. Since the control system proposed in chapter 5 has a complex controller structure when
a controlled system has a higher order relative degree, a new controller design method,
which we call one-step backstepping, is proposed. In this method, a compensator is
introduced to the virtual control input filter and a robust adaptive control system is
designed by backstepping strategy of only one step. In each chapter, the effectiveness of
proposed control systems are confirmed through numerical simulations.



Contents

Abstract i
1 Introduction 1
1.1 Historical Review . . . . . . . . . . . e 1
1.2 OQutline of the Dissertation. . . . . . .. . . ... .. .. ... ..., 5
2 Basic Design of High Gain Adaptive Output Feedback Control System 7
2.1 Introduction . . . . . . . . . . . e e 7
2.2 Passivity and System Expressions . . . . . . . ... ..o 7
2.3 Adaptive Output Feedback Control for OEFP Nonlinear Systems . . . . . 9
2.4 Introducing a PFC to the non-OFEP Nonlinear Systems . . . . . .. ... 10
25 Conclusion . . . . . . . i i i e e e e e 10

3 Design of High Gain Adaptive Output Feedback Control System for
Uncertain Nonlinear Systems 11
3.1 Introduction. . . . . . . . .. .. 11
3.2 Problem Statement . . . . . . .. ... Lo e 12
3.3 Robust Adaptive Controller Design . . . . . . . . ... .. ... ... ... 13
3.4 Boundedness and Convergence Analysis . . . . . . . ... ... ... ... 13
3.5 Numerical Simulation . . . . .. .. .. .. .. Lo o 19
3.6 Conclusion . . .. .. . . ... .. e e 20

4 Design of State Feedback Control System through High Gain Adaptive
Backstepping 25
4.1 Introduction . . . . . . . . L 25
4.2 Problem Statement . . . . . . . ... oL 26
4.3 Robust High Gain Adaptive Controller Design via Backstepping . . . . . 26
4.4 Stability and Convergence Analysis . . . . . . . . ... ... ... ... . 30
4.5 Application to A CSTR Model . . . .. ... ... . ... .. ....... 32
4.5.1 CSTR Model and Problem Formulation . . . . ... ... ..... 32
4.5.2 Adaptive Controller Design . . . . . ... ... ... ........ 34
4.5.3 SimulationResults . . . . . ... ... ... ... ... ... ..., 35
4.6 Conclusion . . . .. . ... 36

5 Design of High Gain Adaptive Output Feedback Control System for

Uncertain Nonlinear Systems with a Higher Order Relative Degree 43

5.1 Introduction . . . . . . . . . . . ... 43
5.2 Problem Statement . . . . . . . . ... ... 44
5.3 Adaptive Controller Design . . . . .. ... ... ... . ... ....... 45

il



53.1 Virtual System . . . ... .. . ... ... o 45
5.3.2 Controller Design through Backstepping . . . . . . . ... ... .. 49
5.4 Boundedness and Convergence Analysis . . . . ... ... ... ...... 35
5.5 Numerical Simulations . . . . . .. . ... ... oo oo 58
3.5.1 Example 1: 5th Order Nonlinear System . . . . . . .. ... .. .. 58
5.5.2 Example 2: DCMotor . . . . . . . . . . i i 64
56 Conclusion . .. . ... ... e 66
Design of Adaptive Output Feedback Control System by One-step Back-
stepping 71
6.1 Imtroductiom. . . . . .. . . .. . ... e 71
6.2 Problem Statement . . . . . . . .. ... Lo 71
6.3 Adaptive Controller Design . . . . .. . ... .. ... ... ....... 72
6.3.1 Virtual System . . . . . .. .. .o 72
6.3.2 Augmented Virtual System . . . .. ... ... ... .. 76
6.3.3 Adaptive Controller Design through One-step Backstepping . . . . 77
6.3.4 DBoundedness and Convergence Analysis . . . . . ... ... .... 79
6.4 Controller Design for Linear Systems . . . . . . . . .. ... .. ... ... 83
6.4.1 Problem Statement . . . . . . .. .. ..o 84
6.4.2 Controller Design through One-step Backstepping . . . . . .. .. 84
6.5 Numerical Simulations . . . . . ... .. ... L o 86
6.5.1 Example 1: 5th Order Nonlinear System . . . . . . . .. ... ... 86
6.5.2 Example 2: One Link Robot Arm . . . . . ... ... ....... 90
6.6 Conclusion . . . . . .. . . . . e e 91
Summary 95
Acknowledgment 97
The Proofs of the Proposition 6.2 and the Theorem 6.2. 99
A1 The Proof of the Proposition 6.2. . . . . . . ... ... ... ....... 99
A2 The Proof of the Theorem 6.2. . . . . . . . .. .. ... .. ... ... 101
References 104

iv



Chapter 1

Introduction

1.1 Historical Review

The first step of a control system design is to analyze and construct models for the con-
trolled systems and after that the appropriate controller is designed in order to attain
each control objective for the obtained models of controlled systems“‘sl. However. since
it is difficult to construct an exact model that reflects the details of the controlled system,
most. constructed models have some unmodelled uncertainties and/or varying character-
istics that disturb the performance of a control system. Therefore. in designing control
systems, we have to consider the uncertainties and the unmodelled dynamics adequately.
Robust control and adaptive control methods are known as effective control methods for
systems with uncertainties.

In the traditional robust control schemes, a controller is designed so that the resulting
closed-loop system will be stable for the controlled system with uncertainties whose varia-
tions and magnitudes are estimated in advance*8l. Although the stability of the control
system is assured by applying a controller designed through robust control schemes, con-
trol performances of the control system depend on variations and magnitudes of the
uncertainties. Further if thecy become too large then the control system may become
unstable.

On the other hand. a controller designed through adaptive control schemes estimates
variations of the characteristics in controlled system and adjusts the controller parameters
online according to the estimated data. Thus. we can expect adaptive control systems to
perform optimal control even if the characteristics varies more than anticipated, because
the controller parameters are determined in order to preserve the stability and the optimal
conditions in the control system.

The study of adaptive control was started in the middle of 1950’s and the theory
of adaptive control for time-invariant linear systems was almost completely defined by
the late 1970°s®1!}. However, a controller designed through the traditional adaptive
control schemes, including MRAC(Model Reference Adaptive Control), has a complex
controller structure because the controller is designed under the assumption that the
order of controlled system is known and the structure of the control system depends on
that order. Additionally, it has poor robustness for unexpected unmodelled uncertainties
and disturbances. Most obtained models for controlled systems have some unmodelled
uncertainties that occur from linearization or dimension reduction, and the assumption
that the order of controlled system is known is impractical. This means that it is difficult
to apply the controllers for practical systems.

From the practical aspect. the study of adaptive control based on high gain feedback
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was started about the beginning of 1980°s parallel to the studies of above mentioned
adaptive control schemes. High gain feedback strategy with static feedback gain is a
traditional controller design scheme, which improves the speed of response of controlled
systems and represses the effects from disturbances and/or unmodelled uncertainties by
increasing the feedback gain. Further, with the information about the relative degree
and stability of zeros of a controlled system, this control scheme is able to give a robust
stability of the closed-loop system without information about the order of controlled
system by applying a sufficiently large feedback gainl'2-13]. Although the parameters in
high gain feedback control, which ensure the stability of the closed-loop system, depend
on the unknown parameters in controlled systems, we can design stabilizing controllers by
means of online adjustment of the parameters in adaptation. Such adaptive controllers
are called High gain adaptive controllers or Universal adaptive stabilizers!!317] High
gain adaptive control has the following features compared with MRAC:

o The controllers are designed without the information about the order of controlled
system.

o It requires a few estimators.
e The controllers have high robustness for disturbances and unmodelled uncertainties.

From the above features, we can design adaptive control systems with simple structure
through high gain feedback with less information about the controlled systems than
MRAC. Therefore. researches concerning high gain adaptive control have been carried
out for several control problems: for example the regulator control(!3:14:17:18} the tracking
control(16:19.20] the decentralized control(?=23] and the control for the infinite dimensional
systerns[l‘:"z“].

At the same time Sobel et al. have proposed a kind of MRAC with the simple con-
troller structure and with a high gain feedback!®. This controller can attain the output
tracking by introducing the CGT(Commend Generator Tracker) theoryl?®, which allows
absolute tracking of a reference model output using a feedforward input. This control
method is called DMRAC(Direct Model Reference Adaptive Control) or SAC(Simple
Adaptive Control). Kaufmanl?”28, Bar-Kanal?®-3! and Iwail®?-3%] have expanded on the
theory and applications of this control method. In order to design an adaptive control
system through SAC method, the following three assumptions that are required.

e The controlled system has a relative degree of 1.
¢ The controlled system is minimum-phase.
e The high frequency gain is positive.

The above three conditions are known as ASPR(Almost Strictly Positive Real) condi-
tions(2327-34) Under these conditions there exists a static output feedback gain which
renders the closed-loop system SPR(Strictly Positive Real)l*8l. However, unfortunately
ASPR conditions are severe restrictions for practical systems. Therefore it is critically
important to alleviate the restrictions for applying the ASPR based adaptive controllers
with simple structure and robustness to practical systems.

A popular alleviation methods is the introduction of a PFC(Parallel Feedforward
Compensator) in paralle]l with the non-ASPR systems. In this method. we design a
PFC to make the resulting augmented system with the PEC be ASPR. Control systems
based on a high gain output feedback are designed for this augmented system. This
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method alleviates relative degree and minimum-phase restrictions in ASPR conditions.
This idea was devised initially by Bar-Kanal®® and after that Twai et al.132-34, Mizumoto
et al.35:37-39 and Ozcelik et al.l40-41 has proposed some design methods of PFC for the
controlled systems with several uncertainties. Further, Shibata et al.4?:43 and Ohtsuka
et all44] have expanded the control method for the discrete time systems. Introducing a
PFC is a simple alleviation method, however it has been pointed out that the bias error
from the PFC output may remain since the controller is designed for the augmented
controlled system with the PFC.

On the other hand Morse has proposed a high gain adaptive control method for sys-
tems with a relative degree of 1 or 2!+1%9 and Khalil and Saberi has proposed a high
gain adaptive control method for systems with a higher order relative degreel!3l. In
these methods the adaptive controllers are designed by introducing dynamic compen-
sators, whose order is one less than the relative degree of the controlled system, into the
control system. However the parameter adjusting laws of feedback gain become rather
complicated.

In 1990’s, an alleviation method for the relative degree restriction has been proposed
that utilizes backstepping strategy. Originally the backstepping strategy was devised by
Kaellakopoulos et al. to make a control system be positive real for the controlled system
with a higher order relative degreet®). The backstepping strategy is often utilized for
controller designs! 649! however this strategy requires all state variables of the controlled
system. Therefore, in the case where all state variables are not available, we have to design
a state estimator such as an observer(5¢-531 Later, Takahashi et al. designed a high gain
output feedback based adaptive control system for the non-ASPR linear systems with
a higher order relative degree by introducing a virtual filter and applying backstepping
strategy to the filter dynamics without a state estimator[4-571.

The study of adaptive control for linear systems mentioned above has recently led to
a lot of study on control system design for nonlinear systems®®3. At present. the con-
trollers based on linear control theory are applied in most practical job sites!®4. However,
since most systems have some nonlinearities, the controllers based on nonlinear control
theory can be expected to give us good control performance. Further, for the systems
whose linear approximations are uncontrollable and unobservable we can control them
by nonlinear control theory in some cases, even though the linear control theory can not
control such systems!60-63].

The study of adaptive control for nonlinear systems started in the late 1980's and
many sort of adaptive strategies for nonlinear controlled systems were proposed in the
early 1990°s. Most of them, unfortunately. had some restrictions such that the con-
trolled system is feedback linearizable and satisfies the Lipschitz or the matching condi-
tions(685% After that Kaellakopoulos et al. presented a design method for an adaptive
controller for the controlled systerns that do not satisfy the matching condition and have
strong nonlinearities/™. Now, such adaptive control system design has been expanded for
generalized systems called Strict-Feedback nonlinear system or Pure-Feedback nonlinear
system49:63.71-75]  Pyrthermore Krstic et al. have solved the problem that the con-
troller designed through traditional adaptive backstepping has a number of estimators
by using tuning function technique!*® 7. The backstepping method solves the matching
condition problems and is also applicable to the wider class of nonlinear systems. How-
ever, the adaptive method was still less restrictive, that is, the method only handled the
parametric uncertainties with unknown constant which appears linearly in the system
equations. It might be important from the point of practical application to consider
a robust adaptive control strategy for nonlinear uncertain systems with nonparametric
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uncertainties in nonlinear functions. For this point of view, a lot of adaptive controller
design methods have been proposed for uncertain nonlinear systems with nonparametric
uncertain nonlinearities and/or exogenous disturbancesl’7-86i. However, in these methods
most controllers are designed by a state feedback. Therefore. these controllers may have
rather complicated controller structure with an adaptive observer in the case where all
the states are not available.

Around the same time high gain adaptive feedback control for nonlinear systems has
been studied. This method has attracted a great deal of attention since this has a strong
robustness for systein uncertainties in spite of its simple structure. This method is one
of the passivity based adaptive control strategy. The ASPR conditions, under which the
resulting closed-loop system by an output feedback can be rendered SPR. is reconsidered
for nonlinear systems. Fradkov and Hill defined the OFEP(Output Feedback Exponen-
tially Passive) property for nonlinear systems corresponding to the ASPR-nessl®?. For
OFEP nonlinear systems as well as ASPR linear systems, we can design a robust adaptive
controller with a simple structurc. Fradkov et al.[87-89 Allgower et al.!% and Mizumoto
et al.lU have proposed design methods for OFEP nonlinear systems. However, the OFEP
conditions, which are given as:

e The controlled system has a relative degree of 1.

o The controlled system is exponential minimum-phase.

e The nonlinear functions are Lipschitz.

e The coefficients in the control input term are known or bounded.

are really severe restrictions for practical systems as well as ASPR conditions for linear
systems. Therefore, to alleviate the OFEP conditions or design a robust control system
for non-OFEP nonlinear systems are important issues to extend the practical applications
of robust adaptive controllers based on output feedback with simple structures.

An introduction of a PFC is an alleviation method for non-OFEP nonlinear systems
as well as for non-ASPR linear systems. Fradkov et al[83% and Mizumoto et all%
have proposed practical design methods of a PFC. However. the bias error from the PFC
output may remain since the controller is designed for the augmented controlled system
with the PFC.

Marino and Tomeil®%. Miyasatol?3%4 Xudong!® and Ding!®0 have expanded the
method introducing a virtual filter and design a controller through backstepping for non-
linear systems. However, they dealt with the controlled systems with known coefficients
in the control input term!93-9 or with parametric uncertainties composed by known
functions and unknown constants/®2 98},

As mentioned above, an adaptive control system based on high gain output feed-
back is a powerful control scheme for practical systems because the controller has simple
controller structure with a high robustness for disturbances and unmodelled dynamics.
However, the control method for nonlincar systems has been researched for only a few
years and the basic design of control system for OFEP nonlinear systems and a few
alleviation methods for OFEP restrictions have just been proposed. Therefore, it is im-
portant to much study high gain feedback based adaptive control strategy for expanding
the applicable situations of simple and robust adaptive control.
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1.2 Outline of the Dissertation

The objective of this work is to design robust adaptive controllers for non-OFEP nonlinear
systems and to propose alleviation methods for restrictions in OFEP conditions in order
to expand the applicable class of high gain feedback based adaptive control systems.
Proposed adaptive controls are very useful and powerful control tools for practical systems
with several uncertainties. The contents are organized as follows.

In chapter 2, some definitions concerning OFEP for nonlinear systems and the basic
design method for adaptive control system based on high gain output feedback for OFEP
nonlinear systems are reviewed. Furthermore, a brief introduction about a PFC. which
is an alleviation method for OFEP restrictions. is given.

In chapter 3, an adaptive control system based on high gain output feedback for
uncertain nonlinear systems is proposed. This chapter deals with non-OFEP nonlinear
systems with non-Lipschitz uncertainties and unknown and unbounded coefficients in
the control input term. For such a system, a robust adaptive control system with simple
structure is designed without information about the order of controlled system.

In chapter 4, a state feedback based high gain adaptive control system is designed.
Although the control system designed in chapter 3 can be applied to non-OFEP nonlinear
systems with non-Lipschitz nonlinearities, it is only applicable to systems having a relative
degree of 1. In this chapter, under the assumption that all state variables are available we
design a high gain based adaptive feedback control systemn through backstepping strategy.
This control system can be applied for uncertain nonlinear systems with a higher order
relative degree and non-Lipschitz nonlinearities in the control input terms.

In chapter 5, a design method for an output feedback based adaptive control system
for time-varying nonlinear systems with a higher order relative degree is designed. In
chapter 4, a high gain feedback based state feedback adaptive control is proposed for
nonlinear systems with a higher order relative degree however, all the state variables
are not always available in practical applications. In this chapter, an output feedback
based adaptive control system is designed for non-OFEP nonlinear systems with a higher
order relative degree and non-Lipschitz nonlinearities by introducing a virtual filter and
applying backstepping strategy.

In chapter 6. we expand the controller design method proposed in chapter 5. We
propose a novel adaptive controller design scheme which can be designed by backstepping
strategy of only one step. We call the method one-step backstepping. Although the control
system proposed in chapter 5 can be applied for nonlinear systems with a higher order
relative degree and designed based on output feedback, since the structure of the control
system depends on the order of the relative degree, the structure becomes complex for
systems with a higher order relative degree. In this chapter, we introduce a PFC in
parallel with a virtual filter so that the augmented virtual filter has a relative degree of
1 and design an output feedback based adaptive control system through backstepping of
only one step.



Chapter 2

Basic Design of High Gain
Adaptive Output Feedback
Control System

2.1 Introduction

The linear plant is said to be ASPR if there exists a static output feedback such that
the resulting closed-loop system is SPRB®!. It is well known that, for the ASPR plants,
one can design a stable control system via adaptive output feedback with the very simple
controller structurel?” 3% Unlike other adaptive methods. under the ASPR condition. we
are able to design the adaptive controller without a priori information of the controlled
plants (e.g. order of the plant and the size of the uncertainties). As for the nonlinear
systems the condition of the high gain output feedback stabilization is recognized as
output feedback exponential passivity (OFEP)87:39 That is. one can design the adaptive
output feedback controller for OFEP nonlinear systems as well as ASPR linear systems
without a priori information about the order of the controlled system. However since
almost all practical systems are not OFEP nonlincar systems, some alleviative strategies
to the OFEP restriction are required in order to apply the high gain adaptive output
feedback control system to practical systems.

From the next chapter, several robust control system designs for high gain adaptive
feedback control of nonlinear systems will be presented.

In this chapter, for easy understanding of a basic concept for control system design
in the following chapters, some definitions concerning OFEP and a basic design scheme
for a high gain adaptive output feedback control system for OFEP nonlinear systems are
reviewed. Further, one of the most popular alleviation method for the OFEP restriction.
introduction of a PFC, is presented.

2.2 Passivity and System Expressions

Consider the following single input and single output nonlinear system:

T = f(z) + g(z)u

= hiee) (2.1)

where © € R" is the state variable and u.y € R are the control input and output,
respectively. f(x) : R* — R", g(z) : R* — R® and h(xz) : R® — R are smooth
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functions. In the sequel we assume that f(0) = 0, h(0) =0.
First of all, some definitions regarding to passivity and relative degree for the controlled
system (2.1) are given as follows.

Definition 2.1 (Passivityl®” 98]}, The system (2.1) is called passive if there ezists a
nonnegative function V : R* — R, V(0) = 0, Vt > 0 such that for allt > 0, u €
R. z(0) € R®

V(x(t)) - V(x(0)) < /0 y(T)u(r)dr. (2.2)

Definition 2.2 (Strict passivity(m’gsl). The system (2.1) is called strictly passive if
there erists a nonnegative function V : R®* — R, V(0) = 0, Vt > 0 and positive definite
function S(x) : R* — R such that for allt >0, u€ R. z(0) € R"

V(z(t)) - V(z(0)) < /‘; y(T)u(r)dr —/0 S(z(r))dr. (2.3)

Definition 2.3 (Exponential passivity(EP)[87-911), A strictly passive system (2.1)
is called ezponentially passive if there ezist positive numbers ay,aq, o3 such that the
following inequalities hold:
allel” < V(z) < asflz? (2.4)
asllz|? < S(=)
for any x-solution to equation (2.1).

Definition 2.4 (Output feedback exponential passivity(OFEP)87:91). The sys-
tem (2.1) is called output feedback exponentially passive, if there ezists smooth output

feedback:
u(t) = riy) + Qy)v(t) 25
r(0) =0, Q(0)=0 2.5

such that the resulting closed-loop systems with an input v(t) and an output y(t) is expo-
nentially passive.

Definition 2.5 (Relative degreel®®:62-99), A system (2.1) is said to have a relative
degree v at 29 € R™. if
Lgh(x) = LyLs(x) = -+ = Lyl *h(x) = 0

: (2.6)
LgL7 'h(z) #£0, Vz € R

for all x in a neighborhood of z°. Where Lih(x), Lgh(x) are ezpressed Lie derivative of
h{x) with respect to f(x) and g(x). respectively.

Definition 2.6 (Uniform relative degreel®®). The system (2.1) is said to have an
uniform relative degree T if it has a relative degree r for all x.

Here. we assume that the system (2.1) has a relative degree r. Then. it is well known
that there exists a smooth nonsingular variable transformation z = [z1, -+ . za|T = ®(x)
such that the system (2.1) can be transformed into a normal form(®-67:

i’, = Zi+1: (i=1.~~ ,T'—l)
:':'T :a(ésn) +b(§»’7)u (27)
n=q(€ )



where & = [zlt e 'zr]Ts n= izr+1: U 7Z’n]T and

a(0,0) = L}h(0) = 0, q(0.0) =0
b(€.m) = LgL} k() # 0, Yz € R™.

2.3 Adaptive Output Feedback Control for OEFP Nonlin-
ear Systems

The sufficient conditions for the system (2.1}, which can be transformed into the normal
form (2.7). to be OFEP are clarified by Fradkov and Hill!8"],

[OFEP conditions]
(1) The system (2.1) has a relative degree of 1.

(2) The system (2.1) is exponential minimum-phase. That is, the zero dynamics of the
system (2.1):

n=q(0,n) (2.8)

m

that is defined from the normal form (2.7) is exponentially stable.

(3) The functions a(£, n7) and g(&,n) in the normal form (2.7) are Lipschitz with respect
to (€,7). Where, £ = z; from the condition (1).

(4) The function b(£,7) in the normal form (2.7) is factorized by b(&, 1) = boby(y),
where by is a positive constant and b;(y) is a known strictly positive function.

Under these OFEP conditions, there exists a positive constant kg such that the re-
sulting closed-loop system with an input:

u(t) = —ky(t)/bi(y) + v(t)/br(y). Yk 2 ko (2.9)

is rendered EP from the new input v(t) and output y(¢)#7).
Now, we assume that the system (2.1) is satisfied the OFEP conditions. An adaptive
output feedback controller can be designed by

u(t) = —k(t)y(t)/b1(y) (2.10)
k(t) = v9*(t). (2.11)

The following theorem concerning the stability of the control system with the controller
(2.10) and (2.11) is given(®!l.

Theorem 2.1. Suppose that the system (2.1) is transformable into a normal form (2.7)
and satisfies the OFEP conditions. Then, all the signals in the control system with the
controller (2.10) and (2.11) are bounded and lim;_.o y(t) = 0.

Remark 2.1. From Theorem 2.1, we can see that one can design a relatively simple adap-
tive control system for OFEP nonlinear systems without the information about the order
of the controlled system. Furthermore, since this control system is designed based on high
gain output feedback, basically it has high robustness with respect to bounded disturbances
and noise, with a slight modification in the adaptive adjusting law (2.11)/89-99],
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Figure 2.1: Augmented system with a PFC

2.4 Introducing a PFC to the non-OFEP Nonlinear Sys-
tems

One can design a relatively simple adaptive control system with high robustness with
respect to bounded disturbances for OFEP nonlinear systems. Unfortunately however,
most real systems do not satisfy the OFEP conditions. In this section, one of the most
practical alleviation methods for the OFEP conditions is reviewed. An introduction of
a PFC is a simple and easy alleviation method of OFEP conditions. This method can
alleviate the relative degree and minimum-phase restrictions.

Introduce a PFC in parallel with the non-OFEP nonlinear system (See Fig.2.1). This
PFC is designed so that the augmented system with the PFC is OFEP. Thus we can
apply an adaptive controller (2.10) for this augmented system directly. Fradkov et al.[®!
and Mizumoto et all®!l have proposed design principles of the PFC for alleviating the
relative degree restriction and Desalki et al.t% and Kiyama et al.lU have proposed
design method for the PFC to alleviate the minimum-phase restriction.

Remark 2.2. An introduction of a PFC expands the applicable class of the high gain
output feedback control strategy. However, using this method, it has been pointed out that
the bias error, which is occurred from the PFC output, may remain in the tracking control
because we design the control system for the augmented system with the PFC.

2.5 Conclusion

In this chapter, some definitions concerning OFEP and a basic design of a high gain
adaptive output feedback control system for OFEP nonlinear systems are reviewed. Ad-
ditionally, one of the most practical alleviation methods (introduction of a PFC) for the
OFEP conditions is also presented.
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Chapter 3

Design of High Gain Adaptive
Output Feedback Control System
for Uncertain Nonlinear Systems

3.1 Introduction

In chapter 2, an adaptive control system based on a high gain output feedback for OFEP
nonlinear systems, which has a relatively simple controller structure, was presented. How-
ever, since most practical systems do not satisfy the OFEP conditions, we have to allevi-
ate the OFEP conditions or have to design a robust controller for non-OFEP nonlinear
systems to apply the high gain adaptive output fecdback control strategy to practical
systems. An introduction of a PFC is an alleviation method for non-OFEP nonlinear
systems as well as for non-ASPR systems(88-89-91] Unfortunately, the bias error from the
PFC output may remain since the controller is designed for the augmented controlled
system with the PFC.

Recently, robust adaptive output feedback control schemes for OFEP nonlinear sys-
tems with output dependent non-Lipschitz uncertainties and/or disturbances have been
proposed by Fradkov et al.3% and Kohara et al.'%. Considering the nonlinear uncertain
function as a kind of output dependent disturbance, the methods are able to deal with
robust. stabilization problems via high gain adaptive output feedback for nonlinear sys-
tems, for which some Lipschitz conditions on nonlinear functions are not satisfied with
respect to output signal. In these methods, however, the uncertain nonlinearities in the
control input term are restricted to be bounded or known.

In this chapter. we will show that we can remove the restriction that is imposed on the
uncertainties in the control input term. That is. we propose a robust high gain adaptive
output feedback strategy that can deal with a broader class of uncertain nonlinearities.
Unlike previous high gain output feedback strategies. it is shown that we can design an
adaptive output feedback controller for non-OFEP nonlinear systems with unbounded
uncertainties in the control input term.

11



3.2 Problem Statement

Suppose that the controlled system (2.1) has an uniform relative degree 1. Then, the
controlled system (2.1) can be transformed as

v=a(y.n)+bly.nu+ fi(t.y.n)
n=q(y.n)+ f2t,y.m)
where a(y, ), q(y. 7)b(y.n) and fi(¢,y,m), f2(t,y,n) are uncertain nonlinearities.

(3.1)

We impose the following assumptions on the controlled system (3.1).

Assumption 3.1. The nominal part of the system (3.1) is exponential minimum-phase.
That is, the zero dynamics of the nominal system:

1 = q(0,7) (3.2)
is exponential stable.
Assumption 3.2. The uncertain function q(y,n) is globally Lipschitz with respect to
(y-m), i.e., there exists a positive constant Ly such that for any variables yi.y2,m,,72
lla(yr.m) — q(y2. n2) < La(lys = w2| + Iy = mall)- (3.3)

Assumption 3.3. The uncertain function a(y,n) is globally Lipschitz with respect to
(y.m), i.e., there ezists a positive constant Ly such that for any variables y1, 2,1,

la(y1.m) — alyz, m2)| < L2(ly1 — yol + llmy — mall)- (3.4)
Assumption 3.4. The uncertain function fi(t.y,n) can be evaluated by
M,
Aty <D dilwiy)l + do (3.5)

i=]
with known functions ¥;(y) and unknown positive constants d; and dy.
Assumption 3.5. The uncertain function f,(t,y,n) can be evaluated by
Aoy

2ty ml <D gilea(w)] + g0 (3.6)

i=1
with unknown positive constants g; and go and known functions ¢;(y) that have the fol-
lowing property for any variables y; and ys:

[i(y1 + y2)| < |é1:(yr, v2)llya| = (@2 (y2)l (3.7)

with known function ¢1:(y1.y2) and unknown function ¢2;(y2) which is smooth for all
y2 € R.

Assumption 3.6. The uncertain function b(y,n) can be evaluated by
b{y,n) > by >0 (3.8)

where by is an unknown positive constant.

The control objective of this work is to design a robust adaptive controller which
attains the goal:

Jim Jy(e) — y' ()] < 6 (3.9)
—Q
for a given positive constant ¢ and a smooth reference signal y* () such that

ly" (1) < Bo, [y ()] < By (3.10)

where gy and 3; are positive constants.



3.3 Robust Adaptive Controller Design
Under assumptions 3.1 to 3.6. we design an adaptive controller as follows:
My
u(t) = — lk(t)v(t) + Zuﬁ(t)] (3.11)
i=1

where v(t) = y(t) — y*(t) and k(t) is an adaptive feedback gain which is adjusted by the
following adjusting laws:

k(t) = ki(t) + kp(t) (3.12)

kr(t) = viv(t)? — orks(t). kr(0) >0 (3.13)
M2

k() = Y pidnilv, y7) w(t)? (3.14)
i=1

where 77, vpi and oy are any positive constants and the proportional term kp(t) is the
robust control term for the uncertain nonlinearity f,(¢,y.7n). Further, ug;(t) is also the
robust. adaptive control term for the uncertain nonlinearity f;(t,y,7) which is given by

usi(t) =

[(Z(t)wi(t)]:’ U(i.)/Efi if z(t)wi(y)u(t) < Efi (3.15)
(

7
&i(t)\wi(y)lsign(v(t)) if |di(E)ws(y)v(t)] > e
di(t) = 1aili @) lv()] — oasdi(t), d(0) 2 0 (3.16)

where 74, 04; and gy; are any positive constants.

3.4 Boundedness and Convergence Analysis

Applying the controller (3.11) to (3.16) to the controlled system (3.1) which satisfies
the assumptions 3.1 to 3.6. the following theorem concerning the boundedness of all the
signals in the control system and convergence of the tracking error is obtained.

Theorem 3.1. Under assumptions 3.1 to 3.6, there exist vy, Vpi,Vai,e5i and the ideal
feedback gain k* such that all the signals in the closed-loop system with the controller
(3.11) to (3.16) are bounded and the goal (3.9) is attained.

Proof. Setting v = y — y* as the tracking error. the controlled system (3.1) can be
rewritten as the following error system:

My
= o+ o) = o+ [ 3 upt )|
] =1 (3.17)
+ fl('/’+' y-.‘n) -y
n=qv+y . n)+ f2lv +y . m).
From assumption 3.1 and the converse theorem of Lyapunov on exponential stabil-

ity(62:66] there cxists a positive definite function W(n) and positive constants 7} to 7y
such that

OW () ”
< — “.
o q(0,m) < —=7|nll*. |

mlnl* < W)l < milnii®.

oW (n)
V<
S < 2l 65.19)

13



Consider the following positive definite function:

M
V(nnkr.d) = uW(n) + 3 v + —|k1 2+ 5 —[dz d; /bo]® (3.19)
i=1
where p is any positive constant and k* is an ideal feedback gain for k; to be determined
later.
The time derivative of V' along (3.13),(3.16) and (3.17) yields

. P
V= 88 lav+y " n)+ folv + ¥, n]+V[a(VTy )+ filv+y7,m)
A bO
-y by kv + ) v+ y‘)}] + 7—1[1‘61 - klyrv? - o1ki]
AN bg R d, = R
+3 2idi — 2ivalv: MNlv| - oud,]. 3.20
;%ld o s l8i(v + )] - o] (3.20)

It follows from assumptions 3.4 and 3.5 that V can be represented by

v < w5 a0, - ok + il 25 g + v, m) - a0,

an() S
+ =20 gileéslv + y*) + go] + Ivlla(v + y*.0)| — b(v + ¥, n)kv?
=1
Afy Ay
— b4y m) Y up(v+ )+ WD dilwi(v + y7)| + do] + |97V
i=1 i=1
M, AL

Tdi 2

[o3 N b ag 9 ; =
+b0#k k1+b0k,u2—b07—;k; boZ—d —Zdilwi(v+y )il
! =1

M,y M,
Idi

+bozd,lw,(u—y )nu|+Z—dd, (3.21)

Considering assumptions 3.2 and 3.3 and taking (3.10) and (3.18) into account, V can
be evaluated as follows:

V < = pn|nll? + urlnll Li(v] + o) - bok™v? + Bi|v| + do|v]
Y2

+wz[§jg,uolluv Mo+ oy )"'90]“71”

=1
M
+ La(lv] + y7| + Iml)ivl + b0 D dilwi(v + y)llv|
i=1
~b(v + y" . n)lkr + kp)v? + bokrr?
M,y
—vb(v+y . m) Z upi(t,v + ")
i=1
b b
LT L oy 2 |
I Y
My o4 My Og ~
Z ~1d = di fbol di — b0y “2(d, ~ di /bo]? (3.22)

i=1 *

14



Here, we have from (3.13) and (3.14) that

¢
ki(t) = e~k (0) + / e "ty () 2dr > 0 (3.23)
0

and
ky(t) = 0. (3.24)

It follows from (3.23),(3.24) and assumption 3.6 that

—b(v+y",n)ikr + kyJv? + boksv?
< —bo[kl + kp]L’2 + bgk]1/2
= —bokyv?. (3.25)

From (3.25), V can be evaluated by

V < = (bok™ = Lo)v? — umilInll? — bokpr”
Mo
+ (preLy + La)Imllv] + wra(Lafo + Y giloai(y™)| + go)llmll

=1
M
+pm2 Y giloni(v, y))Ivlilnll + (LaBo + do + B1)lv]
i=1
b b -
= 2ok — k) - o[k - Kk
i v
1‘:[10_'A ‘VIU"‘
—boy —2[d - di /bo]* = Y “E[di - di /bold;
=1 Jdi iy ldi
M, M =
by )Y up(v+y I +bo Y dilwi(v +y7)lly| (3.26)

i=1 =1

Moreover, taking the following evaluations with any constants p; to pg; into consideration

(uraLy + La)|v|lIn|

= |l = pr (i)l - MMV + M,ﬂ
2p 4
2Ly + Lo 2 _

< pillf? + L2222 (327)

M2
ura(L1fo+ Y gileai(y™) + go)lImll

i=1

. L Mz o\ fs (4™ 2

< palimll* + pre(L1fo + 30551 9il2i(y™)| + go)] (3.28)

4p2



M,
w2y gilon(v.y)lIvlinl

i=1
& 2 & (P7'29i)2 . =\2 2

<Y e+ Y i Onny )y (3.29)
i=1 i=1 ¢

(La2fo + do + B1)|v
(L2Bo + do + £r)?
4p4

< ps? + (3.30)

, b .
- —O'I[k] - k,]z - 7—00‘1[1\‘] e k']k

Y1p5, _ bo 2. b§oi .o
< -(1-—"g;—Ik k') + == L 3.31
( boo; "n[ 1=kl 4p37? (3:31)

M My

> Lould - dijul -3 %43, - duftuld

=1 ! =]

[

My ') 2

My
_ _ 7&:‘/’61 _ 2 l dt .
;(l o odz [d di [bol? + Z et (3.32)

IA

the time derivative of V" can be evaluated from (3.27) to (3.32) that

Mo,

W= (um = p1 = p2— Y p3i)iimll®

i=1

o Ly T T
il 4p1

My
- (- ps)bo—[u P -nd pz,.)"d‘ [d:(¢) — di/bo)?

i=1
Mo 2
, HT29i)" 2 2
ks Z '(4—'?)01,'(11, Y )ZVZ - b()kpll)
i=1 !
My My

-rboZd]w,(u+y Nyl = by +y*,n) Zuf,(u+v w

=1
R [uTz Lifo + 2M2 gidoins + 90))° L (La2Bo+do +51)°
' 1p2 ' 1p4
+ b()O'[k*z O'd,‘diz
dvips o dbovaipg;

M

(3.33)

where pf = {,’-,{-c% Poi = ';z’::' and ¢»ias is a positive constant such taht |d2;(y™)| < @2iar.
Such constant exists from assumption 3.5 that ¢s;(y2) is smooth for all y» € R and y* is
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bounded. Here it follows from (3.14) that

Mo

Z(“Z;gj b1:(v. y")? = boky?

Mo Moy

Z(#"’gz i,y )2 2 bOZ7pt¢lt v.y )4 4

i=1

M;

< Z /1'7'291) ] . (334)
4b0‘7 4p3i

Furthermore. in the case where |&;(t)d;;(v + y*)u(t)| > ey for any i we have from (3.15)
that

My M,
b02d11p,||u|—bz/+y nZuf,tu-i-y)u
=1 =1
M; " M "
=bo Y dilwillv] - blv+y"m) > _ dilwillv] (3.35)
=1 i=]

and since we obtain from (3.16) that Zi:(t) > 0. it follows from the assumption 3.6 that

My Ay
bozdlw,uul—b(wy n) Y dilwillv|
=1
My N A .
<bo Y dilwillvl - bo Y dilillv]
i=1 i=1
=0. (3.36)

On the other hand, if |d;(t)wi(v + y Y(t)| < zy;, we have

My AN [d‘v]Q
bo Y _dilwillv] - b(v +y™m) Y
i=1 =1
My N
<bo Y |digiv]
i=1
M
=bo ) e (3.37)
i=1
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Therefore, we have from (3.34),(3.36) and (3.37) that

M

. ’ ) Ly + Ly)?
V<—(un-pm—p—Y palinl® - (bok” — Lo — ps — ﬁu_z‘llp_z)
i=1 '

My

(1 - pa)alﬁ{l"f -k ]2 Z(l pﬁl)adl bO E‘z - d,/bo]z

i=1

v

Mo

+ (2 (L1Bo + M2 gidbaing + 90))2 n Z 1 (p729:)
4p0 4bovpi - 4psi

]2

L I2Bo+do+ B1)?  boork? Z oad? boivl_:é |
4p4 4’71/’ 4bo’dePe,, f

(3.38)

Finally, setting the values p, = p; = ‘L%‘,pg,j = 1M2,pa = pg; = 3 we have

2(;1.7'2L1 + L2)2
HT

V< - Bl = (bok” = Ly — 04 — 2

Mo,
—01—[k1—k] —Z% . [d ~ d;/bo)?

+2u

[72(L18o + M2 gidains + o)) 1 My(72gi)? o
= +Z4b0,, ==

My

*® M, 2
(L2fo +do + 61)? | boork? 04id;
+ + +Y == b > e
4p4 2y ~ 2bovai !

(3.39)
Since it follows from (3.18) that
2y 1o )
fimil® > %W (m), (3.40)

the time derivative of V' can be evaluated as follows:

V<-— —[#W ) + %uz]

AL

—[ks — ]2 - z b“""l [d —d; /bo)? + R (3.41)

i=1

bQO']
21

by choosing the ideal feedback gain k* as

8! . 2(umLy + Ly)? ]
—_— -y

473 M7

where

Mo

[72(L1fo + M3 gidains + 90)]? 1 My(720:)2 12
R=2 : + 2
# T Z 4bovpi lu T ]

, 2 . M, 2 A
(L2Bo+do+ B1)? | boork*? o4:d;
-~ + + +b £fi- (3.43)
25
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Consequently the time derivative of the positive definite function V' given in (3.19) can
be evaluated by

V<-a,V+R (3.44)
¢ T -
ay = nun[;)%,a;, adi]- (3.45)
It is apparent from (3.44) and (3.45) that all the signals in the closed-loop system with

the controller (3.11) to (3.16) are bounded and we also obtain

lim V(t) < R/ay . (3.46)
{—oc

From the fact that v2 < 2V, it follows that
lim 1% < 2R ja, . (3.47)
t—o0

Thus, the goal (3.9) is achieved for 2 > 2R/a,. It can be also confirmed that the
appropriate choices of p and p4 and design parameters 7, vpi, Yai and £5; ensure the goal
(3.9) for any 6. O

Remark 3.1. For ezample, one can set design parameters i, Ypi, Vai and €5; as follows
in order to attain the goal (3.9) for any given §.
Let’s set u and py such that

u < TI(IUJQ
= 24{ra(L1Bo + 12 gidim + g0)}? (3.48)

3(Lafo + do + 51)?
o4 > (2ﬂoa 520 Br)

and consider an ideal feedback gain k* salisfying the inequality (3.42). Then, it is suffi-
cient to choose design parameters such as

M3rigi
Tpi >u a2 2
SbUTl (Llﬁo + Zi:] giéZiM + gO) (349)
> Gbga]k*2 s 6]\{[10',_-1,'(1? vaéz

ago? ' V4= T 57 NS 1ok

Remark 3.2. Note that the design parameters v;, vpi, V4 and £5;, that are set in order
to attain the goal (3.9) for a given small 8, depend on uncertain constants. However.
as shown (3.49), if we set sufficiently large ~;,7vpi, 74 and sufficiently small y;, then
the control objective will be attained even if we do not know prior information about

uncertain constants. Hence, (3.49) provides a design principle for design parameters in
the controller.

3.5 Numerical Simulation

Here the effectiveness of the proposed control scheme will be confirmed through numerical
simulations.

Consider the following SISO affine nonlinear system:
¥ =aly.m) + by, mu + fi

i1=q(y.nm) + f3 (3.50)
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where

a(y,n) =y +sinnz + cosng
b(y.m) = exp(y + m)

~m +3siny
qy.m)=| -m-y

~7n3 + 72 8iny
fi = 3expy + sinncos?n3

fa = [cos?y,sinn; cosy, —y° cos ml7.

The controlled system given in (3.50) has a relative degree 1 and the nominal part of the
svstem is exponential minimum-phase. In this simulation, it is supposed that we have
prior information about the controlled system such that nonlinearities a(y.n) and q(y, 1)
are Lipschitz in (y,7n) and that nonlinear functions f) and f, are not Lipschitz, but can
be evaluated by

IAl < d:d(y)| + do

1f2ll < g1lé1(y)| + g0 (3.51)

with known functions ¥(y) = exp(y). ¢1{y) = ¥3. It is also assumed that nonlinearity
in the control input term b(y,7n) is unknown. Note that b(y,7) = exp(y + m) is an
unbounded nonlinear function with respect to (y,n).

We consider the following reference signal y*(t) for the output signal y(t):

0.3 0<t<?
0 2<t<4
y () = malr] for0<t<s r(t) = { 0.6 4<t<6 (3.52)
r(t) for 8 < ¢ ' ' =
0 6<t<8

0.3sin{w(t —8)) 8<t<15.
In this simulation, the design parameters of the controller are set as follows:

~1 = 1000, v, = 1000, ~4 = 100
or=0.1. 04=0.1. £y = 0.001.

Fig. 3.1 to 3.4 show the simulation results of the proposed method. To illustrate the
effectiveness of the proposed method. the simulation results for the controller without
robust control input term k, and uy; against uncertain nonlinearities f; and f,, i.e.. a
controller with only high gain adaptive output feedback, are shown in Fig. 3.5 to 3.8.
It is clear that performance of the proposed control system is better than that of the
conventional high gain adaptive output feedback control system.

3.6 Conclusion

In this chapter, the design scheme for a robust adaptive controller for non-OFEP nonlin-
ear systems based on high gain output feedback was proposed. It was shown that using
the robust high gain adaptive output feedback control method, one can design a stable
adaptive output feedback control system even if the controlled system has unbounded
uncertainty in the coutrol input term.
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Figure 3.5: Control result by the proposed control system without robust adaptive control
term for fi, fo: ¥

Figure 3.6: Control result by the proposed control system without robust adaptive control
term for fi, for u
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Chapter 4

Design of State Feedback Control
System through High Gain
Adaptive Backstepping

4.1 Introduction

It is relatively easy to control a system in a wide class of nonlinear systems by state feed-
back controllers when all the states of the controlled system are available. In particular.
backsteppingi"sl using full state information is one of the most powerful controller design
tool. Thereforc many researchers have applied backstepping in controller designs[46‘53].
Adaptive backstepping is a design scheme for an adaptive controller for uncertain sys-
tems(*9. However. the traditional adaptive backstepping has been applied to parametric
uncertain systems, whose uncertainties are separated by unknown constants and known
functions.

In this chapter, an adaptive feedback control system is designed based on high gain
state feedback for uncertain nonlinear systems with nonparametric uncertainties. Re-
cently, a number of papers that deal with the robust adaptive control problem for un-
certain nonlinearities and/or exogenous disturbances have been presented[77'86]. Despite
that the methods provide significant progress in robust adaptive control for uncertain
nonlinear systems. they have not dealt with uncertainties appeared in the control input
term. Besides some papers dealt with controller design methods for nonlinear systems
with uncertain coefficients in the control input terms, but the uncertainties are unknown
constants or unknown time-varying bounded functions!!03-109,

The proposed method can be applied to uncertain nonlinear systems with nonpara-
metric uncertain nonlinearities and unbounded state depending uncertain coeflicients in
the control input terms. The main assumption on nonparametric uncertain functions is
a so-called triangular bounds condition, i.e. it is assumed that the unknown nonlinear-
ities are evaluated by unknown constants and known functions that give some growth
conditions. Even though some information about uncertain nonlinearities such as trian-
gular bounds condition is necessary. the proposed method extends the applicable class
of nonlinear uncertain systems with uncertain nonlinear function in control input term.
To illustrate the effectiveness of the proposed robust adaptive control. the application
to a continuous stirred tank reactor (CSTR). which is known as the difficult system to
control, is considered and simulation results will be shown.
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4.2 Problem Statement
Consider the following nth order SISO nonlinear system: (1 <i<n —1)

z; = fi(x, t) + gi(z. t)xinn

Zn = fa(x. 1) + gn(z. t)u (4.1)
y=uzI
where z = {z1,-++ ,z,|T € R™ is a state variable and u.y € R are a control input and an

output, respectively. f; and g; are unknown smooth functions.
We make the following assumptions that are concerned with prior knowledge of the
nonlinear controlled system (4.1).

Assumption 4.1. For the unknown nonlinear function f;(x,t), there exist a unknown
positive constant fo; and a known smooth function fag;(z1.--- ,z;) such that for all T €
R* andt € R*

|fi(z. 0 < foil fmri(zr, - i)l (4.2)

Assumption 4.2. For the unknown nonlinear function g;(x,t), (1 <1 < n—1), there ez-
ist unknown positive constants g,,; and go; and a known smooth function gasi(zy, - -+, Ziv1)
such that for allz € R and t € R*

0 < gmi < gi(z.t) < goilgnmi(z1. - -+ - zig1)]- (4.3)

Assumption 4.3. For the unknown nonlinear function g,(x,t) which is bounded for all
t. there exists a positive constant By, such that for allc € R™ and t € R*

0 < B < gnlx. t). (4.4)

The objective of this work is to find a robust adaptive controller that has the output
y track a given reference signal y, with the goal:

Jim [y(8) = (0] < & (45)

for any small positive constant 4, where ¥, is any signal that satisfies the following
conditions:

ly-(t)] < do. 19:(t)] < d1 Vt € [0, x) (4.6)

with positive constants dg and d;.

Remark 4.1. Under these assumptions the controlled system (4.1) can be considered as
a strict-feedback nonlinear system or a pure-feedback nonlinear system.

4.3 Robust High Gain Adaptive Controller Design via Back-
stepping

Here, we show the design scheme for a robust high gain adaptive controller for uncertain
nonlinear system (4.1) satisfying the assumptions 4.1~4.3.

[Step 1] Let z; = 21 — yr = ¥ — yr be a tracking error. The z;-system is given by
21 = filz,t) + qi(z, t)z2 — Yr. (4.7)
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Now we design a virtual control input a; for x2 in the z;-system as follows:
@y = —Elzl (4.8)

where %, is a feedback gain that is adaptively adjusted by the following integral and
proportional adjusting laws:

7<;1 = Eu + EIP (4.9)
kip = yD(2)22, k1r(0) 20, ms >0
Eip=mpm. m = fi, mp >0

Here, D(z) is defined by

0 f .
D(z) = {° for=e0 (4.10)
1 forzeQ,

Q0 = {z € R" | ||z||* < &%}
Q= {z € R" | ||z|* > 6%}

where z7 = [2),22.--- ,2,] and 2;,i = 2,--- ,n are variables given by error signals such
as z; = T; — a;—;. The functions ;.1 = 1,--- ,n — 1 will be referred to as virtual control
inputs, which will be designed in each step i by according to backstepping strategy.

Consider the following positive definite function Vj for z € Q,;:

1 ~
= 22+ 22 Ry - k7)? (4.11)

Vi = -
"7 27

where ki > 0 is an unknown ideal feedback gain for ;1 1- The time derivative of V] is
given by ) _
Vi = fi(z.t)z1 + gi(, t) (@) + 22)z: — Gr21 + gmui (ks — k7)25 (4.12)

where z; = 9 — ). Considering (4.8) and (4.9), we have
Vi =fi(z, )21 — g1 (x. t)krs2] — g (. 1)k p2t
+g1(®. 0)z122 = Gr21 + gm1 (k1y — k7). (4.13)
Since ’IE” > 0 from (4.9) and assumption 4.2,
~g1(x, )k1123 + g (Bus — K7) 2

< —gmik112} + gmy (kyy — k)22
= —gmikizl. (4.14)

Further from assumption 4.1 and (4.9). we have

Nz, t)z1 — gi(x. )k p2}
< falfmllzil = gmimp fan 2t

2
4 )
< =gmimp(|fanllzr] - fo_yo ‘ Joy
2gmimp 4gmimep
&
< o 4.15
1gmivip (4.15)



The time derivative of V; is then evaluated by considering |g,| < d) that

) , 2
Vi < = gmaki2? + difzi] + —28— 4 gy (x, )22
49m1')’ P
2 2 2 i
< — gmikizi + przi — p1zi + di|z2a| + ;1——- +gi1{z, t)z122
m
2 d% fgl
- ki z—lz—— + ————+ g1(z.t)z122
(gm1k] — ;)27 — ;(l21] )+ i Tgmmr 7Y (z.t)
- (gmiki — pr)zf + Ry + 91(33:?5)2132 (4.16)
where ) )
Rl = i _l. _&—

4p1  4gmimp
and p; is any positive constant.

[Step i(2<i<n—- 1)] In step i, we design a virtual control input «; for zi41 in the
zi-system, where z; = 7; — a;_;, as follows:

a; = —k,-zi (417)

where Ei is adaptive feedback gain which is adaptively adjusted by following adjusting
laws:

Ei = Eil + EiP (4.18)
ki = 7D(2)22 , kr(0) =0, 71 >0
EiP = YiPT7i

i—1

= fin + Z:(kaaa1 L)’ +}: gruk

$k+1)
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Since the time derivative of o;_1 is given by

D~ L Bay_ 1~ Oai_; .
Q-1 = Z l(fk(:f t) + gk(z, t)xka-l)'rz ks + 3 S (4.19)
k=1 kl Yr
the %;-system is expressed by
da do;_q .
2 :fi(m!t)'*'gi(m,t)z.l,}_l _Z—"l—lkkl —_ L lyr
— Okk1 Y-
k=1
2 Aoy
- 3 S el ) + gl )zins)- (4.20)
7 9Tk

For z;-system, consider the following positive definite function V; for z € Q;; such as

9mi (’I:]

7 — k5)? 4.21
2 »l’ ) ( )

i

1
Vi=V._ 1+ Z +
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where k¥ > 0 is an unknown ideal feedback gain for E,- ;. The time derivative of V; is
evaluated by

t—1
Vi < = (gmiki — p1)27 + Y gmikizk + gic1 (2. t)zim1 2
k=2
+ fil@. )z — gi(@, ks 22 — gi(a, t)kip2?
=l Ja;_

1

+gi(, )2z — ) . (fr(z,t) + gz, )Ths1)2i
=1

i-1

Oai_14+ dai_1 . -~ -
- = ekt zi — ——rz; + gmi(kir — k7)z2. (4.22)
k=1 Okt dyr

Since k;; > 0 from (4.18) and assumption 4.2, we have

—~gi(@, kirz? + gmi(kir — k)27

< —gmikir2? + gmi(kir — k7)2F

< —gmiki 2. (4.23)
Further from assumptions 4.1,4.2 and (4.18) we have

da;
gi-1(z, t)zirzi + fi(zw. t)z; ~ Z gz ——(fu(@. t) + gi(@, t)ks1) 2
k=1

aO. 1. -1 ~ P
6,; Yrzi — Z'Ykl zizi — gi(e, tkipa]

k]

Ba' 1

<goi—1]gai1llzi- 1Ho,|+fox|fM,||3.l*Z| |(fok| faricl + goklgasel |kl 2

i—1

Oa;_1 Oa;_1 Oai—y
+dil— = Ilzzl + Z il =12z = gmivir | firi + Z (fark =5 )’
akk_r Lk

da; Oa; O
+( gyl +Z(9ML . Ik+1 +Z it 2) + (9Mi-12i- 1)]

Z for + ZQOL +di + Z?u +g5i-1)- (4.24)

4gmt'71P k=1

The time derivative of V; can be evaluated by

1 i
Vi < —(gm1 — p1)2t - ngkk;zlg + gi(z, t)zizie1 + Ry + Z Ry, (4.25)
k=2 k=2

where

Ry =

k-1
+ + +di+ 2<k<i2<i<n-1). (4.26
4gmk’7kP(ZfOl Z.‘Jnl Z'VH 1 gO'c 1) 2<k<i2< ). ( )

[Step n| The actual control input u is designed in this final step as follows:
u=—knzg, (4.27)

29



where En is an adaptive feedback gain which is adjusted by

kn = ks + knp (4.28)
Fnt = YarD(2)22  Far(0) 20 . yar > 0
knp = YnPlin

-1

2+Z gwk

=1

aaﬂ— 2 aa’n— :
+ Z( it )2+ ( 3 - )% + (9arm—12n-1)2
k=1 Okkr Yr

T = fim + Z(f Mk

il?kq)

In this final step, we consider the following overall positive definite function V;, for z € Q;,
as
Vo=Vaar + 132 + ﬁ_m(’;:nl - k’)z (4'29)
27" 2y "
The time derivative of V,, can be evaluated by

n—1 n
Va < —(gmik —p1)2] = D gmekizl — Bmkiz2 + ) Re (4.30)
k=2 k=1

using the same mannars in step i. Ry is defined in (4.26) and with gmn = 3m. Finally.
by considering a positive constant K~ such that

K* = min{gmi k] — p1, gmaky, -+ . Gmn—1kn_1. Bmky} (4.31)

the time derivative of V;; can be evaluated as follows:

n
Vo < —K*|jz]* + ) Re. (4.32)

4.4 Stability and Convergence Analysis

For the designed control system in section 4.3, we have the following theorem concerning
the boundedness of all signals in the control system and the convergence of tracking error.

Theorem 4.1. Consider the nonlinear system (4.1) which satisfies assumptions 4.1~4.3.
Then, all the signals in the resulting closed-loop system with control input (4.27) are
bounded and the tracking error z; converges to any given bound § such that

lim 2} < 62 (4.33)

Thus. the control objective (4.5) can be attained by setting 4. = 9.

Proof. For designed 2-system, we consider the following continuous function V.

152 n—1 gm: 2 :
V= 50 i=1 ‘Zq-‘y_]'A," -+ ‘,,7 Ak if ze .Q:O (4.34)
Va . ifz e Q)
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where 4, is any positive constant which is set in (4.10) and Ak;y; = E;] —k}. Additionally
the ideal feedback gains k], which are not necessarily to be known, are given so as to
satisfy the following inequality:

R
K*> 5 Z Ry (4.35)

The continuous function given by (4.34) can be evaluated by
Imi A B L5250 4.36
o+z ,,+—Ak 12560 (4.36)

Furthermore, since k] are given as (4.35), we have V <0 for z € Q; and V =0 for
z € Q,9. That is, V < 0for all t > 0. This means that V is bounded and z. Ak, are also
bounded. It is apparent from the facts that all the signals in the resulting closed-loop
system are bounded.

Next we analyze the convergence of the tracking error. From (4.32) and (4.34), the
time derivative of V' can be evaluated for z € 2, by

n
V<-K62+) Rp=-7. (4.37)

IA

where v, = K*87 — 5 p_; Rk > 0 from (4.35). Assume that there exists a time ty such
that [|z[|> > 631 > 62 for all t > ty. This assumption implies that V > %651 for Vt > tg.
On the other hand we have from (4.37) that

t
V(t) = V(o) +/ V(7)dr < V(to) — 7:(t — to). (4.38)
Lo

Since the right hand side of (4.38) will eventually become negative as ¢t — oc. the in-
equality (4.38) contradicts the assumption that V' > %63,. Therefore, there exists a finite
interval (fg,t1) such that z € ., and there exists a finite time ¢ at which lies on the
boundary .0, i.e. z € £.0. Then ||z(to)||? = ||z(t2)||? = 62 and from the fact that
174 < —7v. <0 for z € Q,;, we have

n—1
Z Imi Ak,, (t2) + ﬁ—"‘ 2 (ty) < Z ﬂAL 1(to) + 3 ’3'" Akz,(to) (4.39)
=1

and hence the parameter error decreases a finite amount every time z leaves €,y and
re-enter {1;p. Finally, we can conclude that the parameter error converges to a constant.
This implies that

. 2 2
Jim [12[? < 82 (4.40)
and we obtain the final evaluation
0 .2 < g2 )
11_1320 < 5 (4.41)
O

Remark 4.2. It is not necessary to know the eract value of the ideal feedback gains k}

which are set in (4.35), because they are adaptively adjusted by parameter adjusting laws
(4.9) and (4.18).
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4.5 Application to A CSTR Model

In this section. we apply the proposed method to a certain model of a continuous stirred
tank reactor (CSTR)[110:111) The CSTR model is known as the difficult system to control,
since it has strong nonlinearities and unstable zero dynamics.

4.5.1 CSTR Model and Problem Formulation

In many chemical processes, the main reaction which yields the desired product is ac-
companied by consecutive and parallel reactions which produce undesired by-products.
This time we consider the following reaction mechanism:

AL pE ¢

24 X, p

where A is the reactant, B the desired product, C and D are the unwanted by-products
and k; is the reaction rate.

The dynamics of the reactor can be described by following set of differential equa-
tions!!10.111]

¢a= V_(CAO —ca) = ki(v)ca — k3(v)ch
R
eB=—v¢B+hwyA—@@kB
R (4.42)

-

V 1
v = (v~ v) + Ci(vk — v) — —(k1(v)eads + k2(v)cpdz + k3(v)cids)
VR pCp

. 1 C
vk = —Qk + —(v - k)
m m

The concentrations of A and B are c4 and cp respectively (¢4 > 0.cg > 0). The
temperature in the reactor is denoted by v while the temperature in the cooling jacket
is given by vg, both temperatures are expressed in absolute degrees K. The reaction
velocities are assumed to depend on the temperature via the Arrhenius law:

ki(v) = kigexp % i=1,2,3 (4.43)

The inflow of the reactor is composed only of substance A with inflow concentration
and temperature given by c4g and v, respectively. Values for the physical and chemical
parameters are given in Table 4.1. .
1.42), w = T and u) = = , u2 = Qk, the
For the model (4.42), weset T =[ca, cg ., v . vx ]’ and u; Ve o w2 P
CSTR model is represented as follows:

&1 = wi(cao — 21) — ki(z3)z1 — ks(zs)ri

Ty = —u1zg + ki (23)z1 — k2(z3)x2
&3 = wui(vo — x3) + Ci(zg — z3) — pT(kl (z3)z1d1 + ka(z3)zads + k3(z3)zids) (144)
'p
. 1 Cy
Ty = —Uz + —(,’1:3 - I.;)
Tm m



Table 4.1: Process parameters

Symbol Values unites
k1o 3.575 x 10° sec™ !
k20 3.575 x 108 sec™!
k3o 2.512 x 108 mol A.sec™?!
E; -9758.3 deg K
E, —9758.3 deg K
E; —-8560 deg K
dy 4.20 kJ/mol A
da -11.0 kJ/mol B
ds —41.85 kJ/mol A
P 0.9342 kg/l
c, 3.01 kJ/kg.K
C 85.6347 x 1074 sec™!
Ca 0.2408 kJ/sec.K
m 10.0 kJ/K
Vr 0.01 m3

where u; and uy are control inputs given by the flow rate normalized by the reactor
volume V' /Vg and the heat removal Q. respectively. It is assumed that the state variables
Ty, T2, x3 satisfy the following conditions:

Cao> Ty >x2>0, 3> 0,

(4.45)

with a small positive constant §,. Further, it is assumed that E; = Ey , kjp = k¢ and

that the upper bounds Ey; of E; and the value of ¢,49 are known.

Under these assumptions, define the following new variable with arbitrarily chosen
E(> Ep;) and a scaling factor k,, (E and k, can be considered as design parameters):

T3 = kyexp —
z3

Then, the CSTR model (4.44) can be expressed by

&1 = — k1(Z3)x1 — ka(Z3)z] + (ca0 — 11wy

Ig = — w12 + ko(Z3)(x1 — T2)T3

= _ [lll %&]2 ) E ClE

I3 =—1I3 I3 [ul(uo - E%_f..) - 1;%

- —1—(1_‘61(9?3)($1d1 + zody) + }}3(53):6"1’(13)} _ isg[ln @]Q_x4
PCp Em
G, E 1
o= . T4) + —up
where

i Ta Ey - = &
Bi(Es) = k(G2 2, RaEs) = k()T
I o=\ _ kio , T3 Ei-E
ko(Z3) = ™ (kn) .
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Since E; are negative constants and F is chosen such as E; < E, Z‘.,‘(ig) .1=0,1,3 are
bounded for all z3 > 0.

The control objective here is to regulate the concentration xo as well as regulating
the value of the ratio xz/x;.

Remark 4.3. Above assumptions are reasonable from the viewpoint in physical and prac-
tical situations. However, the controller design considered here will not yield a global
result under these assumptions.

4.5.2 Adaptive Controller Design

The controller design is divided into two parts. In the first part, the control input u;
is determined so as to have z; track the command signal z,) by applying the proposed
method to z;-system. In the second part, the control input u; is designed so as to have 9
track the command signal z;,. The proposed procedure will be applied to the remaining
third order (z2. %3, z4)-system with input u; as known and available exogenous signal.
It is easy to confirm that z,-system in (4.47) can be expressed by the form:
z1 = fi(z) + (cao — T1)ua (4.49)

and the remaining (z,,Z3, z4)-system with input u; as known and available exogenous
signal can be expressed by

Iy = fa(z.t) + gz(m)(xl - Iz)ig

f1= f(@.1) + ga(x)s (4.50)

&y = fa(x) + g4(x)u2.
From the assumptions imposed on the controlled system (4.44) f;, ¢; in (4.49) and (4.50)
satisfy the assumptions 4.1~4.3.

Part [ : From assumption (4.45) we have (ca0 — 1) # 0. the control input u; can be
designed as follows:

up = —kyz1/(ca0 — 11) (4.51)
ki =k +kip
;11 =11D(z1)22. *11(0) 2 0, 111 > 0
kip =mpfi, fan =21 +2} 1p >0
where z) = 1) ~ z1,.

Part II : From assumption (4.45) we have (z; — z3) # 0, the control input u; can be
designed for (z2, %3, x4)-svstem as follows:

up = —Fizg (4.52)

ka7 = varz3, k47(0) >0, 41 >0
E~1P = V4PN "/4P >0

da dag da _
71 = firs + Z 3f\h)2 (a—klzl) + (gar3z3)” + (E(ﬂa - 15)Z3)°

i=1
4

2 0
Z @f\{.’h +(g- garaza)’ +Z 8a3 2)? —Z( -
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as = —k3z3 (4.53)
ks = ka1 + ksp

ka1 = ya123, k31(0) 2 0, 731 > 0

k3p = v3pm3, y3p >0

4 2
Oas Baa~ g
= Y et IR k
773—§ (fm3i) +i§=l(azisz) +(61-1 121)

i=1

+ (%2 — )z )2+i(3a2z-)2
6132 1 2)4L3 < 8;:\” 1
2
)
£ (G + (@ - z))’

4 T
i=1

Qg = —-’}\,:222/(:121 - fL‘z) (454)
k2 = kos + kop
ka1 = 72123, k21(0) >0, y21 > 0
k2p = v2pme. M2 = figa, 12P >0
where zp = T3 — Tr2, 23 = T3 — 2, 24 = T4 — ag and

1

I3

I3

- 2 —_
farr =wiza . farm = Z3(—) w1 . farze = Em

3 _— 2
faias = =, fasa = T3(=)*(x1 + 22 + z7)
T3 I3

1 2,

Sfma =3 — x4, guz = I3(—
z3

4.5.3 Simulation Results

In this simulation. we set cqo = 5.10(mol/l) ard vy = 378.05(K) and give command
signals z,1 and x,2 by the following reference models:

zr1 = 2.14 4 Gi{s)[r1] (4.53)
0.02 x 0.03 0 for 0 <t < 3500
Gi(s) = .=
(5 = 0.02)(s + 0.03) —0.03 for 3500 < ¢t
Zry = 109 + Ga(s)[r2] (4.56)
0 for 0 €t < 500
0.02 x 0.03
Ga(s) = . o =1<¢0.03 for 500 < ¢t < 1500

(s +0.02)(s + 0.03)
—0.03 for 1500 <t

Furthermore to demonstrate the robustness of the proposed method under increment of
the inflow concentration c4p and temperature vg, we add the increment of +10% for c 49

from ¢t = 5000 to ¢t = 5500 and +15% for vg from ¢ = 5500 to ¢ = 6000 respectively.
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The design parameters of the controller are given as follows:

i =10% 49 =3 x 104, v3; =5 x 103, vy =0.05
Mmp =1, 12p =vp =mp=10"° § =107"
k17(0) = 0. k27(0) = 60. k3;(0) = 6 x 103, k4;(0) =0

and we set the initial value of states as z,(0) = 2.14,z2(0) = 1.09,z3(0) = 387.2,24(0) =
387.2 that are the same value of parameters given in Referencell'!l. Further we set the
parameters of Z3 such as £ = —9,500 , k, = 3.575 x 10°.

Fig. 4.1 to 4.8 show the simulation results of applying proposed controller. It can be
seen that the proposed controller gives us good control performances in spite of almost
of all the model parameters are unknown and some parameters vary in the simulation.
For the comparison, simulation results with PI controller are shown in Fig 4.9 to 4.12. It
was difficult to get good control performances by PI controller.

4.6 Conclusion

In this chapter. a robust adaptive controller design for uncertain noulinear system with
nonparametric uncertainties in control input term was proposed based on backstepping
procedure. The method estimates only feedback gain for each subsystem and has high
gain feedback mechanism to get a robust performance for uncertain nonlinearities which
satisfy the so-called triangular bounds condition. The effectiveness of the proposed
method was confirmed through a numerical simulation for a CSTR model.
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Figure 4.2: Tracking control result of z3/2; by the proposed controller
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Chapter 5

Design of High Gain Adaptive
Output Feedback Control System
for Uncertain Nonlinear Systems
with a Higher Order Relative
Degree

5.1 Introduction

In chapter 3. the robust high gain adaptive output feedback controller has been designed
for non-OFEP nonlinear systems with non-Lipschitz nonlinearities and a relative degree
of 1. However it might be difficult to apply this control strategy to practical systems
since most practical systems have a relative degree of greater than 2. As mentioned in
chapter 4. several robust adaptive controllers including the method presented in chapter
4177-86] have been proposed for nonlinear systems of triangular form with nonparametric
and time-varying uncertainties and with a higher order relative degree. Unfortunately
these methods, however, require the state variables in order to design the controllers.
In the case where the state variables are not available, one has to design an adaptive
observer. this may however require a complex controller structure.

In this chapter, a robust adaptive controller design scheme based on high gain adap-
tive output feedback control will be proposed for non-OFEP nonlinear systems with
non-Lipschitz nonlinearities and a higher order relative degree by introducing a virtual
control input filter and applying backstepping procedure without introducing an adap-
tive observer. The methods with a virtual control input filter was initiated by Marino
and Tomeil®? and several robust adaptive control designs using the virtual control input
filter have been proposed!?326l, One can design a adaptive controller without the use of
state variables and/or a state observer by introducing a virtual filter for the control input
since the actual control input can be designed through a backstepping strategy applied to
the virtual filter. However most of previous methods dealt with controlled systems with
unknown but constant or linear combination of unknown constants and known functions.

Here a class of uncertain time-varying nonlinear systems of triangular form with non-
parametric uncertainties and unknown time-varying functions in control input terms, and
with a higher order relative degree is considered. The robust adaptive control methods
proposed in chapter 3 and 4 are extended. Further, it is also shown that an appropriate
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choice of design parameters guarantees the convergence of the output tracking error to
any given bound without prior information about the size of the uncertainties.

5.2 Problem Statement

Consider the following nth order nonlinear systems with a relative degree of r (1 < i <
r—1,2<r<n)

z; = fi(z, 1) + gi(t)Tina
zr = falz, t) + gr(t)u + b(t)T"T
77 = fn(m:t) + Q(y, 77)

y=o

(5.1)

where z = [z1,---,z,)T € R*, 9T = izp4y,--- .zn)T € R™ " are state vectors and
u,y € R are an input and an output, respectively. fi(z,t), -, fr(x,t), f(z,t) =
[fre1(z,t), - . fa(z, )] are uncertain nonlinearities and g;(t),--- , g-(t). b(t) = [br11(t),
-+, bn(t)]T are unknown time-varying functions.

Here we impose the following assumptions on the system (5.1).
Assumption 5.1. The uncertain nonlinearities fi(x.t). f,(x.t) can be evaluated by
|filz. )] < duilti(y)l + doi (1 <i<T)

[ n(z. ) < diglion(y)| + don

with unknown positive constants di;, di,, doi, doy, and known smooth functions ¥;(y), ¥y (y)
which have the following properties for any variables 1y and yo such that

(5.2)

i(y + y2)l < [ilyr, v2)llya] + [w2i(y2)l

5.3
[ (y1 + y2)| < [Y1n(y1, v2)llni| + |¥2n(y2)] (5:3)

with known smooth functions v¥1;,¥\, and functions Y. Wi, which are bounded for all
bounded y;.

Assumption 5.2. Unknown functions g;(t)(1 < i < r) are smooth and bounded with
bounded derivative for any t > 0 and there exists an unknown positive constant g,,, such
that

-
91-(t) = [ 9:(t) > gm > 0. (5.4)
i=1
Assumption 5.3. Unknown functions b,+1(t), -+ ,bn(t) are bounded for allt > 0.

Assumption 5.4. The function q(y,n) is globally Lipschitz with respect to (y.n). i.e.,
there exists a positive constant Ly such that

la(yi,m) — ay2, 1) < Li(lys — w2l + limy — m2ll)- (5.5)

Assumption 5.5. Nominal part of the system (5.1) is exponential minimum-phase. That
is, the zero dynamics of the nominal system:

7(t) = q(0,n) (5.6)

is exponentially stable.



Under these assumptions the control objective is to achieve the goal:
(e — ()] < 6 ‘
Jim fy(t) - y*(}) < 6 (5.7)
for a given positive constant § and a smooth reference signal y* such as
ly* ()] < do, |§7(t)] < di Vit € [0,00) (5.8)

with positive constants dy and d;.

5.3 Adaptive Controller Design

5.3.1 Virtual System

For the controlled system (5.1) we introduce the following (r — 1)th order virtual control
input filter.

uf, = —Ajuf, + Ufery (1<i<r-2)
Uf_y = —Araiug,_, +u (5.9)
A>0, (1<j<r—1)

The concerning the virtual system, which is obtained by considering uy, given from a
virtual filter as the control input, the following proposition is comprised.

Proposition 5.1. For the system (5.1) with a relative degree v < n, consider the following
variable transformation using the filtered signal uy, given in (5.9)

k-1
&k = GrrTk — Ufe_, — O XkdThed, (2 kS T) (5.10)

d=1

where
n
9mn = H gis Gmn = l/gm,n: gm = l/gm
i=m

and

Xr1 = gr—l(/\r-lgr + §r)
Xrd+1 = gr—d—l(_/\r-IXr.d - Xf.d)? (1 < d <r- 2)
Xk1 = Gk—1(Ae—1Fk.r + Jkir + Xk+11)

Then the system (5.1) can be expressed by the form:

.’) = (l(y, E!t) + gl,r(t)u,ﬁ + fl(yv E: n, t)
é = A(E+a£(t)y+B&(t)ﬂ"‘F(y:EJLt) (511)
1 =q(y.n) + f,(y.£.7.1)
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where

a(y.€.t) = g1.rX219 + 91.-€2

[, 1 o .- 0 ]
0 IR :
? . 0
A= “x .0 | Bet)= 5,67
: - . 1
i o --- -.- 0 _)\r_l‘

T
aé(t) = [0{27 B SR :air]
g, = = Ak=1Xkk—1 — Xkk-1+ Xkt1ks 2Sk<T—1)
ag, = —Ar—1Xrr-1 — Xrp-1

F(y,ﬁ,n,t) = [ffza"' 7f§k:"' ?f{r]T
k-1

feo = Gkrfic — ZXk.dfk—d: (2<k<r)
d=1

Proof. Since it follows from (5.10) that
&2 = GarT2 — U — X2.171
we have

¥ =f + 91(g2.-E2 + g2,0uf, + 92, X2121)
=a(y, &) + girup + f1- (5.12)

Further for k =2,--- .7 — 1 from (5.10) that

k-1
€ = JrrTh —Ufpoy — Z Xk,dTk—d
d=1

the time derivative of & is obtained by

ék =§k,r1k + gk,r(fk + 9k1k+1) - (—’\k—lufk-l + ufa—)

k-1 k=1
=Y XkdTr-d - Y Xkd(fr-a + Gk-dZk—d+1)-
d=1 d=1

Here since it follows from (5.10) that

k
ufy, = —€k+1 T Get1rTh1 Z Xk+1,dTk-d+1
d=1
k-1
Uy = —&k T JkrThk — Z Xk.dTk-d
d=1
we have
k k-1
&k =(Eks1 + ), Xew1,aTk-d+1) + Mem1( =&k + FerTh = > XkdTk-a)
d=1 d=1
k—2 k-1
+ Jk.rTk — Xkk-1%1 — Z XkdTeod — XkATk—1Zk — D Xk dTk-aTk-d+1 + fe,
d=1 d=2
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Using the facts that

k k=2
Z Xk+1,dTk—d+1 = Xk+11Zk T Xk+1 k%1 + Z Xk+1,d+1Tk—d
d=1 d=1
k-1 k-2
> XkdTk-d = Xkk-1Z1+ D XkdTh—d
d=1 d=1

and
k—1 k-2
Z Xk, d9k—dTk—d+1 = Z Xk.d+19k—d—1Lk-d

the time derivative of £ can be expressed as

&k = — Me—18k + Ept1 + Xk+1,kT1 — Ak—1Xkk-1T1 — Xkk-1T1 + fg,
— Xk19k—1Tk + Xk+11Tk + Ae—1Jk.rTk + Gk,r Tk
k-2 k-2 k-2 k-2
- Z Xk.d419k—d—1 Tk—q + Z Xk+1,d+1Tk—d — Ak-1 Z Xk.dTk—d — Z Xk,dZk—d-
d=1 d=1 d=1 d=1

Finally since it follows from the structure of xx; and xk.4+1, we obtain

€k = —Mbk + &1 + ag ¥ + fe,- (5.13)
As for &, since
r—1
& = Grzr — Ug,_y — Z Xr.dTr—d
d=1

the time derivative of & can be obtained by using the same manner as in the former
cases as follows:

ér =§r®'1‘ + gr(fr + gru+ bTT)) - (_’\r—lufr-l + “’)
r—1 r—1
= XrdTr-d = O Xrd(fr-d + Gr—aZr—d+1)
d=1 d=1
r—1
=grTy + 5—77'an + /\r—l(—g + Grzr — Z Xr,dxr—d) + f{r
d=1
r—2 r—1
- Xrr-1T1 — Zir,dl“r-d — Xr19r—1Ty — ZXr,dgr—dzr—d+l
d=1 d=2
== Ar—1& = Arc1Xrr-1%1 — Xrr-1T1 + §rbTﬂ + f.f,'

- Xr19r-1Zr + §r$r + Ar-19rZ-

r-2 r—2 r—2
- Z Xrd+19r—-d—1Tr—d — Aro1 Z Xr,dTr—d — Z Xr,dzr—d
d=1 d=1 d=1
== A& +agy+abTn+ fe, . (5.14)
Thus we get the desired results. O



Figure 5.1: Augmented virtual system

From this proposition, we know that the system (5.1) with a relative degree of r can
be transformed into one of the form (5.11) having a relative degree of 1 with a filtered
signal uy, as the control input by an appropriate transformation using the filtered signal

ufi .
For the obtained virtual system (5.11), it is easy to confirm from assumption 5.2 that

a(y,€,t) is bounded for all ¢ > 0 and Lipschitz with respect to y and § so that there
exists a positive constant Ly such that

|a(y1,€1) — aly2, &2)| < La(lyr — va2| + (1€ — &2l)- (5.15)

The uncertain vector function F'(y, £, 7,t) can be evaluated from assumption 5.1 by

1Py, &,m.t)| < p1lo(y)] + po (5.16)

with unknown positive constants p; and pg and a known function ¢(y) which has the
following property for any variables y; and yo:

|6y + y2)| < |é1(y1, v2)|lnl + |d2(y2)] (5.17)

with a known smooth function ¢(y1,%2) and a function @3(y2) which is bounded for all
bounded y» € R. Further, since A¢ is a stable matrix, there exists a positive symmetric
matrix P for any positive matrix Q¢ such as

PeAg + A{Pe = —Qe. (5.18)

Moreover, the system (5.1) is exponential minimum-phase from assumption 5.5 so that
there exist a positive definite function W(n) and positive constants x, to k4 from the
converse theorem of Lyapunov62:%] such that

oW :
Hafh(;n)t;r(o, m) < —sllm(®)I%,

kel ()| < W(n) < xaln(t)|?

< ka||n(t)||

|aW (m) H
| an (5.19)

Seeing fi, F and [, as disturbances in system (5.11), the nominal part of the virtual
system (5.11) is OFEP. Therefore, we can attain the control objective by designing the
actual control input u to make the filtered signal u;, become the high gain adaptive
output feedback input with robust properties for the disturbances.

Next, we design such the control system using backstepping strategy in the filter
dynamics. Fig.5.1 shows a diagram of this control method.
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5.3.2 Controller Design through Backstepping

[Step 1]Defining v(t) = y(t) — y*(t) as a tracking error to attain the control objective
(5.7), the error system can be expressed from (5.11) as the following form:

v=alv+y &)+ qrun + AW+y,E0) -9
§=Ad+av+y’ |+ Ben+ Flv+y,€,m) (5.20)
n=qv+y.n)+ flv+y.&mn)

For this system, a virtual control input ay for the filtered signal uy, in the error system

(5.20) is designed based on a robust adaptive high gain feedback proposed in chapter 3
as follows:

a1 (t) = —[k(t)v(t) + ur(t)] (5.21)
k(t) = ki(t) + kp(2) (5.22)
kr(t) = y1D(v,w)v(t)?. k(0) >0 (5.23)
kp(t) = wlo1(v, y™)* + g (v, y7) Y u(t)? (5.24)
ur(t) = yrY1(y)*¥(t) (5.25)

where 7,7y, and g are arbitrary positive constants and D{v, w) is defined for any positive
constant &, that

_J 0 for (rw)ef
Dly,w) = { 1 for (vw)e Q(: (5.26)

Q={veR we R |V+]|w|? <}

W ={veR weR |V +|w|?>d}
where w = [wy,wy. - ,wr_l]T, wi =up —ay and w; = up, — a4, i =2,---, 7 —1. The
virtual input a; is given in (5.21) and the virtual inputs ¢;,(2 < i < 7 — 1) will be

designed in the following step 7 by backstepping strategy.
Consider the following positive definite function Vi (v, &, 1, k;) for (v.w) € Q5:

. 1 5 m *®
Vi{v, €, n.k) = 5'/2 + ol T P& + mW(n) + 29?[’61 -k (5.27)

where po, 1 are any positive constants and k* is an ideal feedback gain for k; to be
determined later. g, is a positive constant given in assumption 5.2. The time derivative
of V; along the trajectories (5.20) and (5.23) yield that
Vi =vla(v +y",€) - girlkv + url + grlup, — aa] + A+ ) ~ §7]
T
+ uogT(Aglpg + PgAE)E + to [a§ [I/ + y*] + B§77 + F] P{&
+ o€ Pelaclv + y*] + Ben + F

ow * * * =
+ ula—n[q(u + 5.0+ Fo(v +y" € m)] + gmlkr — K*|2 (5.28)
It follows from assumptions 5.1 and 5.4 and from (5.15) to (5.19) that V can be evaluated
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by

Vi <La(v] + |y | + M€ vt — g1,0 (kv + ur)vy + |57V + g1,r001
+ (du1|n| + doi)|v| — 1e€T Qe
+ 2po [aenm (Iv] + y°1) + BearlIm] I Pell €]l
+ pollPellll€l [pr(r]lv] + |@21) + po]
— msr Il + pakeLa(lv] + ly*Dilmll
+ prkz [din([¥1nIv] + |92q]) + don] 7l
+ gmk v — gmk*? (5.29)

where agyr, Bear are positive constants which satisfy |lag(t)|l < aem, 1Be(®)ll < Bewmr-
Such positive constants exist from assumptions 5.2 and 5.3. Since we have

—qi-(kv +uRp)y + gmk1V2
<- gmk’/2 - gm’)’Rw?’/2 + kal'f2
= — gmkpt? — gmYRVIV? (5.30)

from the fact that k(t) > 0 which is obtained from (5.23) and (5.24) and from assumption
5.2, the time derivative of Vj can be evaluated by

Vi < = (gmk™= L)V~ pormin[ QIEIP— prra 1]}
+ mr2La|vllInll + {doL2 + dor + di) v
+ (L2 + 2u0aenr | PeNIEN — gmbpr® + 91,7000
+ popill Pellig IW|II€Nl + pamadinl¥rgliviiml
+ wol| Pell(2doaeas + p1ld2| + po) €l
+ wira(doLy + diglthan| + dox)limll
+ 200 Bear | PelIEN nll — gmyRYEV? + drnlinliv] (5.31)

Further we have

— gmYRYIV? + du1 |yl

— — gl - 57 4

m 20mYR 4g9m YR

d2
< (5.32)
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and

prlinl? = prlml? + paseL|vllnl

M152L1|V|) (p1k2L1|v])?
2p 4p

=plnl* - pr(llnll -

2 (mr2Ly)?
S 1 n 2+—l/
Alinll rys

p-zl/2 - [)-21/2 + (d(]Lz +dog + dl)]ul
(doL2 + doy + d1)?
4p2
pall€ll® — pall€N* + (L2 + 2poaem | PV IIEN

(L2 + 2poaem || Pell)?
<psli€l® + oV
P3
pall€lI* — pall€)? + poprl| Pellien Il

P,
SP4"€“2 (#Opjlﬂ 5”) ¢2 2

pslnll® — oslnll® + pikedigl¥rqlivllinll

) Kad
<pslinll? + “‘—”—lﬂ)—wm

psl'€l1% — psll€N® + IJOHP{”(QdoGgM + p1l|@2] + po)ll€ll
[0l Pe (| (2doagas + p1dam + po))?

sl + =

prlnll® = p7linil® + maka(doL: + diglay| + don)linll

mka(doLy + dipvansr + 2
SP7||77||2 + [ ( 1 n¥an doﬂ)]
P7
psl'nl? = psl|nil® + 20 Bear | PellNEN 7]
(oBea || Pell)? €l
Ps

Spgu2 +

<psiinli® +

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

with any positive constants p; to pg and positive constants @ops and ¥agar which satisfy
{@2(y*)| < @aar, |Wan(y™)| < woyar. Since y* is bounded, such constants exist from as-
sumption 5.1 that ¢2(y2) and 92,(y2) are bounded for all bounded y,. Moreover. since

we have
P,
— gk (ﬂopjill 5||) (ltlfizdm) @,
P4
P, 2,
R (#Op;" €ll) o
P4
A p1kady
- gm7pwllnu4 + ( 4 'I) 1xblr;
1 [(#Oplnpsﬂ)z] + 1 [(mﬂzdln)gr
T 9mYp 8p4 9mp 8ps

from (5.24), the time derivative of Vj can be eventually evaluated by

Vi < = [gmk™ = vo]v? = [0 Mmin|@e] — n1]lI€N?
— [pr1 — va]lInll® + grrvwr + Ry

(5.41)

(5.42)



where

koL1)2 Lo+ 2upa, P|)?
vo =L+ (rak2Ly) +p2+( 2 + 2poacar|| Pell)
im 4p3

(o Bem || Pell)?
Ps

V1 =p3 + ps+ps+

Uz =p1+ p5 + pr + ps
d, (doLz + doy + d1)?
+
49m YR 4p9
poll Pell(2doaeir + prdanm + po)l?

L

R =

4p6
+ [IJ'IK"Z(doLl + dln¢2m\! + d{)r;)]2
4p7
, 1 [(#0P1||P§||)4 (t152d15)*
hE 3 + 2
64gm7p pd P5

[Step 2] The control objective is achieved when the virtual control input a; designed
in Step 1 identifies the filtered signal uy. In this step. we consider an error system,
wy-system, between ay and uy,. The w)-system is given from (5.9) as

wy = —x\lufl +ujgp, — ai. (5.43)

Here & is given from (5.21) to (5.25) by

] day. Bay., OJai;
N =y + +
=G, T BV B,
Oy day .. Ba 2
=9 ot gir il el OV s TO) 1 5.44
= [917X219 + G182 + qrrup; + fi] + 55" k! (v w)v (5.44)

Taking the form of &; for (v,w) € Q) into consideration. we design the virtual control
input as for the filtered signal uy, in the wy-system as follows:

LY

Ok, y1v? — eV (5.45)

Qs = —Cjwi] + Alufl +

for all v and w. ¢ is an adaptive feedback gain which is adaptively adjusted by the
following parameter adjusting law:

&1 = vaD(v,w)wi, c1(0) >0 (5.46)

with any positive constant .. ¥y is given by

Uy = (3 +u3, +1) daa\*, (fen)’ (5.47)
1 =Yy ufx 1 ay : ay‘ .
where ¢; and [; are any positive constants.
Consider the following positive definite function V%:
Vo=V + luf - e ~ ¢)? (5.48)
B 2 27e1

N
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where ¢] is an ideal feedback gain for ¢, to be determined later. The time derivative of
V, for (v, w) € Q yields that

Vo =V —wi iy, — é1)

. da .
=V +uw [—}\luﬁ +tws+az — —a?l [g1.rx20 (v + ¥°) + 91062 + g1ruy, + fi]

day ., Oa .
-y S e - e (5.49)

where w3 = uy, — a3. Considering as given in (5.45) and assumption 5.1, the derivative
of V5 can be evaluated by

— [gmk™ — vw0]? — [BoAmige — 1IN — [1k1 — va]ll® + g1,vw1 + Ry

2
- Cle +wiwy — el\Illwf + |w1|

8a1
E’ [xam vl + gmll€ll + gmluy|
30:1

+ dulvrl + (doxa + dor)] + dyun]

(5.50)

where gys and x s are positive constants such as gar > g1, XAr 2 g1,-X2.1- Such positive
constants exist from assumption 5.2. Here we have

= g -
lel lel + gy v < p1w1 4;: v (5.51)

with any positive constant 5; and

l] 60[1 la BXAI 2 = co
—azg (_ay > Wi+ xa|vllen] € Tl (5.52)
l1 601 8 (03} g -
—ay (a—y) Wi + ] 3y gmll€lllwr] £ M ||€||2 (5.53)
6011 2 2 80:. glll
—e (22 0 e < I 5.54
o (52) w4 | G amlullon < 22 (550
— d w — 5.55
€1 ( ay ) wl 1+ ‘ 3y \ lll"«bln 1| 46 ( )
2 ap 2
3 611_1 day 2 < 3(doxys + do1) (5.56)
3\ 9y y 461y
dar\? ,  |Ba1 &
— -— —_— dy < — 5.57
61(%*) i gy |1l < g (5:57)
from (5.47). In the result the time derivative of V3 can be evaluated by
. 23 g
Vo <~ [gmk” — 20 — i—‘f-{- - >LM] ? — [oAmin[Qe] — 11 — = ]||€l|2
P1 461
— [p1k1 — w2 |Imll? = (¢} — P1)wi+wiwa + Ry + Ry (5.58)

where )
9% b | 3(doxv +do1)®  df

R bt § SR bl s KL LS ARl N
2= 461 + 61 461[1 + 461
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[Step i (3 <i <r—1)] In step i, we consider the error system, w;_j-system, in the same
manner as step 2. w;_j-system is given from (5.9) as

wi—] = —)\i_lu,,._l +uy — Q1. (55())

The time derivative of a;_, is given by

) doi— . Oai-q ..
Gi_y =—11[g1,rX2.1y + a6+ g1 0un + il + a;_l
+ 8&, Ly D(v. w)r? +z di-1 w2+§ daxi- Li-Aeug, +up,,)- (5.60)
; '71 k & 3u1k kUf —Ufal- .

For this w;_;-system, we design the virtual control input o; for the filtered signal uy, for
all v and w as follows by taking the form &;..; for (v,w) € ) into account:

1 —2
aa'-—l 2 : aa-_l 9
Qi = —Ci—1wi—1 + ’\i—lufi_] + a;CI v+ z a;k e
k=1
=
+ z au;; [_/\ku]k +‘qu_:_l] — 1V wi—1 (5.61)
éio1 = Y1 D(v,w)w? ), c-1(0) >0 (5.62)
w = (1/)2 + 'U.2 + 1 ) aai_l 2 + aai—l 2 (5 63)
=1 1 N i—1 ay ay' .

where vqi-1, €1 and l;_; are any positive constants. Here, consider the following positive
definite function V;:

1 1
Vi=Viop + zwl  +
2761

3 [ei1 = i) (5.64)

with an ideal feedback gain ¢;_; for ¢;—; which is determined later. The time derivative
of V; for (v, w) € 2 yields that

. . dai_ .
V, =Vi1 + wiy l:—/\i-luj,_l +wi+ o — aly - [gl.rXZ.l(V +y' )+ b+ grrup, + fl]
Ao c') =25 =25
i—1 .. v = i)
- a;: - = - kz — [—Arug, TUf, N
+ [ei-1 = Cf—x]‘”i-l (5.65)

where w; = uy, — a;. Since considering the virtual control input o; given in (5.61) and
applying the same calculations as (5.51) to (5.57) in step 2. the time derivative of V; can
be evaluated by

2 i—1 B
9y 3xas 39\1 2
kKt - - d — {ugA -
~lomk" —vo = 50 = D eal ~ loAminlQe] o1 - LZ gl
2 1
iy — v2lllnl*=) (e k= Jwi
-1 Jllmll® kz:l( k=P Toen; Wk
i
= - 9 - .
—(€f_q = Aim1)wiog +wictwi + ) Ry (5.66)
k=1
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where pa,- -+ , ;1 are any positive constants and

R = 9% d}, +3(d0XM+d01)2+ d? _
T S de;_1li dei_3

[Step r] This is the final step. In this step. the actual control input u is designed as
follows:

u=a (5.67)

using a; given in (5.45) and (5.61). In the final step, we consider the following positive
definite function V;.:

9 1
Yer-1

[era1 = i )% (5.68)

g2 r—1 3X2
‘f/;_ < - * _ M My, 2
- [gmk vo 4p ; 4Eklk]y
r—ti 2
39ns 2
— (o Ams —o =N 2EIM
[,UO mn[Q{] n Z:zkklk]”&”
r—2 1
2 * - 2
— {Haky — ve]llTh|” — Cr — Pk — 5= w
b = sl =3k = = 35
r
— (€1 = Pr-)wio1 + Y R (5.69)
k=1

R = 9% . 4 + 3(doxs +dor)? | d2
- e
der—)  4der de,_3lr_ der_y

for (v,w) € ) by using the same manner as shown in the previous steps.
: e Amin 6r0{Be ar || Pe l1)?
By setting p1 = py = p7 = H151. pg = py = pg = Loomnirdd 5 [Q‘], pg = —r—i—“"f\mii’gd") and

Sy - 343 9uo(Bearll Pell)?
considering pg and p; such as pg = ZZ:% A and p; = ”X( ez | 1) , we have
min Qs exli min QE K1

r—1
- 1 -
V€ K07+ L)~ g5 [mdmnlQAIER ~ palnlP| 4 Rr (10
k=1 -

where Rt = > ;_, Ri and

= . *x * - 1 x - ’I' = - -
K* = min [gmk —vg, ¢ — P — R Cry— Prog — ‘LﬁTl?cr_l - pr_lJ (5.71)
2 r-1 32
vy =1o + g—{/! + XM .
0 2p degly

1

1

5.4 Boundedness and Convergence Analysis

For the designed control system, the following theorem concerning the boundedness of
all the signals in the control system and convergence of the tracking error is given.
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Theorem 5.1. Under assumptions 5.1 to 5.5 on the controlled system (5.1), all the
signals in the resulting closed-loop system with controller (5.67) designed according to
each step are bounded. Further, the tracking error v converges to any given bound

lim |v| < 4. (5.72)
t—s00
Proof. Consider the following positive and continuous function V:
( % + g;} Ak2 k—1 2», Aci + ov
for (v,w) € Qo and (§,7) € Oy,
1 -
% %Ak2+zk 12»,kA02+(V )
. for(vw)eﬂoand £,m) € Qy, .
V = 1 5.73
v*+ Fm Ak + -1 3 + i) + 6, (5:79)
for (v.w) € Ql and (&.7m) € Oy
Vi
L for (v.w) € Q; and (€,717) € Qy,

where
V, = o€ P& + mW(n),
Ak =k -k, Acp=cp —c;
and 8, is a positive constant given in (5.26). Further dv, is a positive constant such that
8, > R/ay, (5.74)
with positive constants &, and R that are determined later, and Qy, and Qy, are defined
by
={{e R, ne RV, <&}
—{6 R~ neR"|V, >4} }
In this function V', we consider the ideal feedback gains k™ and ¢} such that the following
inequality for K~ given in (5.71) is satisfied
K" 2 (Rg, +%)/5, (5.75)

where 5 is any positive constant, Rg, = max{R7, R'] and

> Ly + Lzév = r
R d%l ' (doLo +doy +d1 + f——_—uu/\mml” ) ‘ S 3(9“\‘[(5“")2 _LZRk

dgm R 4p2 k=1 ApoekliAmin| Pe] k=2

The time derivative of V" given in (5.73) for (v,w) € Qo and (§,7) € Oy, is given by
V=0 (5.76)
Further, since we have
V =V, = uo€" (A{ Pe + PeAg)E
+ polaely + y*] + Bem + F]TP5§
+ po€T Py [aglv + y"] + Ben + F)

aw
+u1377[q(l/+y*,n) + folv+y.€m)] (5.77)
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the time derivative of V for (v,w) € Qg and (£.717) € v, can be evaluated by considering
fact that |v| < J, as follows:

V=V,<-aV,+R

~ o [2PinlQe] k1 ] (5.78)
&y = min —3’\mu[P§]. P
where
p —Loll Pell{acar(6y + do) + p1(@wady + doam) + po}]?
Ps
+ [m12{L1(8, + do) + din(Vinardy + Yagar) + dm,}]z.
4p7

d1m and Pynar are positive constants that satisfy |¢1(v,y*)| < é1a and |¥1,(v,y*)| <
Yina. Such positive constants surely exist from the relations [v| < §, and |y*(t)| < do.
Since V,, > 6%, for (v,w) € Qp and (€.7) € Ny, . the time derivative of V can be evaluated
from (5.74) by .

V<o (5.79)

In the case where (v,w) € Q) and (€,7n) € Qy,, the time derivative of V yields that

V =vja(v+y".€) - g1slkv + up] +g1.-[uy, — ]

r—1
+ v+ ") = U]+ gmlkr = BI04+ ) (Ackwf + wiin). (5.80)
k=1
Thus, considering that V, < (5&, we have
- r_l -
V<-K'(*+) wi)+R. (5.81)

k=1

Since K™ satisfies the condition (5.75), the time derivative of V can be evaluated by
V < -5 <0. (5.82)

Furthermore, the time derivative of V can be evaluated from (5.70) and (5.75) as
follows:

V<—<0 (5.83)
for (r,w) € Q) and (£.717) € Q. .
Thus the time derivative of V' can be evaluated as V' < 0 for all ¢t so we can conclude
that all the signals in the control system are bounded.

Next, we analyze the convergence of the tracking error v. Suppose that there exists a
time tp such that v + ||w||? > 62 for all ¢ > ty. This implies that V > 302+ 5%,07 vt > to.
Since V' < —v5 < 0 for (v.w) € O from (5.82) and (5.83). we have

t
Vit)y=V(ta)+ [ V(r)dr <V (ty) - 7s(t — to). (5.84)

to
The inequality (5.84) contradicts the fact that V > 462 + 6%,3, Vt > to., because the right
hand side of (5.84) will eventually become negative ¢ — oc. This means that the interval
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(to.t1) in which (v.w) € € is finite. Let (f3,¢3) be a finite interval during (v.w) € Qo
and (t3,t4) be a finite interval during (v,w) € 2. Since V < 0 from (5.76) and (5.79)
for (v,w) € Qp and V < —v5 < 0 from (5.82) and (5.83) for (v,w) € , it follows that
for the interval (t2, t3) during (v.w) € g

V(ts) < V(t2) (5.85)
and that for the interval (3. t4) during (v.w) € )
V(ts) < V(t3). (5.86)

Thus the positive function V' decreases a finite amount time (v,w) leaves Qp and re-
enters into (g in finite time and V' does not increase during that (v.w) € Q. Finally we
conclude that there exists a finite time T > 0 such that V converges to a constant for all
t>T,ie, (v.w) € Q for all t > T. This fact gives that

lim jv| < 4,. (5.87)
t—co

The control objective (5.7) is attained by setting the positive constant &, as J, = & after
all. O

Remark 5.1. Since the proposed method is designed an output feedback controller by
considering OFEP property of the controlled systems, the stability of the control system
ts not lost even if adaptive feedback gains ky and c; are estimated as too large. Further,
the proposed method can be applied for the system with disturbances, which satisfy the
assumption 5.1. In the case where there is noise in the outpul signal, the stability of
the control system is ensured if the noise satisfies the condition (5.8) for the reference
signal y*. However, we have to pay allention Lo apply the controller through the proposed
method for practical systems, because the effects of noise appear directly in the output
signal since the proposed controller is designed for noised oulput error : o =y + n —y*,
(n : noise) and controls to make the output error with noise converge to the objective
small bound.

5.5 Numerical Simulations

5.5.1 Example 1: 5th Order Nonlinear System
Consider the following SISO nonlinear system:

z1 = fi(z1,22) + g1(t) 2
zg = fazy,t) + ga(t)Ts

i3 = f3(z1) + g3(t)u+ b(t)Tn (5.88)
1= folzi.n,t) + q(z1.7)
y=xn

where
h= :z:rlZ sinO.lxs, fo= ’C:IZ cos0.5t. f3 = I%
g1 =2(1/(t +2) + 1), g2 = 5(1 + exp(-t)).

1
_n- 9 — .
g3 = 0.7(c0s 0.02t + 1.2), b [Sthﬁ}

= 0.03z% sin 473 [zi-m
n = 022%sin3t |'TT | -me
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The controlled system given in (5.88) has a relative degree 3 and the nominal part of
(5.88) is exponential minimum-phase. In this simulation, it is supposed that we have prior
information about the controlled system such as the nonlinearity g(y,n) is Lipschitz in
(y.m) and nonlinear functions f;(i = 1,2, 3) and f, are not Lipschitz but can be evaluated
by
[fil Ldulynl, |fol < di2jdsl, |f3] < dis(epsl
h=tr=ts=y" (5.89)
and
"fn“ S dli)lwﬂi: "1}7; = yz- (590)

For the controlled system (5.88), we introduce second order virtual filter given in (5.9)
and apply the variable transformation (5.10). the system (5.88) is represented by

y=a(y,&t) + a3l + A1)
€ = Al +ag(t)y + Be(t)n + F(y.t)
1 =q(y.n) + fr(y.t) (5.91)
uf = —Mup +up,
'afz = —AQUfz +u
where
F [ G2f2 — x22913N1 .
F= =|_ _ I 5.92
[Fs] 93f3 — x31923f2 — x329131 (5.92)
Since g1, g2. g3 are bounded for all t > 0, F can be evaluated by

IFIl < |F2l +|F3] < plgl, ¢ =y° (5.93)

with ¢; = y and a positive constant py.
Considering above evaluations, we design a robust adaptive controller through the
proposed procedure as follows:

, 6&2 2 é)az

U= —Cawy + /\Q’u,f:, -+ a—kl’)’jl/ — 62‘1’2&)2 + E[—/\kuh - ufz] (5.94)
éa = 72 D(v. w)w?

das\ 2 daz \ 2

— 2 2 2 2

v+ (52) - (52)

a
az = —clw + Arug, + 7 v - a¥iw (5.95)

é = Ya D(v, w)wi

2 2 da; 2 day 2
¥y = (b +up, +h) (’a?) + <%>
o1 = —lkv + un] (5.96)
k=ky+kp, kj = 1 D(v,w)v?
kp = (67 + ¥i,lv%, ur = yrydv
where

V=Y, ==y, v=y—y,

Wy =Up —ay, Wy = Ur, — Q3.
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In this simulation the reference signal is give as y*(t) = sin 2t and controller parameters
are set as follows:

=60, 1 =R =001, 7, =Y, =1, a =e2 =1, 8, =0.05
)\1 = )\2 = 3, l1 = lz = 3, k‘[(O) = 1, C](O) = C‘Z(O) =0.
Fig.5.2 to 5.8 show the simulation results. However the control input is rather large

during the transient period of parameters adjusting, the output error converges into the
objective bound é = 0.05 after the parameter estimations finished.
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5.5.2 Example 2: DC Motor
DC Motor Model

Consider the following DC motor model:

%(L(t)i(t)) + Rit)i(t) + Kyw(t) = v(t)

J(fi—if +T(t) + Flw) = Kyi(t)

(5.97)

where v(t) is the armature voltage, i(t) is the armature current, w(t) is the rotational
velocity of the motor. R(t) and L(t) are the resistance of armature winding and the
self-inductance, respectively. J is the rotor inertia, T'(t) is the load torque, K} and K,
are the back-emf parameter and the torque motor parameter, respectively. F(w) is the
friction given in the following forml'!2

F(w) = Fy(w) + fuw
2 5.
Fo(w) = Fesgn(w) + (Fs — F¢)exp {— (?) } sgn(w) (5.98)

s

Here we consider the armature voltage v as the control input u, the rotational velocity
of the motor w as the output y and = = [z),22]7 = [w,i]T, the DC motor model (5.97)
is represented by

Fla,)  Ki — T(t)

I = — i + 7222 7

Ky (R)+% 1 (5.99)
Iy= L(t)ml i70) T+ L(t)u(t)

y=x

The parameters of the DC motor and friction model are shown in Table 5.1.
In order to apply the proposed method, we consider the following nonsingular trans-
formation for the system (5.99):

21 =T
_J(R(t) + 4 (5.100)
29 = —I(t_L(t)—Il + T2

Table 5.1: Motor and friction model parameters

Symbol | Volues | unites
J 0.2 kgm?
K, 0.306 | Nm/A
Ky 3.15 | Vs/rad

4 0.4 Ns/m
Us 0.001 | rad/s
F, 1 Nm
F 1.5 Nm

64



so that the system (5.99) can be represented by

= fi(z1,t) + 9122

= fa(z1,t) + g2(t)u (5.101)
y=2z
where
1 J(R(t) + %) T(t)
fl(zl,t) = —'j Fo(zl) + 0z + ——L(—t)—zl - -—J—
dL dL
fa(z1,t) = -5 }({)L(t)d_t) o(z1) + [Ii jt {(R(tz),(;r) . )}
CHBRO ) K ] TR + %)
K, L(t) L@ ]™ K L(t)
_ Ko a1
91 = _]‘ ) 92( ) L(t)

Adaptive Controller Design

Suppose that uncertain nonlinearities f1(z;,t), f2(21,t) can be evaluated by

| f1(21, )| < dual¥i(y)] + doa

5.102
|f2(z1, t)} < di2|ta(y)| + do2 ( )

where ¥1(y) = ¥2(y) = y are known functions. Further since the system (5.101) has a
relative degree 2, we introduce first order virtual filter:

uf = —Aug, +u (5.103)

and design the control input u as follows

2 — 1 Uwo (5.104)

Oa;
u= —ciwi + Ajuj, + 3k, *y[

é1 = Yo D(v,wn )

2 2
o=ttes o () - (3
a; = —[kv + ug|

k=ki+k

kr = v D(v,w)V?

kp = vp (61 + Y1) V2

UR = YRY1V.

In this simulation the controller parameters are set as follows:

N1 =T75x10°, 4 = yr = 6.0 x 103, 7, = 10, 6, = 5.0 x 1072
/\1 = 20, €1 = 1, 11 = 3, ]C](O) = 40, cl(O) =0.
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Figure 5.9: Left : R(t) Middle : L(¢) Right : T'(t)

and the reference signal y*(¢) is given by
Yy =+
N i - . _Jo t<5 (5.105)
yl = 0.20(1 - 4!’) " ‘92 = . o - ( )
0.05sin(t — 5) +0.25 (¢ > 5)

Further, we assume that the resistance R(¢) and the self-inductance L(t) vary related to
temperature in time and we give the load torque T'(¢). These changes are shown in Fig.
5.9.

Fig. 5.10 to 5.15 show the simulation results. A good control results are obtained
in spite of the controlled system having unknown nonlinearities and the time-varying
unknown coefficient in control input term.

5.6 Conclusion

In this chapter, a design method for robust adaptive controller based on high gain output
feedback for uncertain nonlinear systems with a higher order relative degree and unknown
time-varying functions in the control input terms has proposed. The proposed method
designs the output feedback based controller by introducing a virtual control input filter
and applying backstepping procedure in this filter without introducing a state estimator.
The effectiveness of the proposed method has confirmed through numerical simulations.
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Chapter 6

Design of Adaptive Output
Feedback Control System by
One-step Backstepping

6.1 Introduction

In chapter 5, a robust adaptive control system based on high gain output feedback is de-
signed for nonlinear systems with non-Lipschitz nonlinearities and a higher order relative
degree by introducing a virtual control input filter and applying backstepping proce-
dure to the filter. In this method, however, the structure of the control system becomes
complex for systems with a higher order relative degree because the recursive design of
backstepping depends on the order of the relative degree of the controlled system.

In this chapter, a new design method of an adaptive controller based on high gain
output feedback for uncertain nonlinear and linear systems is proposed. Even when the
controlled svstem has a higher order relative degree. the proposed method allows us to
design an adaptive controller through backstepping of only one step by introducing a
PFC, which creates an augmented virtual control input filter with a relative degree of
1. Since the PFC is put in parallel with the virtual filter, the bias effect from PFC does
not appear directly in the output of the controlled system. Therefore, it is possible to
show that the tracking error converges to any given bound. Thus, we can design a simple
structural robust adaptive controller based on high gain feedback for uncertain nonlinear
systems with a higher order relative degree.

6.2 Problem Statement

Consider the nth order nonlinear system with a relative degree of r, (1 <i<r -1, 2<
r<a)

zi = fi(z. t) + gi(t)zis
Er = fal@,t) + gr(t)u + b(t) T
n= fp(z.t) +aq(y.n)

y=2x.

(6.1)

This system is same as the controlled system in chapter 5. Further. we assume that this
controlled system (6.1) satisfies the assumptions 5.1 to 5.3.
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Under theses assumptions the objective is same as in chapter 5, which is to achieve
the goal:

Jim [y(6) -y ()] < 6. (6.2)
—oc

6.3 Adaptive Controller Design

6.3.1 Virtual System

For the system (6.1), we introduce a 7 — 1th order stable virtual control input filter:

iL;:Aufu!-i-bu]u (6 3)

— T
yuj - (’ujuf

where uy = {ug, -+ .us_,]7 and

|0 Ii_ar_2 _ 19 T _

Then concerning the virtual system, which is obtained by considering uy, given in (6.3)
as the control input, the following proposition is given.

Proposition 6.1. For the system (6.1) with a relative degree r < n, consider the following
variable transformation using the filtered signals uy, given in (6.3) :

k-1
€ = budk,eThk —Uf_y — D XkdTh-d (6.4)
d=1
where
n
9mn = H 9i, gm,n = l/gm,m Gm = l/gm~ go(t) =1
t=m
and

Xr1 = bugr—l(.sr-lgr + gr)

k-1
Xrk = gr—k(— Z Br+d—er+d—-k+l,d - X"r,k—l + buﬂr—kgr—k+l.r):
d=1
@<k<r-1)
r-1
Xrr == BiXde1d — Xrr-1
d=1

Xkt = Ge-1(Xk+1,1 T bufir), 2<k<r—1)
Xkd+l = Gk-d—1(Xk+1.d41 Xk d): (2<d < k-1).

Then the system (6.1) can be expressed by the form:
y=a(y.&.t) + g1 (up + HL(y.§..t)

€ = Au €+ ag(tly + Be(t)n + F(y.€,7,1) (6.5)
n=q(y,n) + f,(y,€n.t)

=]
[\



where

91,
a(ya €7t) = gll,r(x‘l,ly + 52); gll,r = bl.T
u
X2.2 0
=1 . Bl = [bus’zrbT]
Xr.r
F(y:s:nat) = [ng:"' *fﬁk)"' af{,—]T
k-1
feo = bulkrfi = D Xkdfi—ar (2 <k <)
d=1

Proof. Since it follows from (6.4) that

&2 = buJ2,,T2 — uf, — X2171

we have
y=h +91gb2_:(§2 +up + x2171)
=a(y,§) + g1,un + fi. (6.6)
Further for k = 2.--- ,r — 1, since it follows from (6.4) that
k-1
& = buGrrTi —uj5_, — Z Xk,dTk-d
d=1

the time derivative of £ is obtained by

k-1
Ek =buGrrTk + budier(fi + geThs1) — up, — z Xk.dTk—d
d=1
k-1
= xka(fe-d + Gr—dTk-ar1)-
d=1
Here we have from (6.4)
k
Ekrl = buJka1,rTher — Uf — ZXkH.dl‘k-dH
d=1
the time derivative of & is expressed by
. k k-1 k-1
€k = (Eks1+ 3 Xkr1dThods1) + budkrTk — O XkdThd — ) Xkd9k-dTk-d+1 + f;-
d=1 d=1 d=1
Additionally. we have
k k-2
Z Xk+1,dTk—d+1 = Xk+11%k + Xk+14T1 + Z Xk+1,d+1Tk—d
d=1 d=1
k-1 k-2
D XkdTh-d = Xkk-1T1+ D XkdThd
d=1 d=1



and

k-1 k-2
Z Xk,dk-dTk—d+1 = Xk19k-1Tk + Z Xk,d+19k—d—1Tk—d
d=1 d=1

the time derivative of & is represented by

€k =Ce+1 + (Xk+1k — Xk k-1)T1 + S
— Xk,19k-1Tk T Xk+1,1Zk + buGk.r Tk

k=2 k-2 k-2
- E Xk,d+19k—d-1Tk—d Z Xk+1.d+1Tk~-d ~ Z Xk.dTk—d-
d=1 d=1 d=1

Considering the structures of xx1 and xkd+1, wWe have eventually

€ = Ekpl + XkkY + Sfou (6.7)

As for &, given in (6.4). since

r—1
& = bugrrr —Uf_y — Z Xr.dZTr—d
d=1

the time derivative of &, is obtained by

r—1
€. =bufsTr + bue(fr + gru+ 6T — (= Y Bauyg,)
d=1
r—-1 r—1
- Z Xr.dTr—d — Z(fr—d + gr—dxr—d+1)'
d=1 d=1

Here considering the facts that we have
up, = =2 + buf2rT2 — X211

2
ug, = —€3 + bug3rr3 — Z X3.dZ3-d

d=1
r-1
uf._y = —& + bugrzr — Z XrdTr-d
d=1
from (6.4) and

r—1 r—2

> XrdTr-d = Xre1T1+ > Xratr-d

d=1 d=1

r—1 r=2

Z Xr.d9r—-dTr-d+1 = Xr19r—1Zr + Z Xr.d+19r~d—1Tr—d

d=1 d=1
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the time derivative of &, is expressed by

2
& =B1(=&2+ buarza = x21%1) + Ba(—€3 + bua 23 — Y X3,4%3-2)
d=1
r—~1
+-0+ Broa (=& + bugrz — Z XrdTr-d) + buérl'r + bugrb’rn + fer
d=1
r-—-2
- X‘rAr—l-'rl — Xr1Tr—1Tr — Z(Xr,d + Xr,d+lgr—d—-l)xr—d
d=1
r—1
== Babas1 +budrb"n + fer
d=1
+ (=dix2,1 — Bax32 =+ = Br-1Xrr—1 — Xrr—1)T1
+ (—Baxs,1 ~ B3xa2 = -+ = Bro1Xrr—2 — Xrr—2 + buB192,r) T2

+ o+ (= Bro1Xr) = Xr1 + uBr-2Gr-1, )21
+ buBr1Grr Ty + budrrTr — Xr-19r-1%;
= (Xrr-191Z2 + Xrr-292Z3 + - - + Xr20r-2Tr—1)-
Further considering the structures of xr.1, xrx and xrr. finally we have

r—1

€ = =D Babarr + Xrry +bu3:b" 1 + fer. (6.8)
d=1
Thus we get the desired results. a

For the obtained virtual system (6.5), it is easy to confirm from assumption 5.2 that
a(y.£.t) is bounded for all ¢ and Lipschitz with respect to y and £ so that there exists a
positive constant Ly such that

la(y1,&1) — aly2,€2)1 < La(lyy — w2l + [1€; — &ll)- (6.9)
The uncertain vector function F(y, £, 7,t) can be valuated from assumption 5.1 by

with unknown positive constants p; and pp and a known function ¢(y) which has the
following property for any variables y; and ys
lo(y1 + y2)l < [é1(n1.w2)liw| + [B2(y2)] (6.11)

with a known smooth function @;(y;,y2) and a function @2(y2) which is bounded for all
bounded y; € R. Further since A is a stable matrix, there exists a positive symmetric
matrix F¢ for any positive matrix Q¢ such as

PAg+ A{ P = —Q¢. (6.12)
Moreover, the system (6.1) is exponential minimum-phase from assumption 5.5 so that

there exist a positive definite function W(n) and positive constants k; to x4 from converse
theorem of Lyapunov!62-86] such that

o g(0.m) < ~m A1

Kalln@I? < W(n) < ralln()|®

“"%‘7"_)‘1 < rallm(®)l

(6.13)

~1
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Figure 6.1: Augmented virtual system

Seeing f1, F and f, as disturbances, the nominal part of the virtual system (6.5) has
a relative degree 1 for the filtered signal uy, and exponential minimum-phase, i.e., the
virtual system is OFEP. Therefore the control objective can be attained by designing the
actual control input u to make the filtered signal u;, converge to a high gain adaptive
output feedback control input with robustness for disturbances. In chapter 5, we designed
such control system by applying backstepping procedure in the virtual filter, but the
structure of the controller becomes complex for a system with a higher order relative
degree.

In the following, we introduce a PFC in parallel to the virtual filter so that the
augmented virtual filter has a relative degree 1 and design a robust adaptive controller
through backstepping of only one step in the augmented virtual filter.

6.3.2 Augmented Virtual System

Consider a stable PFC with relative degree of 1 and minimum phase:

- 1

yf:_aflyf+a'j2??f+buu (6 14)
iy = Ay +bsys

where y; € R is the PFC output and n; € R™s~1 is the state variables of PFC. ay is any

positive constant and Ay is a stable matrix.

Suppose that the PFC (6.14) is designed such that the augmented virtual filter is
ASPR(Almost Strictly Positive Real), that is. the augmented virtual filter has a relative
degree 1 and is minimum-phase. Since the augmented virtual filter has a relative degree
1, there exists a nonsingular transformation [ua!,n{]T =dp [u}-, Y, n}']T such that the
augmented virtual filter can be rewritten as follows!®®:

3 S B
Lo, = Qa1ltgf + Qgoll, + bau

; 0 (6.15)
nu ZAana+ I: 1 :| uﬂf

where uq, = up + yy, ba = c}"bf and A, is the system matrix corresponding to the zero
dynamics of the augmented virtual filter. Since the augmented virtual filter is minimum-
phase, A, is a stable matrix.

The virtual system (6.5) with the augmented virtual filter output u, ; as the control
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input can be represented as follows:

¥ =a(y,& 1) + g1 (t)(ua, —y7) + [ily, & m.t)
€ = Au €+ ag(t)y + Be(t)n + F(y, €,m,t) (6.16)
1=q(y,n) + f,(v,€n.t).

The diagram is shown in Fig.6.1.

6.3.3 Adaptive Controller Design through One-step Backstepping

[Pre-step] Considering the output tracking error: v(t) = y(t) — y*(t), the augmented
virtual system (6.16) can be represented as the following error system:

v=av+y".8) + 91, (ua, —yp) + ilv +y",€.1) —
£=Ack+av+y ]+ B+ Flv+y",6.7) (6.17)
n=q(v+y.n)+ f(v+y".€n).

For this system, we design a virtual control input o; based on the robust adaptive high

gain feedback proposed in chapter 3 for the augmented virtual filter output Uq, in the
error systern {6.17) as follows:

ar(t) = —[k(t)v(t) + ur(t)] + Yolys) (6.18)
k(t) = kr(t) + kp(t) (6.19)
ki(t) =y DW)w(t)?, ki(0) = 0 (6.20)
kp(t) = 1ple1 (v, ") + g (v, y7) Ju(t)? (6.21)
ug(t) = yYrY1 (y)*v(t) (6.22)
Yo(ys) = D(ys)[—as, Yo = bau] (6.23)

where ~7,7, and g are arbitrary positive constants and D(z) is defined such that for
any given positive constant d:

Diz) = 0 for z €y (6.24)
1 for z€ 8y,

Qp ={z € R| 2| £ 6}

Qz, ={z € R||z|>d:}

Consider the following positive definite function Vi (v, &,n, k) for v € Q,,

1 , N c
Vi(v,€,n.k) = 50 + pokT P&+ mW(n) + rf—m[kl -k (6.25)
where p9 and ) are any positive constants, g/, = 4= and k* is an ideal feedback gain

for k1 to be determined later. The time derivative of Vi along the trajectories of (6.17)
and (6.20) yields that
Vi =v[a(u +y.€) - gig,[ku +ur+ Wl + g1-[te, — 01 —ys] + ALlv+y7) - yJ
* T
+ po€T (AL Pe + PeAg)€ + polaglv + y7] + Bem + F| Pe€
+ potT P [aelv + y*] + Ben + F]

W
—#la—[q (v+y™.n) + fp(v +y7.6.0)] + gmlkr — K*]? (6.26)
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By applying the same evaluations of step 1 in chapter 5, we have

~ gl k™ — vo]v? — [oAmin(Qe] — villI€II
— (p1kr — vl + g1 ren
~ 91,-lyr — Volv + Ry (6.27)

where w1 = uq, — a1 and

vo =Lg + (p1kaL1)? bt (L2 + 2poaea || Pell)?
4p1 4p3
(poBea |1 Pell)’
ps

vy =p3+pa+pst

vy =p1+p5 + p7+ o8
d%l + (doL2 + do1 + dl)z

4g0vR 4p;
+ [0l Pell (2doagar + prdaas + po)l?
4ps
. misa(doLy + dinthanar + don)]?
l 4p7
1 [(#0171”135”)4 (Mlhzdm) ]
6497, 1p 3 P '

[Step 1] Consider the error system, w;-system, between uq, and a. wi-system is given
from (6.15) that
&1 = Garlta, + Al7, + bou — & (6.28)

where the derivative of a; is given by

Doy doy _,
o3} =—[a(y &)+ i up + Ny &M+ 39 iJ
a 9oy (6.29)
+ b—k—le( V)t + a_‘ﬁ‘D(yf )—as ¥o + baul.

Taking (6.28) and (6.29) into consideration, the actual control input u is designed as
follows:

—é-icw)l + 60('11,(21] + ||77a||2)w1 -+ 61‘1’1(;)1]

ify, €Q
u= 2 = o (6.30)
b y, [Clw’l + Eo(uaf + [Mal*)wn + 1% 1]
-2 if yy € th

bgyf

where ¢ to €3 are any positive constants, ¥; is given with any positive constant /3 as

2 dary day 2 O ? 4 .
— (- gor gu 6.
o= (s uf o+ w‘)( y) +(3y*> +(3k:> Y (6.21)

and ¢; and ~; are positive constants such that

*)
as af, 2
“hos llagI*

> .
@ 263 e 46262



6.3.4 Boundedness and Convergence Analysis

For the designed control system, the following theorem concerning the boundedness of
all the signals in the control system and convergence of the tracking error is given.

Theorem 6.1. Under assumption 5.1 to 5.5 on the controlled system (6.1), all the signals
in the resulting closed-loop system with the controller (6.30) are bounded. Further, the
tracking error v converges to any given bound

lim |v| <4 (6.33)
t—oo

Proof. Consider the following positive and continuous function V'

12 +V,. veq,
V= 2% e VS S (6.34)
14 + Va) ve Qul
where
302, + 0%, + E%Akz yr € Ry, (€. 7,01) € Uy
V. = ;5§f +Vy+ —EIILAkZ Yy € Uy, (€,m.01) € Dy,
zy, PO, + ImART, yr €y, (E.mw1) € Qg
itV + & 9" Ak2 Yy € Q. , (€, m.01) € Ry
= no&" P& + W (n) + ;w%, Aky = ky — k*
and
Qo = {(€,m,w1) € RPNV, < 61}
Qy = {(&n,w1) € RV, > 67, )
with a positive constant dy,. The positive constant dy, is determined by
&, > R/a, (6.35)
where )
o | AminlQe = v e k1 — w2/ P ay
&, = min )\maz[Pg] ) P 2(c1 — po 9e )

for positive constants pg, ¢4y and pg that satisfy
Of\min[Qg] — U; >0, e —vp >0,

f1

L’.Z
1 — pg—5€—>0 1.' = + 2

el

and

”a‘lel (LZ(S )

o 2
R R1+ |(1a1| + [laa2 ” )+ 4es e1ly

1 4Ld 2 2
o L Aad) 01+9;3[+d%1+d%+'ﬁ)
461 ll ll

. [pollPell{llae|l(do + 8v) + pr(¢1my + $21) + po}]?
P6

 [mi{Li(do + &) + dig (190160 + Gann) + doy}]?

' 4p7
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where g}, = %’:—‘1, ®1ar and ¢ipgag are positive constants that satisfy ¢y (v. y")| < ¢1ar and
(1 (v, ¥*)| € Yigm for y such that |y <4, + do.

Further, in the function V, we consider an ideal feedback gain £* such that the
following inequality is satisfied

—(ghk" = vh)02 + Ry < =7, < 0 (6.36)
for

2 L2

vO =t 4p 4 f‘ 263 €1l1

_ 282 44
Ry =R+ —vaM
4p10

where 4, and pyg are any positive constants.

First. we consider the time derivative of V for v € Q.
(a — 1) For the case ys € Q- (6:1,w1) € Oy
Since V is expressed from (6.34) as

1
= 552 + 6% + Ak, + = 6 (6.37)

we have V = 0.
(a — 2) For the case y; € Qy; 5 (&,1m,w1) € Dy,
Since V is expressed from (6.34) as

1.

2 gm
V_—o + W+ 2 Ak,+,) o

(6.38)
the time derivative of V yields that
V=V, = potT (AL P + Pedu )6 + 208 Peagy + 208" PeBen

+ 2uo€ P F + #179;‘(0(;% 1)+ fy)

Sa Oay .,
+ Wi | Gay Uay + @7, + bau — T;(a(yﬁ) + diun + 1) - e } (6.39)

Considering (6.30) and the fact that |v| < 4, the time derivative of V" can be evaluated
by

V =V, < —(10Mmin[Q] ~ W))IIEN? — (11 — va)lImll* - cruf + R
< -a,V, + R (6.40)

Thus we have V < 0 from (6.35).
(a — 3) For the case ys € Qy;, - (En,w1) €0
Since V is expressed from (6.34) as

.1 - gr 1
V= 563 + 8 + ﬁAk? + §y§ (6.41)
the time derivative of V' can be evaluated by
V= yr(—apnys + a}; 15 + bau)

<~ /J lla sz” (6.42)
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therefore we have V < 0 from (6.32).
(a — 4) For the case yy € Qy,, (§,m,w1) € Qy;:
Since V is expressed from (6.34) as

1
= _52 +V, + Ak, +3 v (6.43)

the time derivative of V yields that
V =V, = no€ (AL P; + PcAy, )€ + 2u0€” Peagy + 2u0ET P¢Ben

oW
+ 2up€ P F + ﬂl"é;(Q(ya )+ fy,)

da aa e
+wy [aal Ua, + @l m, + bou - Ef(d(y, £) +giun + N1 3
601
(—ah‘I’o +bau) | +ys(—anys + afng + bau). (6.44)

Considering g—fl’,t =1 and (6.30), the time derivative of V can be evaluated by
V<-aV,—yyi+R (6.45)

Thus, we have V < 0 from (6.32) and (6.35).

Next we consider the time derivative of V for v € §,,.
(b — 1) For the case yy € Qy, , (€&,1,w1) € Ryt
Since V is expressed from (6.34) as

1 1
V= 5:/2 + &3, +2 o Ak; + -2- (6.46)

the time derivative of V yields that
V=v[a(v+y'.€) - g1 [kv + ur+ ¥o] + g1 w1 — yg] + filv +37) - ol
+ gmAk? + yi(—apnys + a};nf + bau). (6.47)
Considering (6.18) and (6.30), the time derivative of V can be evaluated by
V < —(glpk” — vp? — 7pyt + R (6.48)

therefore we have V < —v, from (6.32) and (6.36).
(b — 2) For the case yy € Qy, , (§,m.w1) € Qy;:
Since V is expressed from (6.34) as

V= éuz + Vo + %Ak? + %y} (6.49)
the time derivative of V' can be evaluated by
— (k™ = v0)1? = (0AminQe] — v1)IEN7 — (151 — v2)lIml* + g1 ;vwn
30y = Vol + e [y + 0y + bt = a0 €) + G + )

dy

Joy ., Oa O
= Lyp? — o= -an‘l’o+ba“)] +ys(=apyy + af,ny + bau) + Ry

(6.50)
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Further considering (6.30). the time derivative of V can be evaluated by
V < —(gik™ — vi)? = &V — 1p9% + R. (6.51)

Thus we have V < —=, from (6.35) and {6.36).

We can see from (a — 1) to (@ — 4) and (b — 1), (b — 2) that the PFC output yy is
bounded. Furthermore it follows from (6.14) that the PFC state 7, is bounded. As a
consequence, since the signal yy — ¥q is given by

d
—(ys = %o) = —ay, (ys — Vo) + af,ny (6.52)
dt

for y; € th, ys — Yo is also bounded. Thus there exists a positive constant Yoy, such
that

lys — Yol < Pourr (6.53)

for the both regions €, and Qy, . Here we consider the ideal feedback gain k™ again.
The ideal feedback gain is satisfied (6.36) and

—(ghnk”™ — v}4)62 + max(Rz, R3) < -1, <0 (6.54)
for
R3 =.ﬁ _du
4p2 49, TR

Lydy,
VvV H m‘f.n[Pf]

(b — 3) For the case y; € Q. (&,m.w1) € Qe
Since V is expressed from (6.34) as

o5 =Ladg + doy + dy + + \/—91\r5vl + g Youm

V= L/ + 6% + —Ak + ,)5;, (6.55)

the time derivative of V' yields that
V =vla(v - y".€) — gl [kv + up + o] + g1, [w1 - yy]
+ v +y7) — 7] + g AkpA. (6.56)
Here we have )
lell € —— .
B vV l‘O’\mzn{-P{]

from V, < 68;. the time derivative of V can be evaluated by

lwi| € V26y;,

V < —(ghk* — vp)v? + Rs. (6.57)

Thus we have V < —7, from (6.54).
(b - 4) For the case yy € Qy, , (§.1.w1) € Qo
Since V is expressed from (6.34) as

1
Vi=sr 4V, + g:{" AK? +

| =
o,

(6.58)

'CIO
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the time derivative of V can be evaluated by

= (gink™ — v0)v® — (BoAmin|@] — v])II€?

2
= (k1 = v2)lImll® = (e1 = po — —)wl +R+Ry
— (g k" — vo)v? — &V, + R + Ra. (6.59)
Therefore, we have V < —,, from (6.35) and (6. 54)
Finally, we have
V<o, if v €

. - (6.60)
VS_’7U<O- lfVEQVl

Thus the time derivative of V can be evaluated as V < 0 for all ¢, so we can conclude
that all the signals in the control system are bounded.

Next, we analyze the convergence of the tracking error v. Suppose that there exists
a time io such that v2 > 62 for all t > to. This implies that V > 142, V¢t > to. Since
V £ ~v5 <0 for (v.w) € Q; from (6.60), we have

t

V(O = Vieo) + [ Virddr <Vito) =t o) (6.61)
to
The inequality (6.61) contradicts the fact that V > %63, Vi > tg, because the right hand
side of (6.61) will eventually become negative f — oo. This means that the interval
(to,t1) in which (v,w) € Q, is finite. Let (f2.3) be a finite interval during (v,w) € Qg
and (t3.ts) be a finite interval during (v,w) € ;. Since V < 0 for (v,w) € Qp and
V < —~5 < 0 for (v,w) € Q1 from (6.60), it follows that for the interval (t,t3) during
(v,w) € O
V(tg) < V(tg) (6.62)

and that for the interval (t3,t4) during (v,w) € O

V(ts) < V(t3). (6.63)
Thus the positive function V decreases a finite amount time (v, w) leaves Qp and re-
enters into {2y in finite time and V' does not increase during that (v, w) € Q. Finally we
conclude that there exists a finite time T > 0 such that V' converges to a constant for all
t>T, ie, (v,w) € Q for all t > T. This fact gives that

lim || < 4,. (6.64)

t—oo

The control objective (6.2) is attained by setting the positive constant 4, as 8, = § after
all. g
6.4 Controller Design for Linear Systems

In this section, we design a robust adaptive controller for uncertain linear systems by
one-step backstepping.
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6.4.1 Problem Statement
Consider the following nth order SISO linear system:
r(t) = Az (i) + bu(t) + .t
() = A=() + bu(t) + 9(=.1) 6.55)
y(t) = ¢ z(t)

where £ = [z1,--- ,z,)7 € R is a state variable and u.y € R are an input and an
output, respectively. A € R**" is an unknown matrix. b.c € R™ are unknown vectors
and g(x,t) is an uncertain time-varying function.

Suppose that the controlled system (6.65) satisfy the following assumptions.

Assumption 6.1. The system (6.65) is minimum-phase.

Assumption 6.2. The system (6.63) has a relative degree r (r < n).
Assumption 6.3. The high frequency gain is positive, i.e., cT A7~1b > 0.
Assumption 6.4. The uncertain function g(z.t) is bounded for all x and t.

Since the system (6.65) has a relative degree r from assumption 6.2, there exists a
smooth nonsingular variable transformation &z = [z, n7]7 such that the system (6.65)
can be transformed to the form(8):

. 0
z=A.z+bu+ [ c7~]17+gcl

. 0
n=an+[1 ]a+gcz (6.66)
y=2z =[1,0,---,0]z
where
A = [ 0 I'y—IX‘y—I ]
-~ —ag PRrr— a’y_l !
bT =0.--- ,b.]. b. =cTA" b,
(‘I’Ig)T = [QZ;:QZ;] = [gcl,l, v Gelra9e2.1, ,gcz.n—r]

and c; € R"™" is a appropriate vector. From assumption 6.1. Q, is a stable matrix
because 17 = Q,n denotes the zero dynarics of system (6.65).

6.4.2 Controller Design through One-step Backstepping

Augmented Virtual System

We introduce r — lth order stable virtual filter (6.3) to the controlled system (6.66) as
well as the case of nonlinear system, then the following proposition is given.

Proposition 6.2. For the system (6.66) with a relative degree v < n, consider the fol-
lowing variable transformation using the filtered signal uy, given in (6.3):

i—1
&= —b'zuf{_1 +z; + ZC{jzi—j (6.67)
Jj=1
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where b, = gi and

Cek =ar—k — 0, 1<k<r—1)

r—1

Cer = G — Zﬁj—lcgj
i=1
6 = Bra

k
Ox = Br—i + z Br—k+jCej-

i=1

Then the system (6.66) can be expressed by the form:
y=—cay+& +bup + g

. 0 T
5 - Au,& + [1] cz n- C{y + g{ (6.68)

) 0
U=an+[1]y+gg

'(Uh‘ere y =2z = I, €T= [&2’.‘. ’5‘-’... ,5’_]’ cz; = [662".. ’CE].,... 7C£T]) g;r = [9621”‘ s
gfia"' agﬁr] and
i—-1
g¢i = Gel,i + Z Ceigeli—j-
j=1

(The proof is shown in Appendiz A.1.)

For the obtained virtual system (6.68) given from the variable transformation (6.67),
seeing the filtered signal uy;, as the control input for this virtual system, the virtual
system has a relative degree 1. Further, since the zero dynamics of the nominal part of
this virtual system (6.68) seeing gc1,1,9¢ and g., as disturbances is given by

als]-[elg]i] e

the zero dynamics of the nominal system is stable from the facts that @, and A,, are
stable matrices from assumption 6.1 and (6.3). Thus the nominal part of this virtual
system (6.68) is ASPR with the control input uy . Moreover the disturbances g1,1, 9,
and g, are bounded from the assumption 6.4.

Here we introduce the PFC (6.14) in the same manner of the nonlinear case. the
virtual system (6.68) can be represented by

¥ =ayy+ &+ b(us, - ys) + gar1

] (6.70)
e = Aime + iy + g,
where ng = [€7,77), bT = [—cg,O,v-- .01}, ay = —ce1. gg = [gg‘.‘gznz]. Since A, is
a stable matrix, there exists a symmetric positive definite matrix /7 for any positive
definite matrix @ such that

ATP + P4 =-Qu. (6.71)
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Further gci,1 and g,, can be evaluated by

19c1.1] € mo, [igyll < my (6.72)

with positive constants mo and my,, because g.1,1 and g,, are bounded from the assumption
6.4.

Adaptive Controller Design through One-step Backstepping

For the augmented virtual system (6.70), we design the actual control input u as follows:

(
_i [Cl"“’l + 50(”3, + [ 76|12 + 61‘I’1w1]
if y; € O
u=q B (6.73)
—b:’yj [Cl“"l + 50(“?1, + Inal?)wr + 51‘1/1011]
|~ 5clvrvr + eallnglPyy] - 5203 if y; € Qp
2 2
Q
% s llagll 674
Veg.€1.€2 > 0. ¢; > 5oy’ > 46255, ( )
8\ (9a\® (B \® ,
¥y = W5 — ) v >0 6.75
1 (11+u,1)(3y) +(8y* +HlZ5) v (6.75)
ar(t) = —k(t)v(t) + Tolyy). (6.76)
k(t) = vy D(v)v(t)?, Yy >0, k(0) >0 (6.77)
o = D(ys)[~ap Yo + bay] (6.78)

in the same manner of the nonlinear case. Then the following theorem concerning the
boundedness of all the signals in the control system and convergence of the tracking error
is given.

Theorem 6.2. Under the assumptions 6.1 to 6.4 on the controlled system (6.65), all the
signals in the resulting closed-loop system with the controller (6.73) are bounded. Further.
the tracking error v converges to any given bound & such that

lim |v| < 4. (6.79)

t—oc

(The proof is shown in Appendiz A.2.)

6.5 Numerical Simulations

6.5.1 Example 1: 5th Order Nonlinear System

Consider the same nonlinear system in tke section 5.5.1.
Since the nonlinear system has a relative degree 3, we introduce a second order virtnal
filter:

Lf = uf,

. (6.80)
g, = —biug, — Bauy, + byu

86



and the first order PFC:
Yy = —ayys + byu. (6.81)
For the nonlinear system with the virtual filter and the PFC, we design the control input
u as (6.30) with
W = Us, —Qy » :92: ¢1n=¢l =Y. Uzy—y"

In this simulation the reference signal is give as y*(¢) = sin 2t and controller parame-
ters are set as follows:

")/]=].OUO, 'sz'yR:'Yf:lO* €0 = €1 =€2=€3=10A c =1, 6]/:0-05’ l1=10
k1(0) =1, ¥o(0) =0, 1 =40, B2 =10, by =1, ay =1, by =0.1, §,, =35

Fig.6.2 to 6.5 show the simulation results. The proposed method gave us a good
tracking performance even the structure of the controller is simpler than the one given
in chapter 5.
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Figure 6.2: System output and reference signal: y, "
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Figure 6.3: Control input: u
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Adaptive gain: k

Figure 6.4: Output error: v

Figure 6.5: Adaptive feedback gain: &
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6.5.2 Example 2: One Link Robot Arm

Consider a model of the one link robot arm with a nonrigid actuator shaft!®®.
Qg1+ Figy + = (g2 — any_ T
N (6.82)
Jada + Fago + K(g2 — N) +mgdcosqgy =0

where q; and g2 denote the angular positions of the link and the shaft, respectively. Ji, J2
and F, F, represent inertia and viscous friction constants of the link and the shaft and
K is the elasticity constant of the spring which represents the elastic coupling with the
joint. N is the transmission gear ratio, T is the torque of the actuator and m,d are mass
and the position of the link’s center of gravity, respectively. Plant parameters in this
simulation are shown in table 6.1.

Table 6.1: Plant parameters
J1:25x107° J,:80x 1072  [Nms®/rad]
F:2.0x107* F:2x107* [Nms/rad)

K :1.0 x 10* [Nm/rad]
m: 1 [kg] d:2.5x%x 107! [m]
g:9.8 [m/s? N:0.1

Setting = = [g2,42,91,41), © = T as a control input and y = z; = ¢ as an output,
the system (6.82) can be expressed by

T = T2
T K:v Fzm : —K T _mgd coszT
2 =—=I1 — T2+ 3— 08 I
. Ja Ja JaN Ja (6.83)
T3 = T4
. K K F 1
T4 - —Ty+ S-u.

THNT T N T g 7

It is easy to know that this system has a relative degree 4. Here seeing —%;Ld COsS Ty as a
kind of disturbance, which is bounded for all  and ¢, we can apply the control scheme
given in 6.4 for designing a adaptive controller for the system (6.82).

torsional
spring

-

gearbox

Figure 6.6: One link robot arm with a nonrigid actuator shaft
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Since the system has a relative degree 4, we introduce third order virtual filter:
uf = uf
gy = ugy (6.84)
gy, = —Prug — Poug, — Baug, + buu
and first order PFC:

Yr = —asys +bsu. (6.85)
For the system with the virtual filter and the PFC, we design the control input u as
(6.73).
In this simulation, we gave the reference signal as
sin gt 0<t<4
yt)=41 4<t<10 (6.86)

1+02sin7(t—10) 10<t< 20
and set the controller parameters as follows:

Ir = 2500, Yr = 10, €) — €] — €3 — €3 = 20, C1 = 10, 5,, = 0.02, 5y! = 1, l1 =10
kr(0) =1, To(0) =0, B1 =50, B2 =25, f3 =50, by = 1, ay = 10, by = 0.05.

Fig.6.7 to 6.10 show the simulation results. The proposed controller with simple

structure gave us the desired tracking performance even the system has a relative degree
4.

6.6 Conclusion

In this chapter, we proposed a novel one-step backstepping design scheme for designing
a robust adaptive high gain output feedback controller for uncertain linear systems and
nonlinear systems. The proposed method can be applied to uncertain systems with a
higher order relative degree and the designed control system has a simple controller
structure because the controller is designed with only one step of backstepping. Further
the effectiveness of the proposed method was confirmed by the numerical simulations.
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Figure 6.8: Control input: u
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Summary

Adaptive control system based on high gain output feedback has a simple controller
structure and high robustness for disturbances and unmodelled dynamics. Further this
control system can be designed without the information about the upper bound of the
controlled system’s order. However, the application of the above adaptive control scheme
for practical systems is very restricted, because it can only be applied to OFEP nonlinear
systems and further most practical systems are not OFEP.

In this work, we proposed design methods for high gain adaptive control systems for
non-OFEP nonlinear systems. The following is a summmary of this work:

In chapter 2, we reviewed the definitions of OFEP and relative degree, and a basic
controller design method for high gain adaptive output feedback control of OFEP nonlin-
ear systems. Further, an alleviation method for OFEP restrictions, introducing a PFC,
was also presented.

In chapter 3, a controller design method for high gain adaptive output feedback
control system was proposed for non-OFEP nonlinear systems with a relative degree of 1
and non-Lipschitz nonlinearities. This control method can also be applied for nonlinear
systems with an unknown and unbounded coefficient in the control input term.

In chapter 4, a high gain adaptive state feedback control system was designed for
uncertain nonlinear systems with a higher order relative degree through backstepping
strategy. The uncertainties dealt with in this chapter were nonparametric nonlinearities
and the control input terms also have such nonparametric uncertainties. Thus we treated
a wider class of nonlinear systems. The effectiveness of the proposed control system was
confirmed through a numerical simulation of CSTR model, which is known as difficult to
control.

In chapter 5, a high gain adaptive output feedback control system was designed for
uncertain and time-varying nonlinear systems with non-Lipschitz nonlinearities and a
higher order relative degree by introducing a virtual filter and applying backstepping
strategy. Although the idea. introducing a virtual filter, has been proposed before. the
coefficients in the control input terms are unknown constant or known functions in pre-
vious methods. The controlled system considered in this chapter has unknown and time-
varying functions in the control input terms. Furthermore, since the proposed method
is expanded one from the methods of chapter 3 and 4, it can be applied for uncertain
nonlinear systems with non-Lipschitz nonlinearities and a higher order relative degree.

In chapter 6, we proposed a simple controller design method by introducing a PFC
in parallel with the virtual filter proposed in chapter 5. The controller design method
proposed in chapter 5 has a complex controller structure since the controller is designed
through backstepping strategy in the virtual filter. In this chapter we designed a high
gain adaptive output feedback control system by one-step backstepping, which is a new
controller design method and allows us to design a controller by backstepping of only one
step for controlled systems with a higher order relative degree.
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In this work, design methods for a robust adaptive control system based on high gain
feedback were proposed. None of the proposed methods require the information about
the order of controlled system. Furthermore, in each chapter the effectiveness of each
control methods were shown through several types of numerical simulations. To the best
of my knowledge, none of the alleviation methods other than the introduction of a PFC
have ever been proposed for OFEP conditions. The introduction of a PFC may cause a
bias error. On the other hand the proposed methods do not cause the bias error even in
a tracking control, so we believe that this work helps to expand the applicable class of
high gain adaptive output feedback controls to practical systems.
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Appendix A

The Proofs of the Proposition 6.2
and the Theorem 6.2.

A.1 The Proof of the Proposition 6.2.
Proof. Since it follows from (6.67) that
& = —b’_._'u.‘,'1 -z +caz

we have

g =—cay+ &+ bup + o (A.1)
Further for k = 2.--- ,7 — 1, & is expressed from (6.67) by

k-1
& = —blug_, + 2k + ) cezke
j=1
the time derivative of £ yields that
. k—1
€ = —blug, + 241 + Ger ke + D 05 (Zkogr1 + Gey kmg)-
i=1
Since we have
k
ke = —blug + 2k + Zcejzk—jﬂ
=1

from (6.67). the time derivative of £ is obtained by

k k-1
&k =(Eks1 — Z Cej2k—j+1) + Z CejZk—j+1 T ek
= &Ek+1 — CeklY + Gek- (A.2)
Finally as for &, since
r—1
&= —bluj_ 2+ cer;
j=1
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the time derivative of &, yields that

r—1 T
€ ==b2 (= Biug +byu) = Y aroizrins + btk €I+ Geur
i=1 i=1

r—1

+ Z cej(zr—j1 + gey,r—j)

j=1
r—1 r r—1

=b’z Z Biuyg, — Z Qr—iZr—i-1 + C;rn + Z Cejir—j+1 T Ger
i=1 i=1 j=1

Here since
Cek = Qr_f — O

the time derivative of &, is expressed by

r—1 r r—1
& =b,z Z .Biufx - Zar—izr—i+l + CZ:T’ + Z(ar—j - Gj)zr—j+1 + &
i=1 1=1

=1

r—1 r=1
=b’, Z Bius, — apz) + CZ’I) - Z 05zr—j+1 + Ger
i=1 j=1

and since we also have

up = (—fg + z9 4 65121)/17’:

a2

uyp, = (—53 + z3+ Z C{jl’g-j)/b;
i=1

r-1

uf,_y = (& + 2 — 3 _ cgiTr;) /b

=1

from (6.67). the time derivative &, can be represented by

2
& =Bi(=&+ 22+ cam) + Ba—E3 + 23 + chj%—j) +oee

i=1
r—1 r=1
+ Bra(—&r + 2r + Z CejTr—j) — apz1 + cTn+ger — z Oizr—j+1
Jj=1 j=1
r—1
== Bi&n +ein+ge
j=1
+ (—ag + Bicer + Bicgr + -+ - + Br-1Cer-1)21
+ (01 + Bacer + -+ + Bro1Cer—2) 22
r—-1
+ o4 (Bro2 + Br-1€a1)2r—1 + Br-12r — ZOer-jH
i=1
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Eventually, considering the facts that
O = Br-a

k
O = Broi + D BroksiCes

j=1
the time derivative of &, is given by
. r-1
& =—_ Bikjs1 — cgry+ LN + ger- (A3)
i=1
Thus we get the desired results. 0

A.2 The Proof of the Theorem 6.2.

Proof. Consider the following positive and continuous function V:

v {ﬁ& + Vo, VE Ry (A4)

1,2
2wV + Vo veQ,
where

%612,! + 6% + #Akz, Y5 € Ry, s (Mg, wn) € Dy

Vo 302, + Vot 2 AR, yp € Qyp (g, wr) €
L=
%y? + 6‘24 + ﬁAkz‘ yf e the (n{;wl) € Q’L‘u

397+ Vot 3 AR Yy € Qs (g, w1) € Oy

1
Vo = pong Ping + swi, Ak =k -k

Qo ={ne € R w1 € R| Vi <6%,}
O, ={ne€ R" w1 €R|V, > 8}

with a positive constant dy,. The positive constant 3y, is determined by
&, > R/a, (A.5)

where
2

ﬁ)

) o
_ . )\mm[Ql] UI/FG 2(61 ~ps— :
€3

Q. = min - y
Ama:::[PIJ

for positive constants po and p; that satisfy

2
a
“OAmin[Ql] - Ui >0, ¢ —p5— Q_f!_ >0
€3

'
v, =
! 11+ 46111
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and

7o (oydo +di+mo)? gl PP (doliball + ma)?

4p, b2 P4
il P1|é
+ (#0” 1““ 1” U) laa1|2+ ”a¢12“ )
P3 4
3(ay(do + 8,))° 2 2 || hapll” |2
16 I + b +di + 2es

Further we consider an ideal feedback gain k& such that the following inequality is satisfied
—(k" - v))82+ Ry < =7, <0 (A.6)
for

3a§ 1 1

4 Pt —_— — —
Yo = Yo + 4 46111 4(1_{1 + 263
952
Ry =R+
4ps

where v, is any positive constant.
Here we consider the time derivative of V' given in (A.4). First, we consider a case
where v € Q,,.
(a — 1) For the case (ng.w1) € Qug,yy € Uy, :
Since V is given from (A.4) by
1 1 1

Ve — 2 252 L oAL2 AT
2b26 2(5y!+ 25v‘.+ QWAA (A7)

we have ¥ = 0.
(a — 2) For the case (n;.w1) € Qy,,ys € nyo
Since the V' is expressed from (A.4) by

1 2 1 »)
V = 72 oéyf + Vi + EAk (A.8)
we have )
V=V,<-aV,+R. (A.9)

From (A.5), the time derivative of V' can be evaluated by V' < 0.
(a — 3) For the case (n¢,w1) € Qug.ys € Qy,
Since from (A.4) we have

1 5, 1 1
V=8t 58, + 5 AR (A.10)
the time derivative of V can be evaluated by
V< -y + lag | : (A.11)

4eo

Thus we have V < 0 from (6.74).
(a — 4) For the case (1, w1) € Qv yg €Qy
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Since we have

1 1
V=682 + sy} + Vi + —AOK A12
o, 6,, F¥r TV + Q’YIAk ( )
the time derivative of V can be evaluated by
V<-aV,- 'yfyfe +R<0. (A.13)

Thus we have V < 0 from (A.5).

Next. we consider the time derivative of V for v € £2,,.
(b — 1) For the case (ng.wi) € g, y5 € Oy

Since the V is expressed from (A.4) by

1 1 1 .,
we have e ?
y afz -
V<—(k"—- - + A.
< —( vo)u VY f yv + R,. (A.13)

Therefore, the time derivative of V can be evaluated by V' < —v, from (6.74) and (A.6).
(b—2) For (n¢,w) € Ry, y5 € Oy
Since we have 1 )
2 2
V= 5%, —2 ,)yf + Vo + —Ak (A.16)

from (A.4), the time derivative of V can be evaluated by
V< —(k* — vy - &V, — vsyt + R (A.17)

Thus we have V < —, from (A.5) and (A.6).

We can see from (a — 1) to (a — 4) and (b — 1), (b — 2) that the PFC output ys is
bounded. Furthermore it follows from (6.14) that the PFC state 7; is bounded. As a
consequence, since the signal yy — o is given by

d
S - Do) = —ay, (ys — Yo) +apny (A.18)
for yy € Qy, . y5 - ¥y is also bounded. Thus there exists a positive constant Woas such
that

lys — Yol < Youm (A.19)

for the both regions Qy, and €y, . Here we consider the ideal feedback gain k* again.
The ideal feedback gain is satisfied (A.6) and

— (k™ — vp)d; + max(Ry, Rs) < =7, <0 (A.20)
for
Ry = %
4m
: 0 di +m
oo =|a‘,l|d0 + Vo + \/_5\/,, + 5y! —-—l Y O‘I’QM
bz b, =V ler)\mzn[ 1] z

(b —3) For the case (ng,wl) € Quy.y5 € nyo:
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From (A.4) the function V is represented by

we have )
V < —(,k* — vy® + R3.

The time derivative of V can be evaluated as V < —v, from (A.20).

(b — 4) For the case (1;.w1) € Oy, yp € By -
Siuce the V is expressed by

1 5 1, 1 3

= — = Vy + —Ak°
|4 2b’zy +26y,¢+ ,,+2’n
we have ) _

V<—(k-vp))?-aV,+R+ Ry

Thus we have V < —, from considering (A.5) and (A.20).
From above analysis we have

V<o, for v € Q,

V§—7u<0, for v € Q,,

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

Thus it is easy to conclude that all the signals in the resulting closed-loop system are

bounded because we have V < 0 for V¢ > 0 from (A.25).

The poof of the convergence of the output error can be proved by the same way as

the nonlinear case in theorem 6.1.
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