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Abstract

An open set D of a reduced Stein space X is meromorphically &(X)- convex if and only
if D is the union of an increasing sequence (D.}o-=1 of open sets of X such that D. is

&x(D.)-convex for every v€ N.
1. Introduction

In this paper we prove that an open set D of a reduced Stein space X is meromorphically
J(X)-convex if and only if D is the union of an increasing sequence {D.}"-, of open sets of X
such that D. is €x(D.)-convex for every v€ N, where &x(D.) denotes the family of the
functions @ on D. of the form ¢=(f/g)lu, such that 7, g€ Z(X), g0 on any irreducible
component of X and g#0 on D. (see Theorem 4.1).

By the similar argument we also prove that an open set D of C" is rationally convex if and
only if D is the union of an increasing sequence {D.}5-, of open sets of C” such that each D.
is convex with respect to the rational functions which are holomorphic on D. (see Theorems 4.2
and 4.3).

2. Preliminaries

Throughout this paper all complex spaces are supposed to be reduced and second countable.
Let X be a complex space and D an open set of X. We denote by &@x(D) the family of the
functions ¢ on D of the form ¢=(f/g)|l» such that f, g€ Z(X), g#0 on any irreducible
component of X and g#0 on D, Since cvery strong Poincaré problem is solvable in C?, we
have that €c{(D)=.# (C")N & (D) for every open set D of C™.

Let X be a complex space and let .% C #(X). Then X is said to be wmeromorphically
Fconvex if for every compact set K of X the meromorphically convex hull K ~={x € X | f(x)
€ f(K) for every f€ %} of K with respect to .# is compact. An open set D of X is said to
be meromorphically .-convex if D is meromorphically .# |p-convex, that is, for every compact
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set K of D the set K,ND is compact. If X is a Stein space, then an open set D of X is
meromorphically ¢(X)-convex if and only if for every compact set K of D we have that Kx
CD, where Kx:=K, ) (see Theorem 12 of Abe [1]).

Let z), 2, ..., 2. be the coordinates of C". We denote by C[z,2,...,2«] and by C(z),2,...,2-)
the set of polynomial functions on C” and the set of rational functions on C” respectively. Let
K be a compact set of C*. The set Kcizzn.en is said to be the rationally convex hull of K,
which coincides with the set of the points x € C” such that if /€ C(z,2s,...,z.) is holomorphic
near K, then 7 is also holomorphic near x and |k(x)|<|| % |« (see Stolzenberg [11, p. 262] or
Lemma 2.4 of Gamelin [4, p. 69]). An open set D of C” is said to be rationally convex if D is
meromorphically C[z,2,...,z:]-convex. Since we have that Kciz\.zm.2n=Ke for every com-
pact set K of C”, an open set D) of C” is rationally convex if and only if D is meromorphically
Z(C")-convex (see Lemma 2 of Abe [1]). If an open set D of C" is &c{D)-convex, then D
is rationally convex in C". The converse however is not true if #=>2 (see Abe [2]).

Let 2 (D):= C(z,22,...2:) N &(D) for every open set D of C*. If an open set D of C*
is .# (D)-convex, then D is &c(D)-convex. The converse however is not true if z=2. Asan
example, let D:= C"\S, where S is an irreducible transcendental hypersurface of C". Then
D is @c{D)-convex and is not 2 (D)-convex.

Let X be a complex space. Let fu, gu€ &(X) and let g.#0 on any irreducible component
of X for #=1,2,..,m Let hy:=fu/gufor pu=1,2, .., m. Let Zi, Z,, ..., Zn be open sets of C.
Let G be an open set of X\ A, where 4 := {gig2*gn=0}. Let W :=GN{x<c X\A | hdx)<c Z,
for every p#=1, 2, .., m} and assume that W& (. Then the open set W is said to be a
meromorphic polyhedron of X. A meromorphic polyhedron W of C” is said to be a rational
polyhedron of C" if the functions £, £, ..., fu, &, g2, ... gn are chosen to he polynomial.

3. Lemmas

We use the notation in Sect. 2 for the meromorphic or rational polyhedron W in the following
lemmas. Let A:= {/¢ C] |£j<1}.

Lemma 3.1. If X is a Stein space or an irreducible complex space, then every mevomorphic
polyhedvon W of X is € x(W)-convex.

Proof. Let K be an arbitrary compact set of W. Assume that K 4w is not compact. Then
there exist a sequence {p.}5=1C K ccw) and po€ 3 such that lim.-=p.=po in G. There exists
an index g such that ¢ :=hu(po) € 0Z,,. Since fu,/Gue=hu.Fc on W, we have that fu,— CGu*
0 on W. We consider the case when X is Stein. Let {X.}ies be the set of irreducible compo-
nents of X. Let I":={ie Il fu,—cguo=00n X:}, I”:=I\I" and X" :=U;e;»X;. Then WCX".
Take a point &€ X\X" for every i€ I'. Since X"U{& | i€ I’} is an analytic set of a Stein
space X, there exists v € &(X) such that v=fu..—cgs, on X” and o(&:)=1 for every i€ [’



A note on the meromorphic & (X)-convexity 19

Then v#0 on any irreducible component of X. Let /:= gu./v on X. In the case when X is
an irreducible complex space, let / := gu./(fuo—cgu,) on X. In both cases we have that /€
(W) and that /=1/(hx,—c) on W. Therefore we have that lim.-«|{($.)]=+0c. On the
other hand |{(p.)I< Il /i ¢ for every ve N. It is a contradiction. It follows that Kaw is
compact. Thus we proved that W is &x(W)-convex. O

Lemma 3.2. Every rational polyhedron W of C" is B (W)-convex.

Proof. Applying the argument in the proof of Lemma 3.1 in the case when X is irreducible,
we obtain the assertion. O

Lemma 3.3. Let K be a compact set of C" and E an open set of C" such that KCECC" and
KoNOE=8. Then there exists a rational polyhedron W of C" with Zy=Zy=+-=Zn=A and f,
=fo=+-=fu=1 such that K.C WCE.

Proof. We use the method of the proof of Lemma 2' of Abe-Furushima [3] or of Lemma 5 of
Abe [1]. Take an arbitrary point p€ dE. Since p¢ K-, there exists «® € Cla,z2,...,2-) such
that #? (p) ¢ «®(K). Then there exist a» € C and &,>0 such that #(p) € {t € C 10<|t — a|
<gp) and ' K) C {te€C | |t —ap|>ep). Let g*:=(u"—ap)/ep, Up:={g"*0}, V,:={x¢
Us 1 1/ >1) and We:={x€ U, | [1/¢'?(x)|<1}. Then g*’ € Clzy,z2:....,2:), p€ Vo, KC W,
WoC Uy and VN W,=8. Since 8E is compact, there exist finitely many points pi, p2. ..., pm €
OF such that ECUZ Vp,. Let gu:=¢ for £=1,2, .., m. Let A:={qge-gn=0}, G:=E\A
and W:=GN{xe C"\AI|l/gx)|<1 for every =1, 2, ..., m}. It is easy to verify that W=G
(NI W, JEG. Then W is a rational polyhedron of C" and K.C WCE. 0

Lemma 3.4. Let X be a complex space. Let 7 be a subfamily of (X) such that if f€ 5
and ¢>0, then cf € F Let K be a compact set of X and E an open set of X such that KC
EC X and KLNOE=9. Then there exist finitely many h, ha, ..., hm€ % such that KC WE
E, where W =EN{x € X 1hax)|<1 for every u=1, 2, ..., m}.

Proof. Take an arbitrary point p€ dE. Since p ¥ K. there exists 2" € F such that |:*”(p)|
>|A®|«. Multiplying a positive constant we may assume that [E?(p)|>1>h*"|x. Then
Ve :={x € X ||h”(x)|>1} is an open neighborhood of p. Since dE is compact, there exist
finitely many points p1, pz, ..., pm € 8E such that dEC U= Vi,. Let hu:=4%" for every u=1,

'The proof of Lemma 2 of Abe-Furushima [3] contains an inadequate argument. For the corrected proof see
Lemma 10 of Abe [1].
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2, .., m. Let W:=EN{xec X ||hax)|<1 for every u=1, 2, .., m}. Then we have that KC
WCE. O

Lemma 3.5. Let W be a rational polyhedron of C" with Z\=Zy=+=Zn=A and let D be an
open set of C" such that WCDCC™\A. Then for every compact set K of W we have that
KaomCW.

Proof. Themap ¢ :=(,lee,....him,21,22,...,22) . C"\A— C™" is injective and regular. Since the
map (M, he,-hn): W—A™ is proper (see E.51f of Kaup-Kaup [5, p. 226]), the induced map
dwamen: WoA"XC" is also proper. It follows that ¢w.am.cr: W—-A"XC" is a closed
holomorphic embedding. Let K be an arbitrary compact set of . Take an arbitrary point
x € Kaw. Since |Ax)l < [hullx<1 for =1, 2, ..., m, we have that ¢(x)=(x). ha(),.... im(x),
x)€ A" X C". Assume that ¢(x)¢ ¢(W). Since ¢(W)U{¢(x)} is an analytic set of a Stein
manifold A™x C?, there exists @€ Z(A™X C") such that 2=0 on ¢( W) and a(¢(x))=1. There
exists a polynomial function 8 on C™*” such that |[a—8/<1/2 on ¢(KU{x}). Then |B=¢|<1/2
on K and |8(¢(x))|>1/2. Since B=¢ is a polynomial of ki, k2, ..., im. 21, 22. ..., 2n, there exist
1€ Clz, 2, .... 2.) and a monic monomial v of g1, @, .... gn such that Be¢=12fv on C"\A. Since
ufve # (D), we have that |8(¢(x))] < | B¢k <1/2. Itisa contradiction. It follows that ¢(x)
€ ¢(W). Since ¢ is injective, we have that x € W. Thus we proved that K.« oC W. O

Lemma 3.6. If an open set D of C" is # (D)-convex, then for every compact set K of D every

connected component of K oy intersects K.

Proof. Assume that there exists a connected component L of K s such that LNK=8.
Let & be the family of the subsets of K« which contain L and are simultaneously open

and closed in K 2. Since K 2w is compact, we have that L= se+S (see Narasimhan [6,
p. 234] or Remmert [9, p. 304]). Since K is a compact set of K . which does not intersect
L, there exist finitely many Sy, Sy, ..., Sv € % such that (N*%,S;)NK=0. Then L*:=N¥,S;

€ .% Theset L':=K +»\L" is also open and closed in K #w. We have that L'UL =K »
wn L'NL"=@ and KCL’. Since L' and L” are compact, we can take an open set £ of D such
that L'CECD\L”. Then K4 xNJE=0. By applying Lemma 3.4 for X=D and .= .2 (D),
there exist finitely many h, ke, ..., iin € % (D) such that KC WCE, where W :={x € E | |h.(x)|
<1 for every pu=1, 2, .., m}. Then W is a rational polyhedron of C”* with Zi=Zs=++-=Zn=

“If the polynomials f and g are chosen to be relatively prime, then the function f/g cannot be holomorphic in
any neighborhood of a point pe C" such that g(p)=0 (see Theorem 1.3.2 of Rudin [10]). Therefore we have
that 2 (D)={(f/9)!0]| f, g€ Cla1,2s,...,2:] and g0 on D} for every open set D of C".
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A such that AND=#2 By Lemma 3.5 we have that K 2 C W. It follows that K » o»CD\
L"” and therefore L”=#. Since ##LCL", it is a contradiction. (|

Lemma 3.7. If an open set D of C" is # (D)-convex, then every connected component of D is
also P (D)-convex.

Proof. Let C be a connected component of D. Let K be a compact set of C. Since D is
P(D)-convex, the set K 40 is compact. Assume that P:=£K . »\C+# and take a point xo
€ P. Let L be a connected component of K # ) containing xo. Since P is closed and open in
K+, we have that LCP. It follows that LN K=#. It contradicts Lemma 3.6. O

4. Results

We have the following characterization of a meromorphically ¢(X)-convex open set of a Stein
space X.
Theorem 4.1. Let X be a Stein space and D an open set of X. Then the following two
conditions are equivalent.
(1) D is meromorphically &(X)-convex.
(2) D is the union of an increasing sequence {D.}3=\ of open sets of X such thal D, is
@x(D.)-convex for every ve N,

Proof. (1) = (2). Take a sequence {K.}-) of compact sets of D such that U=, K.=D and
K.C K. for every v€ N. For every compact set K of D we have that KxC D (see Theorem
12 of Abe [1]). There exists a meromorphic polyhedron W of X such that KxC W €D (see
Corollary 6 of Abe [1]). Therefore by induction there exists a sequence { W.}>-: of meromor-
phic polyhedra of X such that K,U W._,C W, €D for every ve N, where W,:=08. Then we
have that US-, W=D and W, C W.4, for every v€ N. By Lemma 3.1 the open set W, is
@ x(W,)-convex for every ve N.

(2) = (1). There exists an increasing sequence {0).}3-, of open sets of X such that US-,D,=
D and D. is @x(Dy)-convex for every v€ N. Take an arbitrary compact set & of D. There
exists N € N such that KC Dy. Since Dv is meromorphically &(X)-convex (see Abe [2]), we
have that £xCDvCD (see Theorem 12 of Abe [1]). It follows that D is meromorphically
J(X)-convex. O

By the similar argument we also prove the following Theorem 4.2 which characterizes a

rationally convex open set of C".

Theorem 4.2. Let D be an open set of C"'. Then the following three conditions are equivalent.
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(1) D is rationally convex in C".

(2) D is the union of an increasing sequence {D.}o-\ of open sets of C" such that D. is
R (D.)-convex for every veN.

(3) D is the union of an increasing sequence {D.)o=1 of open sets of C" such that D. is
G A(D.)-convex for every veN.

Proof. (1) = (2). Take a sequence {K.}7-1 of compact sets of D such that US-1K.=D and
K.CK.. for every v€ N. For every compact set X of D we have that K-C D (see Theorem
12 of Abe [1]). By Lemma 3.3 there exists a rational polyhedron W such that KC W €D.
Therefore by induction there exists a sequence {¥.}7-, of rational polyhedra such that K.U
W, ..C W,CD for every v€ N, where Wy:=8. Then we have that U%, W.=D and W€ Wyn
for every v€ N. By Lemma 3.2 the open set W, is # ( W.)-convex for every ve N.

(2) = (3). Clear. O
(1) © (3). The assertion is by Theorem 4.1.

We also have the following Theorem 4.3 which characterizes a connected rationally convex

open set of C".

Theorem 4.3. Let D be a connected open sct of C". Then the following three conditions are

equivalent.

(1) D is rationally convex in C".

(2) D is the union of an increasing sequence (D,)3=1 of connected open sets of C" such
that D. is P (D.)-convex for every ve N.

(3) D is the union of an increasing sequence {D,}o=\ of connected open sets of C" such
that D. is &c{D.)-convex for every veN.

Proof. (1) = (2). Take a sequence {K.}S=i of connected compact sets of D such that U=, K.
=D and K.CK.., for every v€N. By the proof of Theorem 4.2 there exists a sequence
{W.}zo1 of rational polyhedra such that K.U W,.,C W, ©D for every v€N, where Wj:=4.
Let D. be the connected component of . containing K. for every v€ N. By Lemmas 3.2 and
3.7 the open set D, is 2 (W.)-convex and therefore .%? (D.)-convex. Replacing {D.}3- by a
subsequence we also have that D.C€ D.., for every v=1.

(2) = (3). Clear.

(3) = (1). The assertion is by Theorem 4.1.

In Oka [8] a domain D in C" is said to be rationnellement convexe (rationally convex) if D
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is . % (D)-convex or D can be approximated from the interior by domains D, which are
R (D.)-convex (see also Nishino [7, p. 99]). By the proof of Theorem 4= our definition of the

rational convexity for a connected open set of C” is equivalent to the one due to Oka [8].
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