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Conditions for the Steinness of a complex manifold

Makoto Abe*

, Abstract
In this paper we give conditions for the Steinness of a complex space or a complex
manifold X such that dim H! (X, &) < + oo,

0. Introduction

We may prove the following theorem using the method of J. E. Fornaess — R.
Narasimhan [7] and B. Jennane [9], [10].

Let X be a second countable reduced complex space of finite dimension. Then X is a
Stein space if the following two conditions are satisfied.

i) H! (X,7) = 0, where { is the structure sheaf of X.

11) There exists a holomorphic function f on X such that the set {x € X| f(x) =t}
is a Stein variety of X for everyt € C .

In case that X is an unramified domain over a Stein manifold, the above statement
remains valid even if we replace the condition i) by the weaker one that dim H! (X, )
< 4+ o0, More precisely we have the following result.

Let X be a second countable complex manifold. Then X is a Stein manifold if the
following three conditions are satisfied.

i) dim H! (X, #) < + oo, where ¢ is the structure sheaf of X.

i1) There exists a holomorphic function f on X such that the set {x € X| f(x)=1t}
is a Stein variety of X for every t € C .

iii) There exists a realization ® : X — S as a ramified domain over a Stein manifold
S such that the ramification locus of it is an empty set or a Stein variety of X.

In addition to the above two theorems we also give an improvement of a result in
the author and M. Furushima [2].

1. Unramified domains over a Stein manifold
Throughout this paper all complex spaces are supposed to be second countable. We

always denote by ¢ the structure sheaf of the complex space X considered in each

cases. A reduced closed complex subspace of a complex space X is called a variety of X.
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Let X and Z be complex spaces. Let @ : X — Z be a holomorphic map such that all
fibers of @ are discrete sets in X. Then @ : X — Z is called a ramified domain over
Z. The unique minimal variety V of X such that the map ®|(X —V) is locally
biholomorphic is called the ramification locus of ® : X = Z. If V=0, then ® : X—

Z is called an unramified domain over Z.

LEmMMA 1. Let X be a reduced complex space such that dim H! (X, 7) < + oo,
Let f be a holomorphic function on X such that the set Y ={x € X | f(x)=0}isa
Stein variety of X. Then for every holomorphic function g on Y there exist an integer
N and a holomorphic function G on X such that 1 < N < dim H! (X, /) + 1 and
Gly=g".

PROOF. Y has a Stein neighbourhood Us by the main theorem of Y. — T. Siu [11].
We may assume that g € 7 (Uo). Z= {Uo, U1} is an open covering of X , where
Uir=X-Y. g/f € §UoN Uy) =2' (% ¢&). Since the natural map H! (%, &)
— H! (X, J) is injective, dim H! (%, ¢) < dim H! (X, 7 ) <+oo. Let N be a minimal
integer such that {[(g/f)* 1}~ is linearly dependent in H! (U, #). Then 1 < N < dim
H! (X, ) + 1. There exist c1, ..., cyv1 € C, ho EF (Uo) and h1 € ¢ (U1 ) such that

N-1
S cp (g/f )Y+ (g/f)¥= h1—ho on UoN Ui= Uo —Y. We can define G € # (X) by
k=1

N-1
the equations G = 2 ¢, g*f"*+ g¥+hof¥on Uo and G = h1f" on Us. Then G = g"
k=1 .

on Y.

LEMMA 2. Let ®: X — S be an unramified domain over a Stein manifold S. Then X
is a Stein manifold if the following two conditions are satisfied.

1) dim HI(X, F) < + oo.

1) There exists a holomorphic function f on X such that the set {x € X| f(x)=t}
is a Stein variety of X for every t € C .

Proor. Without loss of generality we may assume that S is connected and of
dimension n. In the proof we use the method of the proof of Theorem 7 of the author
and Y. Abe [1]. Suppose that ®: X — S is not p,— convex in the sense of F.
Docquier and H. Grauert [6]. Then there exist H, P, ¢ and ¢ with following
properties. H = {(z1,...,2, ) EC"| |z;| <W(j=1, ..., n)}U {(z1, ..., 2z, ) EC" |
1-e<|z1|<1+ 6, |2z;I<1+€(j=2 .., )}, P={(z1,..,2,)EC"]
|z,~|< 1+¢ (j=1,..,n)},0< ¢ < 1. qo:f_l—n)?:XU 9 X is a continuous
map such that @ (H )C X. There exists b= (b1,..., b, ) such that | b1] <1 — €, Jg?én
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| b; |=1and ¢ (b) € 5X. Here 5X denotes the ideal boundary of & : X — S
defined in F. Docquier and H. Grauert [6]. ¢ : P—S is an injective holomorphic map
such that ®o (¢ |H)=¢|H. Let A : X— X', ®': X' S be an envelope of
holomorphy of @ : X—S . It holds that @ (Ao (¢ |H)) = ¢ |H. Since X' is a
Stein manifold, there exists a holomorphic map @’ : P> X" such that ¢ | H= 40 (¢
| H). @’ (b) is a boundary point of 4 (X ) in X’. There exists a holomorphic
function f’ on X' such that f'ocA=f. Putto= f'(@’'(b)). Take an irreducible
component A containing b of the variety {z € P | (f'0c@')(z)=t¢to} of P. By the
pseudoconvexity of P—A it holds that HMN A# § Let 7 : [0,1] = A such that 7
(0)E HM A and 7(1) =b. Since @' (7 (0)) € A(X) and @' (7 (1))=¢" (b) & 4 (X),
there exist a sequence (q,,);fl CX and a boundary point po of 4 (X) in X’ such that
lim 2(gy,)=po and 2(q,) €' (7 ([0, 1])). Since Y ={x EX|f(x) =to }is

Stein and (qu);’;,is a divergent sequence in Y, there exists a holomorphic function

g on Y which satisfies 11/1_1;20 | g (ay) | =+ c0. By Lemma 1 there exist an integer
N = 1 and a holomorphic function G on X such that G| Y=g". There exists a
holomorphic function G’ on X’ such that G’ 4 = G. It holds that | G'(Ppo)| = lim
lg (g,)|¥=+0o0. Itis a contradiction. Thus X is a Stein manifold by Satz llE)-)T)of
F. Docquier and H. Grauert [6].

CoroLLARY. Let X be an open set of C" such that dim H! (X, #)< + oo,  Suppose
that X M{z1=t}is Stein for every t ©C . Then X is a Stein manifold.

2. Complex spaces with a vanishing cohomology group

LEMMA 3. Lex X be a reduced complex space. Then X is holomorphically separable
if the following two conditions are satisfied.

1) dim H! (X,#7) <+oo.

i1) There exists a holomorphic function f on X such that the set {xE X | f(x) = ¢t}
is a Stein variety of X for every t € C ..

Proor. Let x, and x; be two distinct points in X. In cace that f (xo)= f (x1),
we put to=f (x9). Y={x € X | f (x) =t} is Stein and xo, x; € Y. There exists a
holomorphic function g on Y such that g (xo)= 0 and g (x;)= 1. By Lemma 1 there
exist an integer N == 1 and a holomorphic function G on X such that GlYy=¢g". G
(xo)= g (xo)¥ =0, G(x;)=g (x,)" = 1. It follows that X is holomorphically separable.

To prove Theorem 1 we use the following Lemmas 4 and 5 which is originally due

to J. E. Fornaess and R. Narasimhan [7].
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LemMa 4. Let X be a reduced complex space of finite dimension such that H! (X, #)
= 0. Let f be a holomorphic function on X such that theset Y;={x € X | f (%)=
t } is a Stein variety of X for every t € C. Then for every compact set K C X
there exist € > 0 and an open set U © X such that UM Y, is a Runge Stein open
set of Y, and KNY, CUNY, fort €C, |t |< e.

ProoF. See the proof of Lemma 2.4 of J. E. Fornaess and R. Narasimhan [7]

Instead of Lemma 2.2 of [7] we use Lemma 1.

LemMMA 5. Let X be a reduced complex space of finite dimension without isolated
points such that H! (X,Z)=0. Let f be a holomorphic function on X which is not
constant on any irreducible component of X and assume that the set Y; = {x € x| f
(x) =t } is a Stein variety of X for every t EC . Then for every compact set K C
X there exist € >0 and a compact set LC X, KC L, such that the following conditions
are satisfied: for t €C, | ¢ | < €, there exists M; > 0 such that for any 7 > 0 and
for any holomorphic function g on Y, there exists a holomorphic function G on X
which satisfies G| Y, =g and | G llx =M; Il g ll.ny, +7.

Proor. We can prove this lemma along the lines of the proof of Lemme 4 in B.

Jennane [9].

THEOREM 1. Let X be a reduced complex space of finite dimension. Then X is a Stein
space if the following two conditions are satisfied.

1) H' (X.,0)=0.

ii) There exists a holomorphic function f on X such that the set {xE X | f(x) =t}
is a Stein variety of X for every tEC .

Proor. In the proof we use the method of B. Jennane [10]. We first deal with the
case that f is not constant on any irreducible component of X . Since X is holomorphically
separable by Lemma 3, it suffices to prove that X is holomorphically convex. Let K
be an arbitrary compact set in X and s EC. Put Y, ={x € X | f (x)=¢ }for tEC.
Then there exist € > 0 and a compact set L C X such that the statement of Lemma 5
holds for f — s instead of f . Take pE Y, — (L N Y,),Aztfort eC, |t -s | < e.
There exists a holomorphic function g on Y; such that | g (p)| >1 and |l g lny, <
1/(2M¢). There exists G € (X) such that G | Y, = g | G k< M,ll g Iy +1/2 <1.
Since | G (p) | =1g (p) | >1, p & Ky . Therefore Kx N Y, C (LN Y,), for t EC,

|t —s| < e.By Lemma 4 there exists d (s)> 0 such that 0 (s)< e and e sL|J<6(s)
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(LN ¥);,C X. Then we have Kx N (x EX | | £ (0)=s [<8 ()= |, _Tese)
(I%xﬂ Y;)C X. There exists finitely many s1,-,sy € C such that {tEC]|]| ¢t |Z |
N A A
- f HK}CjLzl1 {(tEC||t—s;| <d(sj)}). Since Kx C{x EX||f (x)| W flix)}, Ky =

N A
U (KxN{x€X||f (x)-s;]| <0 (sj)})C X. It follows that X is holomorphically

j=1

convex.

We now deal with the general case. Let X ’'be the union of irreducible components
of X on which f is constant and X" be the union of those on which f is not constant.
Since every irreducible component of X" is a variety of the Stein space {x EX | f (x)=
¢ } for some ¢ € C, X' is a Stein variety of X. Let # and " be the defining ideals
of the varieties X "and X "respectively. We have the exact sequence 0 — ¢ L (715"
®J/g") >0/ (' +9"), where p is the homomorphim h z = (h z+F 'z, h z+§")
and 7 is the homomorphism (gz +#'z ,hz + ¥ z2) > gz—hz+(f z +§z). From
this we deduce the exact sequence of cohomology groups H! (X, ) — H! (X', Jx Y®H!
(X", 0x)— HU(X,0/(F+F")), where Ty =(J/F')| X'and Fx=(0/F") | X".
supp (F/( '+ #7))=X"NX"C X’. Since X'is Stein, HI(X’, x-)= 0 and H (X, d/

(F+F")N)=HU(X" (I/(F +§") | X')=0. H! (X,f)= 0. Therefore H (X", fx~) =
0. Then by what was shown above X ”"is Stein. It follows X =X'U X" is Stein.

Using Theorem 1 we obtain the following result which is an improvement of Theorem
8 of the author and M.Furushima [2].

THEOREM 2. Let X be a K—complete reduced complex space of finite dimension. Then
X is a Stein space if the following two conditions are satisfied.

i) dim H! (X,J) <+ oo,

ii) For every holomorphic function f on X which is not constant on any positive
dimensional irreducible component of X, the set {xE X | f(x)= 0} is a Stein variety
of X.

Proor. Without loss of generality we may assume that X has no isolated point.
Let F be the set of all holomorphic functions on X which are not constant on any
irreducible component of X . Since X is K—complete, F # @. Every fEF satisfies the
condition ii) of Theorem 1, so it suffices to prove that H! ( X,/Z) =0 using the method
of E. Ballico [5]. Let fE F . Since the set Y ={xE X | f (x)=0}is nowhere dense in X,
the multiplication by f defines the monomorphism m(f): — ¢. The exact sequence
0— 0”M) O—0/ff— 0 induces the exact sequence of cohomology groups H! (X,J)
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*
"YH (X,0) — H (X,J/ f(). Since the complex space (Y, (J/ff)| Y) is Stein

by a theorem of H. Grauert (Theorem 5 of [8], p. 154), H' (X ,d/ f0)= H (Y, (J/
fo )| Y)= 0. Therefore m(f)*is surjective. Since H!(X,#) is of finite dimension,
m(f)* is an isomorphism. Suppose that H! (X,f)# 0 and take £ EH! (X,d), £#£0.

N .
There exists (a;,...,ay ) ECY —{0} such that _21 ajm(f’)*(f): 0, where N= dim
N ) N .]: N )
H! (X.0) + 1. Since = a;f/EF, = a;m(F) (€)= m(Zlajf’)*(f)aéo. It is a
j= j=1 ] =

contradiction. It follows that H! (X,J)= 0.

Theorem 1 was obtained implicitly by B. Jennane [10] in the proof of his main
result. Using the method of E. Ballico [5] we reduced Theorem 2 to Theorem 1. But
in the category of K—complete reduced complex spaces the condition ii) in Theorem 2 is

stronger than the condition ii) in Theorem 2.

3. Remified domains over a Stein manifold

We give a condition for the Steinness of a complex manifold which includes Lemma

2 as a special case.

TueorReEM 3. Let X be a complex manifold. Then X is a Stein manifold if the
following three conditions are satisfied. '
i) dim H! (X,7)< + oo.
11) There exists a holomorphic function f on X such that the set {xEXl f(x) =t}
is a Stein variety of X for every t& C.
111) There exists a realization ®: X— S as a ramified domain over a Stein manifold

S such that the ramification locus of it is an empty set or a Stein variety of X.

Proor. Without loss of generality we may assume that X is connected. Let V be
the ramification locus of ®: X —S . V is a variety of X of pure codimension 1. Since
V is Stein, there exists a Stein open set U o which includes V by the main theorem of
Y.—T. Siu [11]. ={ Uo, U1} is an open covering of X, where Ui =X V. By Satz 1 of
F. Docquier and H. Grauert [6], Uo M Ui = Uo—V is a Stein manifold. From the Mayer
—Vietoris exact sequence --*— H! (X, )—=H! (U, )®H! (U1,J) = H (UsNU1,J) —

we have a surjection H! (X, J)—H! (U1,#). dim H (U1,7)< dim H (X ,7)< +
oo, @ | Ui: Uy — S is an unramified domain over S . The set Y ={(x€X | f (x) =
¢t } 1s a Stein variety of X forevery t EC. Y, NUi={xEUi| f x)=¢t } =Y, —
V. Y: M Us is a Stein neighbourhood of the boundary of an open set Y; M Ui in the
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reduced Stein space Y;. (Y, N Uo)N (Y, NU1) = Y; M (Us—V )is Stein. Therefore
Y: M Ui is a Stein open set of Y; by Theorem 4 of A. Andreotti and R. Narasimhan
[4]. Tt follows that Ui is Stein by Lemma 2. From the Mayer-Vietoris exact sequence
s H (LN ULO) = H (X,0) = H (Us,d) ®H' (U1,f) > we have that H’
(X,0)=0fori=2. Then H(X,#) =0 by the theorem of L. Alessandrini [3]

and Lemma 3. It follows that X is a Stein manifold by Theorem 1.
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