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Speech Visualization by Integrating Features for the
Hearing Impaired

Akira Watanabe, Shingo Tomishige, and Masahiro Nakatake

Abstract—This paper describes development of a new speech
visualization system that creates readable patterns by integrating
different speech features into a single picture. The system ex-
tracts the phonemic and prosodic features from speech signals
and converts them into a visual image using neither speech
segmentation nor speech recognition. We used four time-delay
neural networks (TDNN’s) to generate phonemic features in
the new system. Training of the TDNN’s using three selected
frames of eight kinds of acoustic parameters showed significant
improvement in the performance. The TDNN outputs control the
brightness of patterns used for consonants, that is, each of the
consonant-patterns is represented by a different white texture
whose brightness is weighted by the output of a corresponding
TDNN. All the weighted consonant-patterns are simply added
and then overlaid synchronously on colors due to the formant fre-
quencies. When this is done, phonemic sequences and boundaries
manifest themselves in the resulting visual patterns. In addition,
the color of a single vowel sandwiched between consonants looks
uniform. These visual phenomena are very useful for decoding
the complex speech code, which is generated by the continuous
movements of speech organs. We evaluated the visualized speech
in a preliminary test. When three students read the patterns of
75 words uttered by four males (300 items), the learning curves
showed a steep rise and the correct answer rate reached 96-99%.
The learning effect was durable: after five months of absence from
the system, a subject read 96.3% of the 300 tokens in a response
time which averaged only 1.3 s/word.

Index Terms—Feature extraction, reading test, speech visualiza-
tion.

I. INTRODUCTION

NFANTS grow up hearing environmental sounds including

speech. They learn talking by hearing and learn intensively
reading and writing after reaching school age. Since hearing
impaired children receive insufficient sound information, it is
often hard for them to talk fluently. Moreover, cumulative in-
sufficiency of sound information might cause delays in general
learning.

In this paper, we propose a new speech visualization that
is regarded as a kind of phonetic notation to be represented
together with prosodic features. Speech visualized by the
proposed method is one of the multipurpose media by which
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hearing-impaired children might develop their ability to under-
stand speech, to talk, to improve hearing and even to read text.

Studies of speech visualization will contribute not only to de-
veloping the practical aids for the hearing impaired, but also to
making clear the analogy and contrast between auditory and vi-
sual perception of speech. If the visualized speech, for example,
is readable intuitively and freely, it will suggest that visual de-
coding of speech will have been achieved independently of the
processing peculiar to hearing, like decoding coarticulation ef-
fects. One of the ultimate aims in this research is not to acquire
alphabetical notation from speech signals, but to create a visual
image which can be understood as easily as heard speech with
respect to segmental and suprasegmental information.

Historically, one of the epoch making systems for speech vi-
sualization was “visible speech” [1], which is presently used for
analysis of the sound spectrogram.

After that, “correlatogram” [2] using autocorrelation func-
tions, “intervalgram” [3] using zero-crossing rates and “wave
collation visual speech display” [4] using pitch-synchronous
methods were proposed. Some modified representations of the
sound spectrograms were also reported [5], [6].

The readability of speech spectrograms had been discussed
until about 1984. In particular, systematic experimental results,
in which a researcher (the expert reader named VZ) acquired
an excellent ability after he had spent between 2000-2500 h
reading spectrograms, had a strong impact on many speech re-
searchers [7]. According to the report [7], the reader was asked
to read spectrograms of 17 normal and six anomalous sentences
consisting of 5-8 words each, and 45 words that had been ut-
tered by two talkers. His reading ability was excellent despite
reading the almost unknown materials. However, it seems that
numbers of readers and talkers in the tests are too small to con-
firm generality of the results. In addition, as an important index
to intuitive representation, there is no report of the response time
that he spent for judgement.

On the other hand, eight subjects who were not expert but or-
dinary readers participated in the tests to read 50 monosyllabic
English words. After the subjects had learned how to read 50
specific words, which had been pronounced by a few speakers,
they tried to read 50 new words by another speaker. The cor-
rect answer rate for the new words, which they had never di-
rectly learned, was only 6% for words and 34% for phonemes
[8]. This result may have originated from both a shortage of
learning experience and the fact that the deformation of visual
patterns, which is a result of complex encoding based on coar-
ticulation, makes speech spectrograms hard to read as pointed
out by Liberman et al. [9].

1063-6676/00$10.00 © 2000 IEEE
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Fig. 1.

We consider that the former example, in contrast with the
latter case, shows special success in acquiring a scheme in the
human brain for extracting phonemic features from speech
spectrograms by means of extensive training. Ifthisis true, the
effective visual decoding of speech will be aided by technically
realizing a feature-extracting scheme compatible with the one
present within the auditory-neural processing of the human brain.

In general, normal hearing people unconsciously perceive
various sound features in speech due to their mother tongue,
such as distinctive features, prosodic features, phonemes etc.
As a proof of it, they can pronounce almost any speech of their
native language, and also understand or guess what speech
conveys by those features, for example, meaning, emotion,
voice quality, speaker’s personality etc. Therefore, if such
specific features of speech are skillfully integrated to form the
visual image similar to the hearing image, they will contribute
to the realization of the readable patterns of speech.

According to the above idea, we first developed the system
to visualize continuous speech by integrating pitch and formant
frequencies that were extracted in real time [10]. This system
has some merit that can not be expected from other systems.
For example, the color contrast is effective at restoring visually
the deformation of acoustic parameters which the coarticulation
effect causes, and as a result, it reduces the errors when reading
three connected vowels [10], [11]. After developing this system,
our effort for speech visualization has been directed toward re-
alizing a true interface between speech features and visual sense
in understanding speech.

From this point of view, the aim of this research was to com-
plete the speech visualization system to allow us to intuitively
read phoneme sequences of continuous speech after a compara-
tively short period of training. The proposed system and its per-
formance will be described in this paper.

II. SUMMARY OF THE PREVIOUS SYSTEMS [10], [12]

The speech visualization system, which we first developed
with analog hardware, was reported in 1985 [10]. In the system,
the formant frequencies that are extracted by inverse filtering,

Image synthesis unit

Concept and system for speech-feature visualization.

which we call the inverse-filter-control method [10], [13], are
converted into three primary color signals by the following
equations:

R:5F1/F3,G:3F3/5F‘2,B:F‘2/3F1. (l)
The circular ratios of the formant frequencies normalize the in-
fluence of vocal tract lengths on the formant frequencies, and
the coefficients, 5, 3/5, and 1/3, make a neutral vowel colorless
[10][14]. Thus, using (1), five Japanese vowels are represented
as five different colors independently of the different vocal tract
lengths due to the age and sex of the speakers.

The effect of the color representation in this system appears
on connected vowels. That is, the visual tests verified that color
contrast between adjacent vowels considerably compensated for
the deformation of formant frequencies by coarticulation effects
[10]. As results for reading three connected vowels, the correct
answer rates were much higher for the proposed color patterns
than for formant trajectories, which are similar to the dark lines
in “visible speech.” In these tests, two subjects tried to read three
connected vowels (all combinations of /V;V2V;/ syllables) ut-
tered by two adult males and an adult female after learning the
colors of the five isolated Japanese vowels by the same talkers.
When the learning and test cycles were repeated, the learning
curves for the subjects using color patterns were saturated at
a score of 98% after 2-3 cycles, whereas the correct response
rates corresponding to the formant trajectories barely reached
the point of saturation at 72% after 67 cycles [10]. This ef-
fect was also verified by the tests reading a group of synthetic
speech, which simulated three connected vowels. That is, the
subjects responded to the stimuli as if the hue of the central
(second) vowel had shifted in the direction of compensating for
the coarticulation effect, owing to the color contrast that the first
and third vowels had caused [11].

In 1988, we extended the system so as to represent conso-
nant patterns by overlaying the sound spectrogram based on
the Mel-band filter bank, on the color pattern [12]. After two
subjects had memorized the vocabulary, which consisted of 50
nouns and 40 adjectives, they learned the corresponding patterns
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uttered by a speaker using the extended system. When the other
speakers uttered the same words in the test, the correct answer
rate reached 85%. However, we felt intuitively that the sound
spectrogram patterns could not present clear images peculiar to
consonants. Provably, reading of the unknown words using this
system would have been difficult. Based on the above results,
we have searched for a new method to represent consonants and
have applied it to the new system, which has been simulated by
software of a personal computer. The new system does not op-
erate in real time yet, but there is still a practical case for using
the system for the hearing impaired as will be described in the
conclusion. On the other hand, we are developing the real time
system with digital signal processors (DSP) [15].

III. NEW SPEECH FEATURE VISUALIZATION SYSTEM

Fig. I shows the processing concept and the concrete system
for the new speech visualization, which has been proposed and
realized in this research. Although the new system is based on
the same concept as the previous ones [10], [12], the neural nets
and the image synthesis unit play the most important roles in the
new idea. An outline of the operation of the system is as follows:
The first three formant frequencies, which have been extracted
from speech signals frame by frame, are immediately converted
into three primary colors (RGB signals) using (1) in Section II.
The voiced-sound output from the neural net () in Fig. 1) con-
trols the magnitudes of the RGB signals with the consonantal
image generator so that only the voiced parts are represented
by colors. Pitch-frequency signals changing with time, which
represent intonation, are converted into a change of horizontal
length of the color pattern. FFT spectra with successive frames
turn into sound spectrogram that shapes a white pattern by in-
creasing the brightness. The phonemic features are extracted
from the neural nets (O, @, @, @) and generate the different
consonant patterns as white textures with the consonantal image
generator. The silence, which is extracted with the neural net
(@) likewise, controls black so as to lower the brightness. The
modified R, GG, and B in Fig. 1 include all of the above-men-
tioned information as will be described in the Section (V). Fi-
nally, the color coder generates the composite color video sig-
nals from the modified R, GG, and B. The memory systems [(1),
(2)] are necessary to display time-varying features as a spatial
pattern, which is easy to understand visually. The patterns flow
from the bottom to the top of the screen so that we can always
see patterns of continuous speech through a 2-s window. (The
old pattern goes upward out of the top of the screen and the new
one appears from the bottom, therefore, the time axis is directed
downward.) If necessary, it is possible to stop the pattern on the
screen. When several users want to use this system at the same
time, the outputs of the color coder should be radiated from an
antenna as weak electromagnetic waves. In this way, they can
observe the patterns on several conventional TV sets.

Let us describe the main parts of our idea more in detail next.
Vowels and semivowels are pronounced by a continuous change
of place of articulation, while consonants are uttered from dis-
crete places of articulation such as bilabial, alveolar, or velar
position. Such properties in speech production influence the
system components for extracting the acoustic and phonemic
features in Fig. 1.

First, the continuous change of place-of-articulation is char-
acterized by resonant (formant) frequencies in the vocal tract.
So, we have used the improved inverse-filter-control method
[17] for the formant extraction. Since describing the system in
detail is difficult in this paper, let us summarize it shortly. In
this method, many (16-32) inverse filters, each of which has
two complex conjugate zeros in the system function, are mu-
tually controlled by zero-crossing frequencies in their outputs.
After the quick convergence of the inverse filters, speech sig-
nals are separated into a group of approximate single-resonant
waves. Formant frequency is computed as the weighted mean
in the zero-crossing frequency distribution of the approximate
single-resonant wave. This principle is not directly dependent
on spectral shapes to be influenced by bandwidths and ampli-
tudes of the resonant components and moreover, doesn’t need
any criterion to minimize errors. As a result, the formant trajec-
tories in this method are continuous and stable in time.

Second, the method for extracting phonemic features that rep-
resent consonants, is one of the main problems to be solved for
this speech visualization. It is, in general, possible to indicate the
acoustic features of consonants regarding perceptual cues that
are determined by controlling synthetic speech, like F» locus in
the voiced plosives /b, d, g/ [16]. However, we often experience
that the consonantal features in real speech are analytically ob-
scure despite the perceptually clear image of the phonemes.

A hypothesis to explain the above facts is that some fea-
tures, each of which is too weak individually to characterize
the phoneme, support the heard perception of the phoneme by
helping one another. Accordingly, except a few consonants, we
don’t have unfortunately any excellent and explicable algorithm
for the consonant-feature extraction although we can understand
some perceptual cues and the models for generating consonants.
In this case, a neural network will be useful because it can learn
the relative differences between compound properties in various
consonants and separate one phonemic feature from the others.
We have four neural networks to extract the phonemic features
of consonants for the new system. The construction and func-
tion of the neural nets will be described in the next section.

Last, the sound spectrograms are overlaid on colors in voiced
parts so that those looks white for the increased brightness. We
expect, in this system, that sound spectrograms, which FFT
spectra make with a linear frequency scale, are effective to
get rough information about speakers rather than phonemes in
voiced sounds, because phonemes can be represented by the
features other than FFT spectra. When the speaker is a child
with high pitch, the spectrograms of voiced sounds represent
coarse and waving stripes of harmonic components and it im-
presses child’s voice intuitively. The represented spectrograms
of voiced sounds have been restricted below 2.5 kHz not to
disturb the color pattern of voiced parts though the unvoiced
parts have been represented in a full range.

IV. PHONEMIC FEATURE EXTRACTION USING NEURAL
NETWORKS

In general, phonemes are classified using three parameters
(distinctive features) for speech production, that is, a sound
source, manner-of-articulation and place-of-articulation. Since
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each parameter has discrete categories to classify phonemes,
neural networks with a supervisor will be available to the
extraction of phonemic features.

Thus, to specify the phonemic features presenting in speech
signals, we used four neural networks, which are three-layer
perceptrons with the following output categories.

1) Source and manner-of-articulation network (neural net
for sound source and manner-of-articulation).

This neural net is trained to classify the sound source of
input signals into any one of voiced, unvoiced and silence
as output categories.

The manner-of-articulation categories are defined as
vowel-like, nasal, buzz-bar, plosive, fricative and flapped
/rl).

Plosive network (neural net for detecting place-of-articu-
lation in plosives).

Bilabial (/p/ or /b/), alveolar (/t/ or /d/) and velar (/k/
or /g/) are necessary for the output categories.

Nasal network (neural net for detecting place-of-articula-
tion in nasals).

Bilabial (/m/), alveolar (/n/), velar (/ng/) and syllabic
nasal (/N/) constitute the output categories.

Fricative network (neural net for discriminating three
kinds of fricatives).

Unvoiced alveolar (/s/), voiced alveolar (/z/) and
glottal (/h/) are extracted by this neural net.

Fig. 2 shows the system construction with the neural nets
and the acoustic parameters as inputs. The parameters are of
eight kinds, which contain 42 acoustic features in all. Speech
waves have been sampled at 12 kHz and the acoustic features
for the neural net inputs have been extracted every single
frame. The frame length and the frame shift are 20 ms and

2)

4)

Neural networks for extracting phonemic features.

10 ms respectively. The outputs of the neural nets become
the inputs of the image synthesis unit, which consists of the
memory system (2) and the consonantal image generator shown
in Fig. 1.

The preliminary experiments to determine appropriate condi-
tions for the above neural nets showed a need for 30 units in the
hidden layer, and in addition, the method chosen to accelerate
convergence in the back-propagation method [18], was set the
momentum to 0.8 and the learning rate to 0.2.

In many experiments using time-delay neural networks
(TDNN’s) for speech processing, many successive frames
of a single parameter have been used as inputs [19], [20].
However, the use of different kinds of acoustic parameters,
which represent various attributes of speech, may be more
useful than a single one.

According to our previous experiments, eight kinds of
acoustic parameters, which consist of 42 features in all, were
effective in extracting the phonemic features by the perceptron
even if features of only isolated frames were used [21].

In this research, for the same eight kinds of parameters as
above, we have tried to get better results using three selected
frames, which are not necessarily successive. This means we
extend the perceptron into another type of TDNN.

The use of three frames requires 126 parallel inputs for each
perceptron. Next, we searched for three frames that provide a
high recognition rate for each neural net. We have estimated the
recognition rate by judging if the maximum-output category is
correct or not, when compared with the phonemic label due to
visual inspection of speech waves and spectrograms. The search
method we used to select the effective frames is as follows.

The training materials for the neural nets
are 62 /VCV/ syllables, which have been uttered by 20 males



458 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8. NO. 4, JULY 2000

Fig. 3.

Examples of selecting input frames from consonantal parts: The
standard frame (40) is randomly selected from the central part and combined
with the other frames (4+3, —3 etc.).

TABLE 1
COMBINATION OF INPUT FRAMES TO BE USED FOR THE NEURAI NETS
Name of neural network | Selected frames
Source and manner 0, +3, -3
Nasal 0, +5 -5
Plosive 0, +3, +5
Fricative 0, +3 -3

and 20 females. The test materials consist of the same syllables
as those for the training, but uttered by another ten males
and ten females.

First of all, a standard frame has been chosen randomly from
the central part, which means 50% of time length in the conso-
nantal part as shown in two examples of Fig. 3. Next, we have
decided pairs of frames that give the highest recognition rate,
through the training and test for selecting another frame com-
bined with the standard one. Finally, three frame combinations
have been decided likewise by adding a third frame to the pre-
viously fixed frames.

Since it is desirable that the selected frames are common to
four neural nets, we have selected four sets of three frames, as
common as possible. from several combinations that give the
recognition rate near the maximum.

The frame combinations obtained by the above approach are
shown in Table I. The standard frame “0” indicates a randomly
selected frame from the central part of each phoneme segment
as indicated in Fig. 3. The frame “+m” indicates a frame whose
distance from the standard is +m. In the source-and-manner net,
the nasal net and the fricative net, the additive frames have been
selected symmetrically, i.e., £m. This symmetry probably de-
pends on a quasistationary property of their features. In contrast,
the “0,” “4-3” and *“4-5” frames have been chosen for the plosive
network. It seems to indicate that the place-of-articulation infor-
mation in plosives is contained around the beginning of vowel
closely following the burst.

The results of the final tests using the selected frames are
shown in comparing with them of the isolated frames in Table II.
In nearly all cases, the recognition rates greatly increase by
adopting the features of three frames. This has been confirmed

TABLE 11
INCREASE OF THE RECOGNITION RATES WHEN USING THREE INPUT FRAMES

(a) Source and manner-of-articulation network

Male speakers Female speakers
Number _of _ frames
< Categories> 1 3 1 3
Vowel-like 86.1 (%) 92.1** (%) 83.3 (%) 87.9** (%)
Nasals 65.9 74.0* 61.6 65.9*
Buzz-bar 74.1 81.9* 69.7 76.4 *
Voiced plosives 714 90.7 *** 71.5 77.8*
Unvoiced plosives | 65.9 73.6* 69.1 84.6 ***
Voiced fricatives 86.4 91.3* 55.0 68.8 ***
Unvoiced fricatives | 89.5 92.1* 91.1 94.8*
Flapped /r/ 75.2 86.5 *** 65.7 80.0 ***
Silence 96.9 99.5 * 98.8 99.6 *
Mean 79.0 86.8 *** 74.0 81.7 ***
*Significant at the level p<0.05, **p<0.01, *** P<0.001

(b) Plosive network

Male speakers | Female speakers
Number of frames

<Categories> 1 3 1 3
Ipl, bl 84.4 (%) 87.1 (%) 83.8 (%) 90.5 * (%)
n, 1d/ 80.5 86.3 73.7 87.7*

Ik, Igl 90.4 93.4* 87.3 89.9
Mean 85.1 88.9* 81.6 89.4*

* Significant at the level p<0.05

(c) Nasal network

Male speakers Female speakers

Number of frames

<Categories> 1 3 1 3
/m/ 49.9 (%) 725* (%) 33.0 (%) 65.3 *** (%)
n/ 36.5 58.5 *** 45.4 60.6 ***
/ng/ 45.3 54.4* 44.7 53.8 **
N/ 64.1 94.2 ** 69.3 94.0 ***
Mean 48.9 69.9 *** 48.1 68.4 ***
*Significant at the level p<0.05, **p<0.01,  ***P<0.001
(d) Fricative network
Male speakers Female speakers
Number of frames
<Categories> 1 3 1 3
Isl 96.0 (%) 97.5 (%) 88.2 (%) 94.5** (%)
12 90.1 95.6 * 79.8 88.3 **
1 93.1 93.0 94.9 93.7
Mean 93.3 95.4 ** 87.6 92.17 **
*Significant at the level p<0.05, ** p<0.01

using a test of significance, i.e., A student’s t-test for differences
between two averages.

V. IMAGE SYNTHESIS TECHNIQUE FOR CONSONANTS

The image synthesis technique we used for the representation
of consonants is based on an essential idea for generating the
image naturally. Fig. 4 shows the processing flow for the image
synthesis unit of Fig. 1. First of all, we prepared textures peculiar
to each category of the manner-of-articulation as bitmap pat-
terns for a whole area of the screen. Those textures are necessary
to represent visually the auditory image of the manner-of-artic-
ulation. For example, we intuitively represented nasal sounds
by a mesh, plosives by horizontal bars, fricatives by random or
arranged small dots etc. The display position at which the vi-
sual pattern is put connects roughly the place-of-articulation in
a vocal tract. That is, bilabial, alveolar and velar consonants cor-
respond to right, middle and left positions on the screen respec-
tively. The pattern images (textures) and the display positions
are depicted as caricatures for every consonant in the middle of
Fig. 4.

Next, a set of neural-net outputs is read out from the memory
system (2) by the horizontal hold control signals of the color
coder, and they control the brightness of the visual patterns for
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one scanning line on the screen as follows. As described in the
previous section, a phoneme is specified by outputs from three
sets of parameters that represent sound source, manner- and
place-of-articulation. Therefore, a product of those outputs can
be used as a score for how much the phoneme appears. (Frica-
tives /s, z, h/ and flapped /r/ need the product of two outputs
only, as shown in Fig. 4.) Multiplying each score by the cor-
responding bitmap pattern determines the relative brightness of
the phonemic pattern. For example, as the score of consonant
/m/, the product of three outputs, voiced in “sound source,”
nasal in “‘manner” and bilabial in “place,” is computed (W'~ x
W3 x W34) and then it is multiplied by the bitmap pattern of
/m/. As a result, the brightness of visual pattern, /m/, is deter-
mined for one scanning line.

The brightness of each phonemic pattern, in this manner, is
computed individually. As an example, the brightness signals
before multiplying by the bitmap pattern, i.e., the excitation sig-
nals for the phonemic (bitmap) pattern, are shown together with
the formant and pitch frequency trajectories in Fig. 5.

After adding all the phonemic patterns weighted by the
brightness, the resultant signal is added to each of the three
primary color signals. Finally, those modified signals of three
primary colors are transmitted to the color coder, which gener-
ates the composite color video signal. When these operations
are repeated for all of the scanning lines of a whole screen, we

get a spatially changing visual image of speech signals lasting
up to 2 s.

This technique automatically depicts the phonemic sequence
with high brightness on the screen. Possibly two kinds of
phonemes with nearly equal brightness appear at the same time
in a word, but it is basically allowable, or rather natural because
we sometimes receive the ambiguous sound for a phoneme in
auditory perception too. The redundancy of context will lead
us to correct judgment in such cases. This is, we consider, one
of the advantages for the context-free visualized speech that is
different from alphabetic notation to be determined by speech
recognition.

The speech image flows from the bottom to the top on the
screen in real time if the contents of the memory systems (1)
and (2) are continually updated. In this way, we always see con-
tinuous speech through a 2-s window.

VI. DISPLAY EXAMPLES OF JAPANESE WORDS, COMPARISON
WITH SPEECH SPECTROGRAMS

In order to show intuitively what effective information the
system presents, four color pictures of the visualized speech
uttered by males are shown in comparison with spectrograms in
Figs. 6-9. The speech spectrograms were made using SPAWIN
Pro. (Version 1.0) developed by NTT-AT Co. Ltd. In the color
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Fig. 5. Examples of phonemic features to create a picture (Japanese word,
/itazura/).

pictures, the vertical axis represents time and the horizontal
length of the color pattern indicates pitch. The pitch changes
with time. i.e.. intonation appears clearly in all of the pictures.
The color image corresponds to vowel quality. The pattern
image (texture) and its position indicate what the consonant is,
as illustrated at the center of Fig. 4. The brightness difference
between colors doesn’t appear because of a luminance correc-
tion [10], so we see vivid colors over the whole of the screen
in Figs. 6-9.

The picture of Fig. 6 has been created from the data shown in
Fig. 5. As shown in Fig. 5, the adopted formant detector ex-
tracts formant frequencies even in very low level portions of
speech signals. On the other hand, the brightness of phonemes
(the excitation signals in Fig. 5), which has been determined by
the outputs of the neural nets, indicates the extent of appear-
ances of the vowel-like sound, each of the consonants and the
silence. According to the respective brightness, the transparent
pattern for the vowel-like, the white textures for the consonants
and the black for the silence are overlaid on the colors due to
formant frequencies. By this processing, the black in the clo-
sure period just before plosives and the other visual features are
represented manifestly as in the picture of Fig. 6. Thus, in the
adopted method, the system integrates the phonemic features
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naturally and doesn’t use any technique for segmentation and
recognition.

From the pictures in Figs. 6-9, we observe the following char-
acteristics. There is almost no perceptual error in the words
/itazura/ (“mischief” in English) and /subarashi:/ (“‘wonderful ).
On the other hand, /sekiraNuN/ (“cumulonimbus’) will be cor-
rected by redundancy of the meaningful word from the mean-
ingless word /sekiraNmuN/ as a phoneme sequence. Moreover,
we observe the overlapping representation of two kinds of pat-
terns, that is, /m/ itself and the buzz-bar in /m/ of /puroguramu/
(Japanese pronunciation of “program”). In this case also, the
buzz-bar will be neglected owing to the redundancy of the mean-
ingful word.

Comparing the four pictures created by our system, we find
slight differences among the colors of the same vowel in the dif-
ferent words. These differences are mainly due to the speaker’s
individuality and/or coarticulation effects in context. If we per-
ceive those colors as belonging to the same vowel category, then
we will be able to read correctly Japanese words. English vowels
have more than five categories. So, colors with slight differences
may be perceived as belonging to different categories.

When we see an F}-F» diagram of isolated vowels uttered
by many talkers, we notice the following characteristics. A
specific Japanese vowel shows relatively large dispersion [10],
[22], while the area of one specific vowel may be separated into
2-5 different English vowels, with relatively small dispersion
in each vowel [23]. (English vowel, /®/ rarely appear in isolated
Japanese vowels.) Therefore, we expect that learning of the
correspondence between auditory and visual images will foster
perceptual constancy of the visual image in different languages.

The strength of this representation is in that we can indicate
visually the clear phonemic sequences and boundaries. In ad-
dition, the color of the vowel sandwiched between consonant
patterns looks uniform and semivowels are characterized by a
change from an intermediate color to a target one. These man-
ifest representations enable us to easily read the phoneme se-
quences uttered by the different speakers.

In the case of speech spectrograms, it is often hard to cor-
rectly read phonemes apart from the context because the for-
mant movement plays an important role in the visual segmenta-
tion. It will be difficult in particular for ordinary readers to cor-
rectly read vowels and some consonants which are influenced
by the individual differences of speakers, unless relatively long
utterances are represented on a sheet of paper or a screen.

If we read both representations through a 100 ms short-term
window (slit), then it will be clear that the representation pro-
posed in this paper is far less dependent on the context and
the individual difference of utterances than the speech spectro-
grams are. The above differences between the proposed visual-
ization and the speech spectrograms will influence the intuitive
readability.

VII. PRELIMINARY TEST FOR READING WORDS USING THE
PROPOSED SYSTEM

The first test using the proposed system was carried out
to investigate readability of the realized representations and
durability of the learning effect. For this purpose, we used
household words uttered by adult males as speech materials for
the tests.
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A. Subjects

Three students with normal hearing took part in
reading tests as subjects. All of them were graduates
or undergraduates engaged in the study of speech information
processing. Although they understood roughly how to create
the visual patterns using the speech parameters before the

ta z ur a /

{b} Speech spectrogram

Display example of visualized speech in comparison with speech spectrogram [Japanese word, /itazura/ (“mischief”)].

reading tests, none of these students had extensive knowledge
of phonetics.
B. Method and Results

The subjects need training to understand intuitively the vis-
ualized speech. The training has been performed before the real
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Fig. 7.

tests to estimate the subjects’ reading ability. The training stage
consists of a learning stage and a confirming test. In the learning
stage, a pair of speech sound and its visual pattern has been pre-
sented at the same time, one by one. Next, in the confirming
test, the learning effect was confirmed by a simple test using a
subset of the visual patterns only. The speech materials prepared

Display example of visualized speech in comparison with speech spectrogram [Japanese word /puroguramu/ (“program’)].

for the learning stage consist of 62 /VCV/ syllables, 101 mono-
syllables (CV) and 50 meaningless words. /VCV/ and /CV/ syl-
lables pronounced by a male have been processed to make all of
the patterns errorless for efficient training. That is, when unclear
consonants were found in the syllables, we replaced the conso-
nant parts by the artificial patterns, which were correctand clear,
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leaving the vowels unchanged. The meaningless words, which
have been uttered by two males, are almost phonetically bal-
anced and each of them is constructed with 2—4 syllables. From
the 50 meaningless words, 25 words have been extracted ran-
domly every one learning stage and used each time, but, /VCV/
and /CV/ syllables have been presented at the first several times

Display example of visualized speech in comparison with speech spectrogram [Japanese word /subarasi:/ (“wonderful”)].

only, and after that, according to the subject’s request. In the
confirming test, we prepared 75 meaningful words uttered by
the same talkers; 25 meaningful words of them were used first
as a list. After the correct response rate to be obtained by the
confirming test had reached a sufficiently high score (more than
90%), 25 new meaningful words were appended to the list and
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Fig. 9. Display example of visualized speech in comparison with speech spectrogram [Japanese word /sekiraNuN/, (“cumulonimbus”)].

the training continued likewise. Finally, when the confirming  Once the real test had begun, the training was never done again.
test using 75 meaningful words by appending the new other  All the patterns were displayed in stop motion in the center of
words showed good results, the training session was closed and  the screen. In the tests, the subjects were required to push a
the real test session started. The number of the trials neces- button immediately once they had the answer. The visual pat-
sary to reach the point of saturation in the correct response rate  tern then disappeared and the subjects answered orally toward
was at most 8-10 times in any of the three confirming tests. the recording system. The time interval between the instants
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Fig. 10. Learning curves in preliminary test (reading test for 300 tokens, which consist of 75 words uttered by four males).

of the pattern presentation and pushing the button gives the re-
sponse time. During all the tests including both confirming and
real tests, the subjects were not told correct answers. However,
they will have guessed the vocabulary based on their own an-
swers by repetition of the test. This means that the test itself
causes the subjects effects equal to learning.

In the real test sessions, four male talkers uttered 75 new
meaningful words, which had never been presented in the con-
firming tests. These Japanese words consist of 15 two-syllable
words (/inu/. /ushi/, /kaze/ etc.), 30 three-syllable words (/kit-
sune/, /hagaki/, /baiku/ etc.) and 30 four-syllable words (/shi-
mauma/, /koueN/, /keshigomu/ etc.). Since the talkers tried to
pronounce naturally, partial deformations like devocalization of
vowels (/sh(i)mauma/, /kesh(i)gomu/ etc.) were also contained
in those words. All of the words (300 items) were randomized
and used for every trial. After the subject had answered a pattern
in the test, the experimenter presented the next word by manual
operation of the computer. Therefore, though the time necessary
for one trial of the real test was very long (about 2.5 full hours)
at first, it was drastically getting shorter as the test proceeded.
At the final trial, the test ended within 15-20 min. In the case
of a trial lasting beyond 30 min, we divided the trial into units
of about 30 min, for example, by repeating 30 min of test and
15 min of rest. The real tests were carried out as three sessions
shown in Fig. 10. The period per session was 30—40 days and
about five months of rest were put between the sessions. To ex-
amine durability of learning, we didn’t at all carry out retraining
before or during the last two sessions.

As shown in the results of Fig. 10, the learning curves of three
subjects in the first session almost overlap and show a steep rise.
Moreover, their correct answer rates reach 96-99% after eight
trials. The subject ST maintains his reading ability consider-
ably in the succeeding sessions despite inactive periods of five
months. Finally, his reading ability attains an understanding of
96.3% of 300 tokens and a response time of 1.3 s per word after
the reading experience of about 40 full hours in all including
the training and tests. As the response time includes the time

necessary to push a button, it shows that he can read the visual
patterns almost instantly.

VIII. CONCLUSION

We have completed a speech visualization system based on
the new application of extracting the consonantal features using
neural networks (TDNN’s). In the proposed system, four kinds
different neural nets determine the strengths of the features for
sound source, manner- and place-of-articulation. For high per-
formance, we selected three input frames of the acoustic pa-
rameters. The effect of using three input frames, which are not
immediately adjacent, was statistically significant in nearly all
cases, when compared with using just one isolated frame.

Next, we have developed a technique for creating visual im-
ages by simply adding all the consonantal patterns whose bright-
ness is controlled by the strength of the extracted phonemic
features. Some examples of the visualized speech indicate that
the visual images of consonants make the phonemic sequences
and boundaries clear, and that the color of a single vowel sand-
wiched between consonants looks uniform. These representa-
tions, which need neither segmentation nor recognition, are ef-
fective for the readers to understand speech intuitively.

Finally, we have evaluated the performance of the new system
in a preliminary test in which three students read the visual
patterns of 75 words uttered by four males (300 items). The
learning curves showed a steep rise and attained 96-99% after
eight trials. The response time was getting much shorter as the
test proceeded and reached 1.3 s/word at the final trial. The
learning effect was durable despite long rests.

According to visual inspection and reading tests of the pic-
tures, the effect of the proposed representation on visual per-
ception of speech is to give us a visual image which can be un-
derstood as easily as heard speech. So, we have a hypothesis
that the signal processing and the parameter integration used in
this research possibly exist in some equivalent form in auditory
nervous system. Anyhow, since integrating or adding simply
the phonemic features converts speech signals into recognizable
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segments, we conclude that the process of phonemic feature ex-
traction and image synthesis essentially makes visual decoding
of speech possible. In other words, we believe that it will be
difficult to acquire the visual decoding of speech by the uninte-
grated representation of acoustic features only.

The proposed system will be useful for new applications as
well as for conventional ones such as speech training and speech
transmission. For example, we notice that CD-ROM’s, in which
speech sounds and those pictures are recorded, will be useful for
personal auditory training using a conventional PC and a hearing
aid [24], [25]. Specifically, this system will be used to enable
hearing-impaired persons to clearly perceive the subtle cues of
speech sounds, which are provided by a hearing aid or a cochlea
implant system, for example.

The success of visual decoding also seems to be related to
the fact that these phonemic features are very effective for the
speaker-independent word recognition, in which the processing
algorithm for compensating coarticulation effects is not espe-
cially considered [26], [27].
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