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Abstract

In 2015, gravitational waves (GWs) were detected for the first time by the US laser interferometer
LIGO. The source of these GWs are black hole (BH) binaries of stellar mass which radiate GWs with
frequency of 100 Hz-10 kHz. On the other hand, there are Supermassive BHs (SMBHs) in the universe
with masses more than one billion times the mass of the Sun. A SMBH binary is thought to radiate
low-frequency GWs in the nHz-uHz range, which does not correspond to the frequency range observed
by laser interferometers such as LIGO. BHs of stellar mass magnitude are known to be formed by stellar
supernova explosions, but the formation process of SMBHs is still a mystery. Therefore, the detection of
gravitational waves emitted from them is expected to provide information on the evolution of SMBHs.
One method for detecting these low-frequency gravitational waves is the Pulsar Timing Array (PTA). PTA
aims to detect gravitational waves by using celestial objects called pulsars as clocks. Pulsars are objects
that are observed as periodic pulses, and pulses can be observed with a stable period. Millisecond pulsars
with millisecond-scale pulse periods are particularly stable, and the arrival time of these pulses can be
accurately predicted. However, it has been observed that pulse arrival times deviate from predictions due
to mechanisms other than gravitational waves, and clarification of such deviations and understanding of
the mechanisms that emit the pulses will be important for future gravitational wave detection. In this
paper, we describe a radio observation study of pulsars aimed at understanding the noise in pulse arrival
times for the coming era of low-frequency gravitational wave astronomy.

In Chapter 2, we describe a method to constraint on ultra-low frequency GWs from an eccentric
SMBH binary. Millisecond pulsars with highly stable periods can be considered as very precise clocks
and can be used for PTAs, which attempt to detect nanohertz GWs directly. The main sources of
nanohertz GWs are SMBH binaries with sub-parsec-scale orbits. On the other hand, an SMBH binary in
an earlier phase with a parsec-scale orbit emits ultra-low-frequency (< nHz) GWs and cannot be detected
with the conventional PTA methodology. Such binaries tend to attain high eccentricity, possibly ~0.9.
In this chapter, we develop a formalism for extending the constraints on GW amplitudes from single
sources obtained by PTAs toward ultra-low frequencies considering the waveform expected from an ec-
centric SMBH binary. GWs from eccentric binaries are contributed from higher harmonics and therefore
have a different waveform to those from circular binaries. Furthermore, we apply our formalism to sev-
eral hypothetical SMBH binaries at the centre of nearby galaxies, including M87, using the constraints
from NANOGrav’s 11-yr data set. For a hypothetical SMBH binary at the centre of M87, the typical
upper limit on the mass ratio is 0.16 for an eccentricity of 0.9 and a semimajor axis of @ = 1 pc, assuming
the binary phase to be the pericentre.

In chapter 3, we describe pulse jitter measurements of PSR J0437—4715 with the upgraded Giant
Metrewave Radio Telescope (uGMRT). High-precision pulsar timing observations are limited in their
accuracy by the jitter noise that appears in the arrival time of pulses. Therefore, it is important to sys-
tematically characterise the amplitude of the jitter noise and its variation with frequency. In this paper,
we provide jitter measurements from low-frequency wideband observations of PSR J0437—4715 using
data obtained as part of the Indian Pulsar Timing Array experiment. We were able to detect jitter in both
the 300 - 500 MHz and 1260 - 1460 MHz observations of the uGMRT. The former is the first jitter mea-
surement for this pulsar below 700 MHz, and the latter is in good agreement with results from previous
studies. In addition, at 300 - 500 MHz, we investigated the frequency dependence of the jitter by calcu-
lating the jitter for each sub-banded arrival time of pulses. We found that the jitter amplitude increases
with frequency. This trend is opposite as compared to previous studies, indicating that there is a turnover
at intermediate frequencies. It will be possible to investigate this in more detail with uGMRT observa-

tions at 550 - 750 MHz and future high sensitive wideband observations from next generation telescopes,
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such as the Square Kilometre Array. We also explored the effect of jitter on the high precision dispersion
measure (DM) measurements derived from short duration observations. We find that even though the
DM precision will be better at lower frequencies due to the smaller amplitude of jitter noise, it will limit
the DM precision for high signal-to-noise observations, which are of short durations. This limitation can
be overcome by integrating for a long enough duration optimised for a given pulsar.

In chapter 4, we describe spectropolarimetric observation of the bright radio emissions from PSR
J1107-5907. Using single pulse and folded observations of PSR J1107—5907 with the Parkes (Mur-
riyang) radio telescope, we provide a wide-bandwidth (704—4032 MHz) analysis of the pulsar in its bright
state. We compare the folded pulse profiles with previous narrower-band observations and present phase-
resolved measurements of the spectral index, polarisation properties, and rotation measure. We analyse
500- individual pulses. These pulses provide a wealth of information including modulation indices, po-
larisation properties, spectral index distribution, wide-band pulse shape evolution, etc. We compare the
properties of those pulses to the emission from magnetars and, in particular, explore the implications of

orthogonal emission modes detected in the single pulse data stream.
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Figure 1: A schematic view of pulsar observation.

1 Introduction

1.1 Gravitational Waves

In Einstein’s general theory of relativity, time and space are treated as a unified four-dimensional space-time,
and the gravitational field is interpreted as a distortion of space-time. The equation of the gravitational field

is described by the Einstein equation

G/.N = R,uv - %Rgpv = SZ?TGT;N, (1
where, G,y is Einstein tensor, R,yis Ricci tensor R = Rﬁ is Ricci scalar g,y is the metric of the spacetime,
and T,y is the energy-momentum tensor. The Einstein tensor on the left hand side represents the spacetime
distortion, and the energy-momentum tensor on the right side represents the matter distribution. This means
that where an object is located, there is a distortion of space-time and a gravitational field, and if the object
moves, the distortion of space-time will fluctuate. This distortion propagates as waves and therefore is called
gravitational waves (GWs). GWs are generated by the motion of objects, but their amplitude is so small that
they are impossible to detect, and they are considered to exist only theoretically.

A turning point came in 1974. A binary pulsar was discovered by Russel Hulse and Joseph Taylor (Hulse and
Taylor, 1975). Pulsars are objects that are observed as periodic pulses (see Figure 1), and the change in their
orbits can be measured by continuously measuring the arrival time of pulses. In such a highly relativistic
system, orbital changes due to GWs can be measured. The changes in their orbital periods were consistent
with the changes predicted by general relativity (see Figure 2). This indirectly proved the existence of GWs,
and efforts toward the direct detection of GWs began in earnest.

In September 2015, the direct detection of GWs was finally accomplished by Laser-interferometric GWs
detector, LIGO (Abbott et al., 2016). The GWs was radiated by the merging of black hole (BH) binary. This
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Figure 2: Orbital decay of PSR B1913+16. Black points indicate observed decay (Weisberg and Taylor, 2005), and the
solid line shows theoretical prediction.

confirmed the existence of GWs and opened the door to GW astronomy. Because the waveform of the GW
represents the orbit of the BH binary, we can ”see” the merging of BH binary in detail, which cannot be
observed with light.

The target of LIGO are GWs of about 1 Hz to 10 kHz, which are emitted from a stellar mass BH binary.
On the other hand, BHs of various masses exist in our universe. In particular, Supermassive Blackholes
(SMBHs), which exist at the centers of a galaxy, typically have masses of about 10% — 10° solar masses.
SMBHs are thought to grow by forming binary and merging in the process of reaching that mass. However,
the merging process is thought to take longer than the age of the universe, which cannot explain the mass of
the SMBHs that exist today. Therefore, direct observation of GWs from SMBH binaries to investigate how
their orbits are contracting is also important for studying the evolution of SMBH binary. However, GWs
from SMBH binaries are thought to be at nHz - uHz, which cannot be detected by laser interferometers such

as LIGO. Therefore, it is necessary to observe such GWs with a different observation method.

1.2 Pulsar Timing Array

Pulsar Timing Array (PTA) is a method expected for detecting GWs in the nHz - yHz range within a few
years (Foster and Backer, 1990a). PTA aims to detect GWs by observing pulsars with very stable period.
Millisecond pulsars (MSPs), which emit pulses with a millisecond period, are particularly stable, and their
typical variation rate of period is about 10729 (see Figure 4). PTA aims to detect gravitational waves by using

the arrival time of millisecond pulsar pulses as a clock. PTA detects GWs by observing MSPs once every
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Figure 3: Schematic view of an SMBH binary evolution. (Burke-Spolaor et al., 2019)

few weeks for a decade or more long term. The reciprocal of the cadence of these observations and the total
observation period corresponds to the observable frequency of GWs, which is nHz - yuHz range.

The following PTA groups are currently operating around the world:
* North American Nanohertz Observatory for Gravitational Waves (NANOGrav, McLaughlin (2013a))

* European PTA (EPTA, Kramer and Champion (2013b))

Parkes PTA (PPTA, Hobbs (2013); Manchester et al. (2013))

Indian PTA (InPTA, Joshi et al. (2018b, 2022))

Chinese PTA (CPTA, Lee (2016b))
* MeerTime PTA (MPTA, Bailes et al. (2020); Spiewak et al. (2022))

In addition, the International PTA (IPTA), consisting of NANOGrav, EPTA, PPTA, and InPTA, has also been
organized (Hobbs et al., 2010), and the teams are cooperating with each other to combine data in an attempt

to detect nanohertz GWs.

1.3 the Indian PTA

InPTA is a PTA team established around 2015. inPTA monitors MSPs using the Giant Metrewave radio
telescope (WUGMRT, see Figure 5), which located in India and consists of 30 antennas with its diameter of 45
m. The uGMRT is capable of simultaneous multi-band observations. InPTA monitors MSP in two bands,
Band 3 (300 - 500 MHz) and Band 5 (1260 - 1460 MHz). The low-frequency Band 3 observations are unique
in the world, as no other PTA monitors MSPs with such a low-frequency band and can accurately measure

the effects of dispersion delays on pulses. Dispersion delay is a phenomenon in which the group velocity of
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Figure 5: The Giant Metrewave radio telescope. Credit:NCRA

electromagnetic waves propagating in interstellar plasma varies with frequency, and the delay is known to

be proportional to inverse of the square of the radio frequency (see Figure 6).
At =4.16(f} — f3) x DM (2)

where, f1, f> are observing frequencies and DM is called Dispersion Measure. DM is written as follows:

D
DM:/nﬂl 3)
0

where D is the distance from the earth to the pulsar, and 7, is electron density of the interstellar plasma.
Since 7, is not given to a priori, the DM is determined by correcting the observed delay of lower frequency
pulses. Indian PTA, with its low-frequency observations, is outstanding in this respect and can obtain DM
with the highest accuracy. This is an indispensable element for high-precision pulsar timing observations.
Indian PTA has released its first data release recording 3.5 years of 14 MSPs observation (Tarafdar et al.,
2022). Along with the pulse arrival times, DM time series data for six pulsars were also released. This is
expected to play a complementary role when combined with other PTA data, bringing us much closer to

low-frequency GWs detection.
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2 Constraints on ultra-low frequency GWs from an eccentric Supermassive
blackhole binary

2.1 Introduction

Milli-second pulsars (MSPs) with very stable periods can be used as precise clocks. If gravitational waves
(GWs) exist in the space between the earth and pulsars, the arrival time of pulses is changed. With this effect,
we can detect low-frequency GWs (10~ - 107® Hz) and this method is called pulsar timing array (PTA)
(Foster and Backer, 1990b). So far, three PTA experiments have been conducting long-term observations of
MSPs: the Parkes PTA in Australia (Manchester et al., 2013), the European PTA (Kramer and Champion,
2013a), and NANOGrav in North America (McLaughlin, 2013b). Further, Chinese PTA (Lee, 2016a) and
Indian PTA (Joshi et al., 2018a) have started in recent years.

One of the major GW sources in the frequency range of PTA is supermassive black hole (SMBH) binaries
in the late stage of the evolution with sub-pc scale orbital radii. NANOGrav have released 11 years of pulsar
observation data (Arzoumanian et al., 2018) and searched GWs from an individual source (Aggarwal et al.,
2019). Although they could not find GWs in their 11-year data set they placed 95% upper limits on GWs
amplitude and a chirp mass of a hypothetical SMBH binary in the Virgo Cluster. Recently, they also put
limits on mass of SMBH binary in nearby massive galaxies (Arzoumanian et al., 2021).

On the other hand, binaries in the early stage of the evolution interact efficiently with the environmental
gas and stars and their orbital radii are reduced rapidly (Escala et al., 2005; Dotti et al., 2007; Sesana et al.,
2008). However, when the orbital radius becomes a few pc, the interaction becomes weak and the orbital
radius shrink only through GW emission. GW emission at this stage is not efficient and the expected merger
time exceeds the Hubble time (Lodato et al., 2009; Milosavljevi¢ and Merritt, 2001). This is called the final
parsec problem”. Therefore, to understand the evolution of SMBH binaries, it is important to detect GWs
from binaries at this stage. However, such GWs have sub-nHz frequencies and are out of the sensitivity range
of the conventional PTA method.

In our previous work (Yonemaru et al., 2016), we proposed a new detection method for these ultra-low-
frequency GWs from a single source. The method utilizes the fact that the spin-down rate of MSPs is biased
by ultra-low-frequency GWs and it was shown that the time derivative of GW amplitude is constrained
from the statistics of spatial pattern of pulsar spin-down rates in the sky. Then we evaluated the sensitivity
with Monte-Carlo simulations (Yonemaru et al., 2018; Hisano et al., 2019) and put constraints on GWs
from the Galactic Center and M87 as i < 6.2 x 10~ "8sec™! and i < 8.1 x 10~ 8sec™!, respectively, for
fow = 1/(1000year) (Kumamoto et al., 2019), where / is the GW amplitude and the dot represents the time
derivative.

On the other hand, in Moore et al. (2015), they extended the sensitivity curve of PTAs toward lower fre-
quencies in a different way. They considered the Taylor expansion of GW waveform in low-frequency limit
and proposed to extract the GW amplitude from the third and higher order terms, while terms below the
second-order are absorbed by pulsar parameters. Then, signal-to-noise ratio of GWs in lower frequencies
were calculated. As a result, the sensitivity curve of GWs was shown to be proportional to =2 at lower

frequencies.



A critical assumption in Moore et al. (2015) is that an SMBH binary has a circular orbit. Therefore, their
method is not applicable to binaries with eccentric orbits because GWs from an eccentric binary include
higher harmonics and, therefore, have a very different waveform compared to that of GWs from a circular
binary (Peters and Mathews, 1963). In fact, it has been shown by numerical simulations that pc-scale SMBH
binaries tend to obtain high eccentricity (typically e = 0.9 for mass ratio g ~ 1072) via interaction with their
environment (Sesana, 2010). Thus, it is important to probe sub-nHz GWs from not only circular binaries
but eccentric binaries. In this paper, we propose a method which is applicable to eccentric SMBH binaries
extending the formalism of (Moore et al., 2015).

The structure of this paper is following. In section 2.2, we briefly review the Kepler problem and analytical
solution of GWs from an eccentric binary. Then, upper limits on eccentric GWs amplitude are derived
expanding the Moore et al. (2015)’s method in section 2.2.4. In section 2.3, we apply our formalism to
several possible SMBH binaries in nearby galaxies and derive limits on binary parameters. Finally, our

results are summarized in section 2.4. For the rest of this paper we set ¢ = G = 1, unless otherwise specified.

2.2 Eccentric gravitational waveform
2.2.1 Eccentric SMBH binary

Let us consider an eccentric binary system consisting of masses m; and my (m; > my), reiterating some of
the notation and formalism of Yunes et al. (2009) and Taylor et al. (2016). Such a system is well-known as
the Kepler problem. Considering a coordinate system with a total mass M as the center of mass, the binary

system can be described as

r=a(l —ecosu), )
o(t—1y) =1 =u—esinu, 5)
| 1/2
d — Py = 2arctan te tanz , (6)
1—e 2
M,
O =21f =21/ —", (7
a

where r is the distance from m; to mj, a is the semi-major axis of the orbit, e is the orbital eccentricity, u is
the eccentric anomaly, ® is the average angular frequency, [ = ot + [y = 2nft + Iy is the mean anomaly, ¢
is the orbital phase, and ®y = ®(0). In order to express P as the function of time, we use the first Bessel

function J, and we have,

_ il Ay
cos® = —e+ e(l e )';Jn(ne)cos(nl), (8)
sin® = (1—¢2)/? i [(Jn—1(ne) — Jyy1(ne)]sin(nl). )
n=1



2.2.2 GW waveform

Imposing the transverse-traceless gauge (TT gauge), the GW tensor can be expressed as a superposition of

two polarization modes and given by,
hij (1, Q) = h (1) (Q) + hc (1)e5(R), (10)

where Q is the direction of GW propagation, and e;;’x are polarization tensors. If a SMBH binary has
non-zero eccentricity, GWs emitted from it have higher harmonics components and the amplitude of two

polarization modes is as follows (Peters and Mathews, 1963; Barack and Cutler, 2004):

hy(t) =ho Y — (1+cos®1) [an(t) cos(2y) — ba(t) sin(2Y)]

+(1—C0S2l)cn(l‘), (11)
hy (1) =ho ) 2cost[by(t) cos(2y) + an(t) sin(2Y)] (12)
where
ho = 2’;’)1;”2, (13)
an(t) =xg4,(e)coslnl(t)], (14)
bn(t) =xp, (e) sin[ni(t)], (15)
cn(t) =x,(e)cos[nl(t)], (16)

n 2
Xq,(€) =— 3 Jn—2(ne) —2ed,—1(ne) + ZJn(ne)

+2eJ,11(ne) — Jyia(ne)l, (17)
xb,(€) == 5V 1= -2 (ne) = 20, (ne) +Jyya(ne)], (18)
xc,(€) =Ju(ne). (19)

Here, m; and my are the mass of the main SMBH and second BH, respectively, D is the distance from
the Earth to the source, 1 is the orbital inclination, and 7 is the azimuthal angle measuring the direction of
pericenter. In the case of a circular binary, i.e. e =0, only n = 2 terms remain in Eqgs. (14) to (19). In this

expression, i, depends on time through the trigonometric functions. Then, we combine them into a cosine



function:

hy(t) = ho Y /Ay, + B3y, cos (nl(t) + g ) (20)
n
A = (1+cos®1) xp, sin(2y), 1)
B ,=(1- cos? Vx, — (1+ cos? 1) x,, c0s(2Y), (22)
Ay = 2xp,cO81C082Y, (23)
By n = 2x,4, cos1sin2y, 24)
A
Oy = tan ™! (— M’"> , (25)
BM,n

where M represents two polarization mode (4, X).

2.2.3 Pulsar Timing Residuals

If GWs pass between the Earth and pulsars, the propagation path of pulses is changed, and the arrival time
of pulses is also changed. The difference between the actual and predicted arrival time of pulses is called a

timing residual. The timing residual induced by GWs for a-th pulsar is written by
t
Ra(1,00) = / di 2a(1,9), (26)
0

where z,(¢,Q) is the rate of change in the arrival time of pulses. Using the direction of unit vector p, =

(sin®,cosd,,sinB,sind,,cos6,), z, can be written as follows:

2(t,Q) = 1% (hij(t,©) — hij(ty, Q) , 27)
214 pa-Q

wherer, =1—1L, (1 ~+ Pa - Q) is time when the GW passes the a-th pulsar and L, is the distance from it to the
Earth. In Eq. (27) the first and second terms are called “’the Earth term” and the pulsar term”, respectively.
As the puslar term behaves as o< cos(27f,y L), the effect depends on the GW frequency. When the GW
wavelength is much shorter than the typical pulsar distance (~ kpc), i.e, GW frequency is much larger than
1013 Hz, the pulsar term contributes as random noise with zero mean (see Fig. 8 in Hisano et al. (2019)).
Thus, the pulsar term can be ignored as noise which averages to zero when calculating correlations between
pulsar residuals as is also assumed in Moore et al. (2015). In this work, we consider a situation where the
GW frequency is > 10~'' Hz and, therefore, we consider only the Earth term in the following section.

Using the antenna beam pattern FM (Q) given by Anholm et al. (2009), Eq. (26) is written as follows:

!
R(1,0)= Y FM / dihy (1), (28)
M=+,x 0
av L PR
FM(Q) = — _falld M)y 29
a (€) 21+ﬁa-9’-’( ) (29)
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To proceed the calculation analytically, following Moore et al. (2015), we assume pulsar distribution as
uniform in the sky, and average Eq. (28) with the direction of pulsars. Eq. (28) depends on the direction of
pulsars only through FM(Q). However, because F(Q) itself becomes zero when averaged with respect to
the direction of pulsars, we use the root-mean-square of FM (Q) Furthermore, the dependence of polarization
vanishes by this procedure. Then we can calculate the GW amplitude with either polarization. Therefore the

averaged timing residual can be written as
Ry(t)=F [ dt hy(t), (30)
0
i A3 M2
F= [dpn/(E) (3D
where F is the root mean square of FM(Q ) Substituting Eq. (20), we obtain
=Fhy)_ T + B2, sin(2ntnft + nly + oy, (32)
- 27'U’lf M.n M.n i

As we explained above, the assumption of uniform distribution of pulsars is necessary for analytic evaluation.
In fact, as can be seen in Arzoumanian et al. (2018), the observed distribution is highly concentrated on the
Galactic plane and we need numerical calculations for more quantitative evaluation, which is beyond the

scope of our paper.

2.2.4 Upper limits on ultra-low-frequency GWs from eccentric binary

In this section, we develop a formalism to derive upper limits on ultra-low-frequency GWs from an eccentric

SMBH binary. The signal-to-noise ratio of PTA satisfies the following equation (see Moore et al. (2015)):

Poy Y farlk Hmuy a3

b a>b

Sna = Staca, (34)

where T and 1/81, are the observing time span and cadence, respectively, and G, is the root mean square
in the timing residuals for the a-th pulsar. Here, we consider sky averaged timing residuals and Eq. (33) is

written as
1 |Rm (f
2
p? = Nz [arte Ll (35)
M:ZJr’,x 8t204

where N,, is the number of pulsars in PTAs. Considering Parseval’s theorem to change the frequency integral

to a time integral, Eq. (35) can be written approximately as

S MK 1T/dt|RM . (36)

M=+,x 8t264
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Substituting Eq. (32), we obtain

2 Np(N, — )TF*h§
pT= 57204 dt
2016 M= + X

4
><<Z pY: A%,,n+BMns1n(27tnft—|—nlo—|—OcM7n)>. (37)

In the high frequency limit (fz > 1), right hand side can be approximated as hé (M+ +Mx)/f*, where 1 is the
factor which depend on orbital elements (see Appendix 2.4). Therefore, upper limits in the high frequency
limits behave as

WS o fm+m,) 714 (38)

On the other hand, in the low-frequency limit (f# < 1), the sine function is expanded as a power series

2
SIN(2MAf7 + On) = sindy + (20 f1) COS O — (m’;ﬂ) sind,
- W cos O+ O(F41%). (39)

The first term in this expansion degenerate with the distance to the pulsar. The second and third terms
degenerate with the pulse period and spin-down rate respectively. Therefore, these terms are absorbed when
parameter fitting of the pulsar model is carried out. Consequently, upper limits in the low-frequency limits

is obtained from the fourth term and behave as,

hpoW o< (&L +Ex) 7, (40)

Ev = Z W/AIZ‘,,n+BMncos(nlo+OcM7n) )

n

(41)

Coefficients on the right hand side of Egs. (38) and (40) can be given by current PTAs observation. The most
recent limits on GWs from individual SMBH binary comes from NANOGrav (Aggarwal et al., 2019), which
placed 95% upper limits with foy, = 8nHz as a function of sky position from an analysis of their 11-year
data set (see Figure 5 in their paper). Then we can set upper limits on the GW from eccentric SMBH binary

at higher and lower frequencies as follows:

Riim =him 9™ ( fow = 81Hz, Q)
8nH 2
( : Z) (B +8:)7" <8nﬁz>(n++nx>1] “2)

Note that fyy is the frequency of GWs from a circular binary and corresponding to n = 2. Therefore we

choose 2f as the normalized frequency in Eq. (42). The right-hand side of Eq. (42) is determined by giving
orbital parameters of the assumed SMBH binary (m;, my, a, e, Iy, 1,7). Finally, we obtain constraints on

these parameters by comparing /iy, and hg.
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Figure 8: The contribution of higher harmonic components to &, normalized by the most contributing harmonic
component for (Ip, t,y) = (0°,0°,0°).

Finally, it should be noted that the NANOGrav limits were obtained with Bayesian analysis, while our
approach is based on frequentist analysis. However, using the Baysian limits rather than frequentist limits,
which are not given in NANOGrav paper, is reasonable for our purpose because Baysian and frequentist

limits are expected to be the same order.

2.3 Application

In this section, we apply our formalism to several nearby SMBH binary candidates. In the numerical eval-
uation of upper limits, it is necessary to terminate the calculation of the sum of 1 and & with the required

accuracy. In our work, we terminate the calculation when the following conditions are satisfied:

/A Bin .
<1072 (form), 43)
max, (%, /Azzvz,n +B12V1,n>
P2\ [Ai+ By,
’ : <107 (for&). (44)

max,, (nz, /A%Ln + 3121/1n>

In Fig. 8, we show the contribution of higher harmonic components to &, for several values of eccentricity.
In this figure, other binary parameters are set as (, 1,7y) = (0°,0°,0°). We can see that the contribution of
higher harmonics is larger for a larger value of eccentricity. For example, n ~ 300 modes are contributing
the most for the case of e = 0.95. In this case, we need to conduct the summation of Eq. (41) up to n = 1270,
while the summation up to n = 8 is sufficient for e = 0.1. We note that the number of harmonics is much
smaller in timing residual space (Taylor et al., 2016).

First, let us show limits on a possible SMBH binary located at the center of M87 suggested by (Lena et al.,
2014). The mass of the SMBH in the center of M87 is estimated to be 6.5 x 10°M, and the distance from
earth is 16.8 Mpc (Event Horizon Telescope Collaboration et al., 2019). The value of NANOGrav’s limit in
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the direction of M87 is approximately given as
hivgg ™ (few = 8nHz, Qyg7) & 3.66 x 10717 (45)

Figure. 9 represents the rejected parameter space of a possible eccentric SMBH binary in the center of M87
for e =0.9. Solid, dashed, dot-dashed, dot lines represent the boundary of iy = Ay, for [p = 0°,60°,120°,180°,
respectively. The value of hg is greater than /iy in the region below each curve and, therefore, the corre-
sponding parameter sets are rejected. The limit becomes stronger as [y decreases. This is because small
lp corresponds to a binary which starts near the pericenter and consequently the GW amplitude becomes
stronger. The constraint curves do not vary significantly with the value of (1,7y), although a smaller inclination
angle leads to slightly stronger constraint. These parameters affect the relative power of two polarizations
(4, x), but do not the total energy of emitted GWs. Thus, hereafter, we fix (1,7y) to (0,0).

In the case of /o = 0°, the mass ratio is strongly constrained especially for a < 0.3 pc: typically my/m; <
3 x 1073, On the other hand, the lower limit on the semi-major axis is a function of the mass ratio for
mo/my > 3 x 1073 and roughly given as a > 2(my/m;)%3 pc. The constraints on the semi-major axis is
weaker by about one order in the case of /) = 60° and even slightly weaker for [y = 120° and 180°.

Next, in Fig. 10, we show the rejected parameter space for different values of eccentricity fixing (1,7) =
(0,0). The constraints drastically change with eccentricity in the case with [y = 0°, while the change is not
significant for other values of /y. This is because the binary separation changes relatively rapidly for [y = 0°
(pericenter). In fact, in the case with /o = 0°, the constraints on semi-major axis at my /m; = 0.1 improve by
a factor of 5 and 2 for the change of eccentricity from 0.5 to 0.9 and from 0.9 to 0.95, respectively.

Here it should be noted that the change of the constraint curve is not monotonic with the change of eccentric-
ity for [y = 180° (apocenter). This is because there are two competing factors that affect the GW amplitude
from a binary at apocenter. The first is that higher eccentricity leads to a larger separation between two
SMBHSs, which weakens the GW amplitude. The second is that the shape of the binary orbit near the apoc-
enter becomes sharper for large eccentricity, which enhances the GW amplitude. Therefore, we consider
that the former effect is more effective than the latter for ¢ = 0.5 and, conversely the latter effect becomes
relatively more effective for e = 0.1 and e = 0.9.

For a high eccentricity binary at pericenter /[y = 0°, we can see a turnover in the curve as a function of a. This
turnover can be interpreted as follows. From Eqgs. (7), (13) and (42) in low-frequency cases (2f < 8nHz),
i.e. a 2 1pc, ho/him behave as

ﬂ(xmzfzx(qﬂ%)q’ (46)

Alim a at

where g = m;/m is mass ratio. Because limit curves correspond to A /iy, = 1, the relation between a and

q is as follows:
log(1+¢) +logg —4loga+C =0, 47)

where C is the coefficient of the right hand side in Eq. (46). For large and smalls values of ¢, the relation is
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Figure 9: The rejected parameter space of an eccentric SMBH binary in the center of M87 for e = 0.9. Solid, dashed,
dot-dashed, dot lines means points of hg = iy, for lo = 0°,60°,120°,180°, respectively. Regions above each curve is
rejected.
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Figure 10: The rejected parameter space for e = 0.1,0.5,0.9 and 0.95 fixing (1,Y) = (0,0). The line types are the same
as Fig. 9.
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Table 1: The SMBH mass, the distance from earth and NANOGrav’s 95% upper limtis of five galaxies considered here
(Arzoumanian et al., 2021).

2MASS Name Mass Dist ~ AANOGrav
[log(m1/Mg)]  [Mpc]
J13000809+2758372 10.32 1122 3.17x10°P
J12304942+1223279 9.82 168 3.66x10°1
J04313985-0505099 10.23 63.8 1.04x10714
J12434000+1133093 9.67 186 3.77x10°1
J13182362-3527311 9.89 534 294x10°1

Table 2: The mass-ratio upper limits as a function of /[y with a = 1pc and e = 0.5.

2MASS Name Mass ratio my /m;
lh=0° [h=60° [y=120° [y=180°
J13000809+2758372  4.79 229 75.9 110
J12304942+1223279 12.0 52.5 174 251
J04313985-0505099 9.12 39.8 145 209
J12434000+1133093  20.9 91.2 331 479
J13182363-3527311 14.5 63.1 229 331

simplified to,

2loga—C/2 > 1
logq— 4 218 / (g>1) “8)
4loga—C (g<1).

For this reason, the slope of the curves slightly vary in ¢ ~ 1. On the other hand, in high frequency cases

(2f > 8nHz), i.e. a < 0.1pc, we have,

hy my qa

him  af l1+¢ 49

For ¢ < 1, the relation reduces to,
logg = —loga—2C'. (50)

Considering Eqgs. (48) and (50), we can understand that there is a turnover at a ~ 0.3 pc.

We also apply our formalism to other galaxies. In Arzoumanian et al. (2021), NANOGrav applied their
95% upper limits on GW amplitudes from single sources in galaxies listed in 2MASS Redshift Survey
(Huchra et al., 2012). They calculated signal-to-noise ratio of GWs from these galaxies assuming they have
an equal-mass SMBH binary in the center. These galaxies were sorted in descending order with respect to
signal-to-noise ratio. We derive constraints for five galaxies with largest signal-to-noise ratios. Table 1 is a
list of five galaxies considered here: the SMBH mass, the distance from earth and NANOGrav’s 95% upper
limtis AYANOGrav (£ = 8nHz). In Table 2 to 4, we list upper limits on mass ratio of hypothetical SMBH
binaries in these galaxies for e = 0.5, 0.9 and 0.95, and [y = 0°, 60°, 120° and 180°, fixing a =1 pc.
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Table 3: The mass-ratio upper limits as a function of /[y with a = 1pc and e = 0.9.

2MASS Name Mass ratio my /m;
lh=0° [p=60° [y=120° [y=180°
J13000809+2758372  0.033 14.5 25.1 63.1
J12304942+1223279  0.158 36.3 63.1 158
J04313985-0505099  0.110 27.5 479 120
J12434000+1133093  0.437 63.1 110 275
J13182363-3527311  0.251 43.7 75.9 191

Table 4: The mass-ratio upper limits as a function of /p with @ = 1 pc and e = 0.95.

2MASS Name Mass ratio my /m;
lo=0° [p=60° Ip=120° [y=180°
J13000809+2758372  0.00302 9.12 17.4 33.1
J12304942+1223279  0.0120 22.9 43.7 75.9
J04313985-0505099  0.0100 17.3 33.1 63.1
J12434000+1133093  0.0363 39.8 75.9 145
J13182363-3527311  0.0191 27.5 52.5 100

2.4 Summary and discussion

In this paper, we developed a formalism for constraining ultra-low frequency GWs from a SMBH binary
with eccentric orbit. Following Moore et al. (2015), we calculated signal-to-noise ratio of GWs by Taylor
expanding the waveform and using the third-order term that is not absorbed by fitting pulsar parameters.
Furthermore, using upper limits on GWs from single sources at 8 nHz obtained by NANOGrav’s 11-year
data set, we derived constraints on binary parameters of a hypothetical SMBH binary in the center of M87.
We found that the constraints depend strongly on the orbital eccentricity and initial phase while they do not
depend significantly on the inclination and the azimuthal angle of pericenter. The obtained upper limits on
mass ratio are typically (my/m;) < 0.16 for e = 0.9, a = 1pc for pericenter (Ip = 0°). We also applied our
formalism to several other SMBHs in nearby massive galaxies probed by NANOGrav.

In our calculation, we assumed a uniform distribution of MSPs in the sky. In fact, MSPs used in PTA experi-
ments have a non-uniform distribution and many of them are located within the Galactic plane. Although the
anisotropy of MSP distribution will not change the frequency dependence of GW constraints, it will affect
the normalization. As we can see in Aggarwal et al. (2019), the NANOGrav limit is actually stronger for a
region around the Galactic Center where many MSPs are located, while it is weaker at anti-Galactic Center
region. Thus, GW constraints obtained here become stronger (weaker) for a sky region with more (less)
MSPs accordingly. Quantitative discussion with numerical integration of the factor in Eq. (29) is beyond the
scope of the current paper and will be presented elsewhere. Nevertheless, because the NANOGrav’s upper
limits, which we used for normalization, are obtained considering the pulsar non-uniformity, our approach
would give a reasonable estimate.

We also assumed the binary orbit does not change in the observing time span, which is typically ~ 10

years, because we mainly consider the ultra-low frequency range. However, when a binary orbit is close
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to coalescence, we cannot neglect the orbital evolution. The orbital evolution caused by GWs is given by
Eq. (5.6) and (5.7) in Peters (1964) and we can estimate the order of the orbital evolution averaged over

the orbital period. For the initial eccentricity eg = 0.95, taking typical parameters, the orbital evolution is as

follows:

1d

i x 10years = —6.7 x 107>

adt|,_,

a \ "t /q(1+q) m \> [ 1-¢& \ ?
X (51
0.1pc 0.11 10°M, 1—-0.952

1d

i x 10years = —3.4 x 107°

edt|,_,

a \ "t /q(1+q) m \> [ 1-¢& \
X (52)
0.1pc 0.11 10°M, 1 —0.952

Thus, for M87 with a = 0.1pc, ¢ = 0.1 and e = 0.95, the amount of orbital evolution is ~ 2% and ~ 0.1%,
respectively, and the effect of orbital evolution can be neglected. However, if the semimajor axis is as small
as a = 0.05pc, the orbital evolution reaches ~ 30% and ~ 1.6%, respectively. For such an orbit where the
semimajor axis changes rapidly, the GW waveform and frequency also change and our formalism may not
be valid.

Appendix

High Frequency Integral

In Moore et al. (2015), the integration of the sin* term at high frequencies (fz > 1) is
r 3 L. I .
/ dtsin” (2nft+0) = §T ~7 sin(2T +2¢) + %) sin(4T +40). (53)
0

The first term of the right hand side is O(T') and the second and third terms are O(1). Then the second and
third term could be neglected. In our work, we need to calculate the integral of Eq. (37):

T 1 . 4
/0 dt <Z - [ A%+ By, SIn(2mnft 4 nlo + ocM7n)>

n

T
=Y Auiju /0 SIN(2Mi f1 + Opr.1) SN (27 f1 + Opr. ) Sin (2K ft + Opg ) sin(RRLfE + Oy )i, (54)
ijkl

where Ay s a unified term of coefficients of each sin and ¢p, = nly + dtyy,. Using formula of trigono-

metric function, we transform the integrand:

sin(2mift + Qpri) sin(27j ft + Opg ;) sin(27k f1 + dag i) sin (27l 1+ dar )
= 10082~ )1+ Ou— Oy} — cos{2m(i+ )+ w + 0w 1)
X [cos{2m(k — 1) f1 + Onrx — Onr i } — cos{2n(k +1) 1+ Onr i + Oar s }] (55)
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By expanding the right hand side, we obtain four cos x cos terms. One of them can be transformed as follows:

cos{2m(i — j) ft + dm,i — Qum,j } cos{2m(k — 1) f1 4+ Orrk — Onrs }

= % [cos{2m(i— j+k—1)f1+Om;— O j+ On — darg} +cos{2n(i — j—k+1)f14 Opri — Omr,j — Onr ke + Oari}] -
(56)

If i— j+k—1=0, the time dependence of the first term of the right hand side is vanished. Then, this term
contributes to the signal-to-noise ratio at O(T') as a consequence of time integration. On the other hand, if
i— j+k—170, the time dependence of this term remains and this term behave O(1) after time integration.
Therefore, among the terms expressed by expanding the Eq. (55) and transforming it like Eq. (56), only
the terms whose the time dependence is vanished for a certain combination of (i, j,k,!) has a non-negligible

value after the time integration. The conditions of (i, j,k,l) are the following equations:

i—j+k+1=0, (57)
i—j—k+1=0, (58)
i—j—k—1=0, (59)
i—j+k—1=0, (60)
i+j+k—1=0, (61)
i+j—k—1=0, (62)
i+j—k+1=0. (63)

Writing these conditions with f,,(i, j,k,/) = 0(m = 1,---,7) from the top to the bottom, sets of (i, j,k,!)

satisfying f;, = 0 can be written as follows:
Am ={(i,j.k,1) € NY| fn(i, .k, 1) = O}, (64)

where N is the set of positive integer. We write the sum of Qs;, Oar,j, Om k, 9ar,; added with the sign same as
(i,,k,1) appered in f,, (for example, <I>}w’l.jkl = Oum,i — Om,j + Omk + Oar1). Then the integration of Eq. (37)

approximate as:
T 1 4 T 7
/ dt (Z -4 /Azzw,n —i—B/ZW_n sin(2mnft +nly + 06M,n)> ~ 3 Z Z (—1)"Apm i jua cos @X’,,’ijkl. (65)
0 w1t ' m=1(i,j k1) EAn
Therefore, we obtain upper limits in Eq. (42) defining 1y, as follows:
7
My = Z Z (=1)"Apijur cos Py iy - (66)

m=1(i,j k) EAp

In this work, the contribution of My, in Eq (42) is small because we consider ultra-low frequency GWs
(< nHz).
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3 Low-frequency Pulse-Jitter measurement with the uGMRT IL.: PSR J0437—4715

3.1 Introduction

Pulsars are rapidly rotating neutron stars that emit beamed emission, which is observed as a pulsed signal.
Among the different types of pulsars, millisecond pulsars (MSPs) have the most stable periods, making them
the most precise clocks in the universe. The precise timing of MSPs has been used to search for nanohertz
gravitational waves (GWs) by multiple consortia, known as Pulsar Timing Arrays (PTAs) (Foster and Backer,
1990a), such as the North American Nanohertz Observatory for Gravitational Waves (McLaughlin, 2013a,
NANOGrav), the European Pulsar Timing Array (Kramer and Champion, 2013b, EPTA), the Parkes Pulsar
Timing Array (Hobbs, 2013; Manchester et al., 2013, PPTA), the Indian Pulsar Timing Array (Joshi et al.,
2018b, 2022, InPTA), the Chinese Pulsar Timing Array (Lee, 2016b, CPTA) and the MeerTime Pulsar Tim-
ing Array (Bailes et al., 2020; Spiewak et al., 2022, MPTA). Recently, NANOGrav, EPTA+InPTA, PPTA,
and CPTA announced evidence for nanohertz stochastic gravitational wave background (SGWB) with statis-
tical significance ranging between 2 — 46 (Agazie et al., 2023a; EPTA Collaboration et al., 2023a; Reardon
etal., 2023b; Xu et al., 2023). With the next generation, high sensitivity telescopes, such as the Square Kilo-
metre Array (SKA) it will be possible to obtain sufficient signal-to-noise ratio (S/N) within short observation
duration to measure the pulse times of arrival (TOA). In the future, a large number of high cadence timing
observations on a much larger pulsar sample will be made during the SKA era, which will lead to significant
improvements in the detection sensitivity of nanohertz GWs from the PTAs. This will not only facilitate the
detection of SGWB at high confidence level, but will also open our horizon towards continuous GWs from
individual supermassive black hole binaries, thereby ushering in the era of multi-wavelength GW astronomy.
In order to maximise the PTA sensitivity to GWs, a detailed characterisation of the different noise sources is
of crucial importance. There are many noise sources that contribute to the uncertainty in the TOAs. Noise
can be classified according to several characteristics, one of which is the temporal correlation. A noise with
long-term correlation is called red noise. Some examples of red noise include rotational irregularities in the
pulsar’s spin period, also known as spin noise or timing noise (Boynton et al., 1972; Cordes, 1980; Shannon
and Cordes, 2010), temporal variation in the Dispersion Measures (DM) caused by the interstellar plasma
(Keith et al., 2013; Tarafdar et al., 2022), and errors in the Solar System ephemeris (Champion et al., 2010).
On the other hand, noise without temporal correlation is called white noise. Another feature to classify the
different sources of noise is their dependence on the observation frequency. While dispersive delays depend
on the frequency, errors in the Solar System ephemeris are achromatic. Furthermore, whether a noise source
is common to multiple pulsars or unique to each pulsar is vitally important for distinguishing the GW signal
from noise. The PTA experiments attempt to extract the GW signals by modeling these kinds of noise and
incorporating them into their data analysis pipelines (Chalumeau et al., 2022; Srivastava et al., 2023; Agazie
et al., 2023b; EPTA Collaboration et al., 2023b; Reardon et al., 2023a). Although, many sources of noise are
well understood both statistically and physically, there is room for further improvement in noise modeling.

Jitter noise refers to the stochastic fluctuations in the pulsar timing residuals without temporal correlations
and is one of the noise sources that should be characterised precisely to improve pulsar timing analysis. Such

time-uncorrelated noise also includes the radiometer noise originating from the instrument. It’s amplitude
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depends on the instrument and this noise can be reduced, thereby improving the S/N ratio. On the other hand,
jitter noise does not decrease even if the S/N ratio improves and its amplitude is independent of the instrument
(Shannon and Cordes, 2012; Shannon et al., 2014; Lam et al., 2016). Hence, this noise is considered intrinsic
to each pulsar, and it occurs due to the pulse shape variations on pulse-to-pulse scale. Since it behaves like
white noise, its amplitude decreases with an increase in the integration time. However, with the shorter
duration of observations, which are likely to be planned for the next generation PTA experiments due to
their higher sensitivity, these experiments may suffer from jitter noise, if its implications are not understood
properly. Therefore, it is important to investigate the nature and amplitude of the jitter noise with current
observational campaigns in order to develop efficient observation strategies for the future.

For this work, we study the jitter noise for the the pulsar PSR J0437—4715. PSR J0437—4715 was discovered
in the Parkes 70 cm survey and is the brightest known MSP (Johnston et al., 1993). Due to its high brightness,
it has been studied extensively especially for its single-pulse behaviour. (Ables et al., 1997; Jenet et al., 1998;
Vivekanand et al., 1998; Vivekanand, 2000; Liu et al., 2012; Oslowski et al., 2014; De et al., 2016).

This pulsar has also been the focus of previous jitter studies, which measured its jitter amplitude at dif-
ferent frequencies (Shannon et al., 2014; Parthasarathy et al., 2021). Shannon et al. (2014) measured its
jitter amplitude using 700, 1400, and 3100 MHz observations by the Parkes Murriyang telescope, whereas
Parthasarathy et al. (2021) investigated the wideband feature of its jitter using the MeerKAT telescope (856
- 1712 MHz). Both studies found that the jitter amplitude of PSR J0437—4715 has a weak frequency depen-
dence, and its amplitude is larger at lower frequencies. PSR J0437—4715 has been subsequently observed
by PPTA, MPTA, and InPTA, since it is located in the southern sky. Among these three PTAs, only InPTA
covers the low frequency range (300 - 500 MHz). Therefore, we are the only PTA which can investigate
whether the jitter amplitude of PSR J0437—4715 is actually getting larger in the lower frequency bands
and this investigation has important ramifications for developing a future strategy for low-frequency timing
observations.

In this paper, we report the pulse jitter measurements of PSR J0437—4715 for low (300 - 500 MHz) and
mid (1260 - 1460 MHz) radio frequency observations using the uGMRT. The rest of this paper is structured
as follows: In Section 3.2, we briefly describe the observations used in this work and the data processing
methods used for analysis. In Section 3.3, we describe the methodology used for estimating jitter noise and
the results of these measurements. In Section 3.4, we discuss the inferences and conclusions made from our

analysis. Finally, we summarize our findings and conclude in Section 3.5.

3.2 Observations and Data processing
3.2.1 Observations

In this work, we have used the observations of PSR J0437—4715 conducted using uGMRT (Gupta et al.,
2017) as a part of the InPTA experiment from the observation Cycle 41 to 44 (October 2021 to September
2023). The InPTA observations were carried out either using two sub-arrays of 10 to 15 antennae at Band
3 (300 - 500 MHz) and Band 5 (1260 - 1460 MHz), respectively or using the complete array set at Band 3.
Band 3 data were coherently dedispersed to the known DM of the pulsar using a real-time pipeline (De and

Gupta, 2016). The Julian dates and S/N ratio for each epoch used for our analysis can be found in Table 5
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Table 5: Band 3 observations used in this work and their estimated jitter amplitudes. The first column lists the uGMRT
observation cycle. The second column shows the date of the observations. The third column gives the integrated
S/N ratios for this band obtained from the pdmp command of PSRCHIVE software package. The fourth column is the
observation duration in seconds. The last column shows the ECORR value scaled to one hour and these values are
plotted in Figure 14. The bottom six epochs were selected to see the difference between Band 3 and 5 for the same
epochs (see Section 3.2.2).

Cycle MIJD S/N  Duration (s) ECORR (ns)

41 59545 16401 1198 63.36 7133
41 59587 8667 1799 64.84 7453
41 59627 7571 1018 53.06 7373
41 59656 6602 1020 64.32 3%
41 59665 4772 1320 47.79 453
42 59692 5196 719 68.48 T%2)
42 59701 14708 720 52.70 1398
42 59730 10452 718 52.04 7492
42 59789 13307 718 59.32 1338
42 59800 11717 718 64.58 3%
43 59908 12651 598 5270 37
43 59918 10150 720 31.76 739
43 59928 13041 597 47.86 T3
43 59989 11379 660 53.05 7335
43 60021 18320 1496 52.98 735
44 60063 5487 600 52.07 1498
44 60121 12228 598 56.33 725,
44 60139 6250 600 49.49 33¢
44 60160 13017 598 68.70 T 0
44 60178 23971 600 50.24 318
41 59575 2596 1318 63.19 F820
42 59818 2627 719 53.93 138
43 59982 5265 900 49.72 35
43 60002 6942 720 61.90 9
44 60055 4930 900 55.58 337
44 60149 5211 720 53.54 3%
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Table 6: Band 5 observations used in this work. The different columns refer to same parameters as in Table 5.

Cycle MJD S/N Duration (s) ECORR (ns)

41 59545 1253 1215 61.92 H443
41 59565 1126 1034 56.47 559
41 59575 1647 1334 61.92 1391
41 59627 1465 1033 57.15 Tl
41 59665 1332 1345 66.51 783
42 59692 1431 734 58.28 779}
42 59782 938 733 46.57 To e
42 59810 1044 733 49.33 1840
42 59818 1696 734 43.84 1335
42 59838 2115 734 56.47 Y38
43 59898 1237 720 61.92 738
43 59918 1328 720 64.90 1301
43 59959 730 901 54.66 +10-68
43 59982 851 901 61.92 79
43 60002 812 721 42.02 T1208
44 60055 954 901 60.28 51
44 60149 1470 722 50.93 67
44 60191 1450 720 52.17 1843

and 6 for Band 3 and Band 5, respectively. More details about the InPTA observations and the associated
observing strategy can be found in Tarafdar et al. (2022) and Joshi et al. (2022).

3.2.2 Data processing

The processing of uGMRT pulsar observations was done using the pinta' (Susobhanan et al., 2021) pipeline.
Here, we briefly summarize the data processing steps involved. More details can be found in (Susobhanan

et al., 2021) (and references therein):

1. Convert the raw data to filterbank format while automatically removing RFI using RFIClean’ (Maan
et al., 2021).

2. Convert the RFI-mitigated filterbank file to a partially folded file in PSRFITS format using DSPSR?
(van Straten and Bailes, 2011).

lhttps://qithub.com/inpta/pinta
2https://github.com/ymaan4/RFIClean
3https://dspsr.sourceforqe.net
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Table 7: Parameters used in pinta reduction. The first column is the local oscillator frequency of the observing band.
The second column is the number of phase bins. The third column is the number of frequency channels. The fourth
columns denotes the observation bandwidth. The fifth column is the sampling time used for observation. The sixth
column is the sideband. The seventh column is number of polarizations. The eighth column is the duration of individual
sub-integrations. The last column is whether the data has been coherently dedispersed (1) or not (0). More details on
the description of these parameters can be found in (Susobhanan et al., 2021).

Parameters | Frequency  MNins  Nehan Band width Ty Sideband  Npop Tiubine Coheded
[MHz] [MHz] [us] [s]
Band 3 500 1024 128 200 5.12 LSB 1 10
Band 5 1460 128 1024 200 40.96 LSB 1 10 0

3. Find an optimal period and DM, and calculate the integrated S/N using the pdmp command provided
by PSRCHIVE* software package (Hotan et al., 2004; van Straten et al., 2012).

The resulting S/N values were used for selecting the optimal observations analyzed in this paper. We selected
five epochs from each cycle for both Band 3 and Band 5, except for Band 5 in Cycle 44, since we did not
have enough high S/N epochs. We also analysed six additional epochs, which have moderate S/N ratio in
Band 3, and which were already selected for Band 5, to check the difference between Band 3 and 5 in the
same epoch. In total, we analysed 26 epochs for Band 