
Nagaoka et al.

7

Full Paper	 Radiation Safety Management Vol. 22 (7–17)

Feasibility of Deep Convolution Neural Network-Based Automatic Time Activity 
Curve Fitting Method for Non-Invasive Cerebral Blood Flow Quantification

Rieko NAGAOKA1), Kosuke YAMASHITA1), Naohiro YABUSA1), Ryosuke KAMEZAKI2), 
Ryuji IKEDA2), Shinya SHIRAISHI3), Yoshikazu UCHIYAMA4), and Shigeki ITO5)*

1) Graduate School of Health Sciences, Kumamoto University
2) Department of Central Radiology Kumamoto University

3) Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
4) Department of Information and Communication Technology, Faculty of Engineering, University of Miyazaki

5) Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University

Received Dec. 18, 2023; accepted Jan. 10, 2024

      In this study, we aimed to develop a deep convolutional neural network (DCNN)-based automatic time–
activity curve (TAC) fitting method for input function determination. This will be achieved through a comparison 
between the DCNN method, manual method, and mathematical fitting methods using the expectation 
maximization algorithm (EM-method) to uncover the potential of the DCNN approach.

A U-Net architecture based on convolutional neural networks was used to determine the TAC fittings. The area 
under the curve (AUC) values of the TAC by the EM and DCNN methods were compared to those obtained using 
the manual method. 

The AUC values for the EM-manual method exhibited similarity within an error range of approximately ±20%. 
Conversely, the error range for DCNN-manual method was approximately ±10%, signifying a reduction in the 
error range to approximately 1/2. 

 Our findings indicate that the DCNN method provides accuracy equivalent to those of manual methods and 
even slightly superior to that of the EM method.

          Key Words:  123I-IMP; 99mTc-ECD; area under the curve; deep neural network; rCBF quantification
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Introduction
Non-invasive (pain free) methods for quantifying cerebral 

blood flow offer advantages such as minimal discomfort and 
procedural simplicity in nuclear medicine, as they enable the 
acquisition of input functions from radioactive concentrations 
in arterial blood without the need for arterial blood sampling1–3). 
In recent years, a non-invasive quantification method using 
N-isopropyl-p-[123I] iodoamphetamine (123I-IMP), known as the 
Simple Non-Invasive Microsphere (SIMS) method (123I-IMP 
SIMS), has been developed4–6). Additionally, for the 99mTc-ethyl 

cysteinate dimer (99mTc-ECD), an Improved Brain Uptake Ratio 
(IBUR) method (99mTc-ECD IBUR) has been developed based 
on aortic hemodynamics7–9). In these methods, estimating the 
administered dose involves setting a region of interest (ROI) in 
the pulmonary artery (PA) and ascending aorta (AAo) during 

123I-IMP and 99mTc-ECD chest radio-isotope (RI)-angiography 
and determining the radioactive concentration in arterial blood 
from the integral value of the obtained time-activity curves 
(TACs)4–9). However, due to manual curve analysis, these 
methods heavily rely on the operator’s skills and are less 
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reproducible and accurate when compared to invasive 
quantification methods3). Consequently, there is a need to 
enhance the reproducibility and measurement accuracy of non-
invasive quantification methods. 

To address these issues, automatic TAC fitting is the most 
suitable approach, and for automation, both mathematical and 
deep learning approaches are being considered10–12). In 
mathematical approaches, optimization algorithms, such as the 
least squares method, are used to find the best fit of functions, 
like the Gamma function, to data points. This approach is 
effective when the data is relatively simple and easily modelled. 

Among Deep Convolutional Neural Networks (DCNNs), 
U-net excels in image segmentation and is widely applied in 
the field of medical imaging13–17). Particularly, the use of an 
autoencoder to perform noise reduction in waveforms based on 
features learned from normal examples could lead to further 
improvements in the accuracy of TAC fitting. Furthermore, 
these automations achieve high reproducibility and accuracy 
independent of operator skills. Once automatic TAC fitting is 
completed, there will be no need for confirmatory tasks, leading 
to improved operational efficiency and a significant reduction 
in analysis time. At present, it is not clear which approach, 
mathematical or DCNN, is effective for the 123I-IMP SIMS and 
99mTc-ECD IBUR methods. Therefore, it is necessary to clarify 
the accuracy of both approaches.

The objective of this research was to develop a DCNN-
based automatic TAC fitting method for input function 
determination in non-invasive cerebral blood flow quantification 
methods, specifically the 123I-IMP SIMS method and the 99mTc-
ECD IBUR method, within the field of nuclear medicine. This 
was achieved by comparing the DCNN method, manual 
methods, and mathematical fitting methods to uncover the 
potential of the DCNN approach.

Methods
Ethics statements

This research received approval from the Ethics Committee 
of Medicine at Kumamoto University for Human Studies, with 
Protocol Number: Advanced 1451, dated September 29, 2022. 
Prior to commencing the study, written informed consent was 
obtained from all participating patients. Furthermore, all image 
data underwent anonymization procedures, and the study was 
conducted in strict adherence to the ethical principles outlined in 
the Declaration of Helsinki, as well as the specific regulations of 
the ethics committees of each participating institution.

This study was a retrospective, comparative, observational 
investigation that aimed to develop an automated TAC fitting 
program using deep neural networks. This study is reported 
according to the Strengthening the Reporting of Observational 
Studies in Epidemiology guidelines.

Participants
The study included 84 patients (male: 37, female: 47, mean 

age: 76.5 years) who underwent 123I-IMP RI-angiography and 
microsphere imaging at the same time and 94 patients (male: 
69, female: 25, mean age: 69.7 years) who underwent 99mTc-
ECD single photon emission computed tomography (SPECT) 
and RI angiography between February 2012 and September 
2017 at Kumamoto University Hospital. None of the patients 
had pulmonary disease. 

123I-IMP chest RI-angiography was performed using a 
SPECT device (Millennium VG, GE, USA). Imaging was 
performed at 1 fps for 60 s after the 123I-IMP bolus injection. 
The matrix size was 128 ≈ 128 pixels, and the pixel size was 
2.2 mm. Collimators were equipped with low energy and high 
resolution (LEHR). The energy window was set to 
159 keV ± 10%.

99mTc-ECD chest RI angiography was performed using a 
SPECT device (E-cam, SIEMENS, Germany). Imaging was 
performed at 1 fps for 100 s from the start of the 99mTc-ECD 
bolus injection. The matrix size was 128 ≈ 128 pixels, and the 
pixel size was 2.2 mm/pixel. A LEHR collimator was used. The 
energy window was set to 140 keV ± 10%. The Daemon 
Research Image Processor (PDRadiopharma Inc., Japan) and 
Image J (National Institute of Health, USA)18,19) were used for 
image processing.

DCNN condition for TAC fitting
Figure 1 shows the structure of a DCNN (U-net)16,17). We 

applied the leaky rectified linear unit (Leaky ReLU) activation 
function and batch normalization to all convolutional layers, 
except for the last convolutional layer in the U-net, with depths 
of 5 and 13 convolutional layers. Immediately after the last 
convolutional layer, the squared error was applied to the output 
layer. The optimization functions for the U-net training were 
adaptive moment estimation (Adam), Alpha = 0.001, 
Beta1 = 0.9, Beta2 = 0.999, and Epsilon = 1E-8, and the 
number of iterations was 1000. For the learning and validation 
of the U-net, all samples were randomly divided into six 
groups, and all cases were evaluated using six-fold cross-
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validation. The operating environment used was Microsoft 
Windows 11 Pro, the CPU was an Intel Xeon E5-2623 v3, and 
the GPU was an NVIDIA Quadro RTX6000. The program was 
developed using Sony Neural Network Console.

Manual fitting (manual)
Manual fitting involves dividing the TAC into two segments, 

before and after the peak, as the rising and falling portions of 
the TAC curve can vary depending on the patient and the speed 
of drug administration. Each of these segments was then fitted 
individually using Gaussian functions. Figure 2 illustrates the 
procedure of manual curve fitting conducted to show the 
cumulative range of TACs and the AUC for both the 123I-IMP 

SIMS method and the 99mTc-ECD IBUR method. In the initial 
segment, the cursor was positioned approximately two-thirds of 
the way from the starting point to the peak in order to faithfully 
replicate the vicinity of the peak. From the peak, the cursor was 
set to approximately one-third of the way to the endpoint for 
similar reason. After curve fitting using two Gaussian functions, 
the AUC was calculated. The fitting parameters for each 
segment were determined by 2 nuclear medicine specialists and 
3 researchers with expertise in nuclear medicine, using the same 
techniques as the development of the 123I-IMP SIMS and 99mTc-
ECD IBUR methods4, 7). The TAC data were used as training 
data and for control purposes. The AUC values (counts/cm2) 
were calculated as the average of five sets of TAC data. 

Fig. 1.Structure of a DCNN (U-net)
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EM-algorithm fitting 
The gamma distribution is a type of continuous probability 

distribution characterized by two parameters20). The probability 
density function of a one-variable gamma distribution is 
defined by Equation (1.1).

f (x|a, b )＝
xa－1

G(a )ba
e (－x/b ) (1.1)

Furthermore, the mean (expected value) E(X) and variance 
V(X) of the gamma distribution can be expressed using 
equations (1.2) and (1.3).

E(X)＝ab (1.2)

V(X)＝ab 2 (1.3)

Here, a represents the shape parameter, b represents the 

scale parameter, and Γ(a) denotes the gamma function. Both a 
and b are positive values. The gamma distribution can 
accommodate various shapes depending on the choice of a and 
b21–24). 

Parameters of the gamma distribution
The properties and shape of the gamma distribution are 

determined by two parameters, a and b, as described in 
Equation (1.1). Therefore, by determining the parameters of 
each gamma distribution from the TACs with gamma 
distributions, it is possible to estimate a single gamma 
distribution TAC that matches the desired peak.

As the mean of the gamma distribution, as shown in 
Equation (1.2), is the product of the two parameters, we used 
this property to determine the initial values of the parameters. 

Fig. 2. Procedure of manual curve fitting
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Assuming the mean of the gamma distribution to be the peak, 
setting b = 1 allows us to set a to the time detected by the peak 
detection program.

In the case of the IBUR method, which employs a mixed 
gamma distribution with two gamma distributions, the initial 
values of the parameters can be expressed using Equation (1.4). 

a1＝peak1, a2＝peak2, b1＝1, b2＝1 (1.4)

Furthermore, let e represent the fraction that each gamma 
distribution occupies in the mixture gamma distribution. Since 
the total of e should sum to 1, the initial values for the mixture 
ratios in the IBUR method can be expressed using Equation 
(1.5).

e1＝0.5, e2＝0.5, etotal＝1 (1.5)

Parameter estimation using the EM algorithm
Parameter calculation was performed using the EM 

algorithm18). The EM algorithm is executed by iterating through 
two processes: the E-step and the M-step22). Figure 3 illustrates 
an overview of the EM algorithm implemented in this program.

Initially, we prepared input data and parameters given 
initial values, and then executed the EM algorithm using these 
data. In the E-step, we calculated the probability that the i-th 
data point, denoted as xi, belongs to the k-th gamma 
distribution (membership probability)  zik

(t) using Equation (1.6).

z(t)ik＝
f (xi|a (t)k , b

(t)
k )

Skl＝1 e
(t)
l f (xi|a

(t)
l , b

(t)
l )

(1.6)

In this context, f(x|a, b) represents the formula for the 
gamma distribution, and the subscript ‘t’ denotes the iteration 
count.

After calculating the membership probabilities in the 

E-step, we used these probabilities to update the parameters for 
each gamma distribution in the M-step. The parameters 
determined when a converged were then considered as the 
parameters for the gamma distribution.

DCNN fitting 
Figure 4 illustrates an overview of the training process for 

the TAC automatic fitting program using U-net as an autoencoder.
One-peak original chest RI-angiography and manual fitted 

TACs obtained from 50 patients (male:21, female: 29, mean 
age: 73.9 years) images by setting the 123I-IMP PA as the ROI 
and two-peak original and manual fitted TACs from 44 patients’ 
(male: 20, female: 24, mean age: 60.3 years) images by setting 
the 99mTc-ECD AAo as the ROI were used as the training and 
validation datasets, respectively. 

The image format required for DCNN processing is the 
Portable Network Graphics (PNG) format. Therefore, TACs 
were converted to the PNG format using our original program 
developed in the Python programming language. All images 
were processed as detailed above and, then, prepared as 
256 ≈ 256 matrices. Additionally, by performing expansion of 
the curve along the x-axis and y-axis, the number of images 
was augmented 32-fold, and the learning data set was prepared. 
For the final image, the PNG image obtained using DCNN was 
reformatted into a TAC using the original image pixel counts.
Evaluation

The final test dataset of one-peak TACs for the 123I-IMP 
SIMS method comprised data from 34 (male: 15, female: 19, 
mean age: 60.3 years) out of 84 patients. For the two-peak 
TACs for the 99mTc-ECD IBUR method, the final test dataset 
included data from 50 (male: 29, female: 21, mean age: 61.3 
years) out of 94 patients who underwent 99mTc-ECD 
RI-angiography at Kumamoto University Hospital.

To assess the utility of DCNN fitting, we compared the 
obtained AUC values in counts/cm2 between the manual 
method (used as control data) and the EM and DCNN methods, 
thereby elucidating the advantages of DCNN. 

Statistical analysis
In this study, we investigated the relationship between AUC 

values obtained using three different fitting methods: manual, 
EM, and DCNN. We used correlation analysis to assess the 
degree of association between these AUC values, and the 
Pearson correlation coefficient (r) was calculated. We utilized 
MedCalc Statistical Software version 20.115 (Med Calc. Fig. 3. EM Algorithm
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Software Ltd., Ostend, Belgium) for the statistical analysis. 
Statistical significance was set at p<0.001. To further evaluate 
the agreement between the AUC values obtained by the manual, 
EM, and DCNN fitting methods, we employed the Bland–
Altman analysis. This method allows us to assess the level  
of concordance between the measurements of these variables. 
The Bland–Altman plot displays the differences between 
measurements on the y-axis and the averages of measurements 
on the x-axis. When the plotting data points cluster closely 
around zero, it indicates good agreement with minimal 
systematic bias.

Results
Figures 5a and 5b show the overlaid plots of the 

monomodal TAC and bimodal TAC, respectively, obtained 
using the DCNN method and the original TAC obtained by the 

manual method. Visually, a good match is observed. Similar 
TAC fitting results as in Figures 5a and 5b were obtained for 
other cases as well.

Figure 6a depicts the relationship between AUC values for 
perfusion assessment using the 123I-IMP SIMS method obtained 
manually and through EM. The relationship between the  
EM AUC (y) and manual AUC (x) is described by 
y = 0.961x + 2.822, with a correlation coefficient of 0.97. In 
the Bland–Altman plot, the mean difference is 2.0%, and the 
1.96 standard deviation (SD) is approximately ±22%, indicating a 
good agreement between the two methods.

Figure 6b illustrates the relationship between AUC values 
obtained manually and that obtained through DCNN. The 
relationship between the DCNN AUC (y) and manual AUC (x) 
is expressed as y = 1.004x - 2.043, with a higher correlation 
coefficient (0.99) compared to that of the previous case. In the 

Fig. 4. Training process for the TAC automatic fitting program using U-net as an autoencoder.
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Bland-Altman plot, the mean difference is 1.1%, and the 1.96 
SD is approximately ±15%, showing that the DCNN method 
exhibits even better agreement with the manual method. No 
systematic errors were observed in either case.

Figure 7a illustrates the relationship between AUC values 
obtained by the manual and EM methods for the AAo using the 
99mTc-ECD IBUR method. The relationship between the EM 
AUC (y) and manual AUC (x) is described by 
y = 0.995x + 7.023, with a correlation coefficient of 0.93. In 
the Bland–Altman plot, the mean difference is -1.9%, and the 
1.96 SD is approximately ±22%, indicating a good agreement 
between the two methods.

Figure 7b shows the relationship between AUC values 
obtained manually and those obtained through DCNN. The 
relationship between the DCNN AUC (y) and manual AUC (x) 
is expressed as y = 1.021x - 2537, with a higher correlation 
coefficient (0.99) compared to that of the previous case. In the 
Bland–Altman plot, the mean difference is -1.0%, and the 1.96 
SD is approximately ±8%, showing that the DCNN method 
exhibits very good agreement with the manual method. No 
systematic errors were observed in either case.

Discussion
In this study, we developed an automated TAC fitting 

program using a DCNN to calculate the curve integrals (AUC) 
derived from TAC analysis. Additionally, to evaluate TAC 
fitting, we constructed a mathematical approach using the EM 
algorithm, which is used in clinical practice. By comparing the 
AUC obtained through the manual, EM, and DCNN methods, 
we clarified the accuracy of the DCNN method.

Both the one-peak TAC for 123I-IMP SIMS method and the 
two-peak TAC for 99mTc-ECD-IBUR method showed good 
matches with the original TACs obtained by the manual method, as 
depicted in Figures 6 and 7. According to the Bland–Altman 
analysis, the AUC values between the EM and manual methods 
were in agreement within an error range of approximately ±20% 
for both the 123I-IMP SIMS and 99mTc-ECD IBUR methods 
(Figures 6a and 7a). On the contrary, the AUC values between the 
DCNN and manual methods were in agreement within an error 
range of ±15% for 123I-IMP SIMS and ±8% for 99mTc-ECD IBUR 
methods (Figures 6b and 7b). In other words, the error range for the 
EM method was approximately twice that of the DCNN method. 
Therefore, the DCNN method is superior to the EM method.

Fig. 5. TAC fitting. a: 123I-IMP SIMS 1peak TAC, b: 99mTc-ECD IBUR 2 peak TAC.
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In this study, TACs for the 123I-IMP SIMS and 99mTc-ECD 
IBUR methods often become complex graphs due to factors 
such as injection speed and patient-specific characteristics. As a 
result, a significant amount of time is often spent identifying 
the optimal functions for TAC analysis4–7). In this program, we 
developed an automated TAC fitting program using a DCNN to 
calculate the curve integrals (AUC) derived from TAC analysis. 
Furthermore, we have already developed an automated ROI-
setting program based on brain perfusion SPECT image 
analysis from the SIMS and IBUR methods, allowing fully 
automated quantitative analysis to be completed within one 
minute without manual intervention by the operator.

In the manual method, we trained the model using TAC 
obtained through fitting by experts in non-invasive 
quantification methods. The DCNN method was designed 

based on the manual method, faithfully reproducing it. By 
contrast, the EM method involves a sequential approximation 
strategy focused on the TAC peak, while the DCNN method 
offers a more comprehensive fitting strategy believed to be 
advantageous, especially for capturing the complexities of 
TACs with multiple peaks. Therefore, the DCNN method, 
effectively prioritizing clinical input counts over the 
mathematically accurate EM method, was deemed superior. 

By achieving high accuracy in AUC calculations, we can 
address the challenge of maintaining the precision of input 
function estimation in non-invasive cerebral blood flow 
quantification. This advancement is crucial because accurate 
AUC values are essential for quantifying physiological 
processes and drug uptake kinetics, directly impacting fields 
like nuclear medicine and pharmacokinetics25–29). Additionally, 

Fig. 6. �Relationship between AUC values obtained by the manual and EM methods for the PA using the 123I-IMP SIMS method. a: EM—
manual AUC values, b: DCNN—manual AUC values.
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our method suggests the potential for automation in various 
image analyses and the development of non-invasive quantitative 
methods across all areas of nuclear medicine examinations in the 
future.

In this program, we used 34 cases with one-peak TACs and 
44 cases with two-peak TACs for training. However, increasing 
the number of training cases can lead to further improvement  
in accuracy. Furthermore, while we used cases that were 
successfully fitted by conventional methods for training, 
gradually incorporating cases successfully fitted by this 
program as training examples can lead to the possibility of 
performing TAC fitting using DCNN alone in the future, which 
is expected to result in even higher accuracy. Additionally, in 
this program, we separately trained autoencoders for one- and 
two-peak TACs and used them for fitting. With improvements 

in the training methodology, it is conceivable that a program 
capable of fitting both one- and two-peak TACs can be 
developed, further simplifying the process. 

This study presents results from a single institution. 
Therefore, it is necessary to conduct validation studies using 
equipment from several institutions. Regarding the EM method, 
it was inferior to DCNN, but further improvement in accuracy 
can be expected through refinements such as revising the 
approximation formula and adjusting the parameters. 

Conclusion
This study aimed to evaluate the effectiveness of the DCNN 

automatic TAC fitting method for input function determination 
in non-invasive cerebral blood flow quantification methods, 
specifically the 123I-IMP SIMS method and the 99mTc-ECD 

Fig. 7. Relationship between AUC values obtained by the manual and EM methods for the AAo using the 99mTc-ECD IBUR method. a: 
EM–manual AUC values, b: DCNN–manual AUC values.
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IBUR method, within the field of nuclear medicine. Our 
findings indicate that the DCNN method provides accuracy 
equivalent to those of manual methods and even slightly 
superior to that of the EM method. This suggests that the 
DCNN method has significant potential for clinical application, 
potentially streamlining and improving the accuracy of non-
invasive cerebral blood flow quantification. The clinical 
significance of these results lies in the potential for enhancing 
the precision of physiological measurements and drug uptake 
kinetics in nuclear medicine and pharmacokinetics, ultimately 
benefiting patient diagnosis and treatment. The ability to 
automate TAC fitting with high accuracy offers promising 
opportunities for broader applications within the field of 
nuclear medicine. For future research, it is essential to validate 
our findings using different equipment in various facilities to 
ensure the robustness and generalizability of the DCNN method. 
Improvements in accuracy can also be explored through 
modifications to the approximation formula and parameter 
adjustments in the EM method. This study not only extends our 
understanding of TAC analysis methods but also paves the way 
for the clinical application of the DCNN automatic TAC fitting 
method in various domains. By improving accuracy and 
streamlining the processes, this research contributes to the 
advancement of non-invasive quantitative analysis techniques 
in nuclear medicine and pharmacokinetics, ultimately benefiting 
patient care and diagnosis.
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