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Abstract: Nowadays, the output feedback control method based on the Almost Strictly Positive
Real (ASPR) property gets many attentions and has been researched widely. ASPR models can
be stabilized by applying simple output feedback control; so the designed controllers have a
simple structure. However, the systems have to satisfy quite strict conditions in order to obtain
ASPR-ness, although almost all practical systems do not have the ASPR property. Therefore,
for relaxing those conditions, the introduction of a Parallel Feedforward Compensator (PFC)
has been proposed. This method can render the resulting augmented system ASPR. Up to now,
several PFC design methods have been proposed, and one of them is an adaptive PFC design
scheme. This technique has a feature that it can design a PFC automatically by utilizing online
data. Furthermore, for the purpose of output regulation, the control design methods with an
adaptive PFC have been proposed. Unfortunately, however, in almost all schemes, the discussion
on the convergence of actual errors has not been conducted. Therefore, in this paper, introducing
a virtual PFC model and an auxiliary input for ensuring ASPR-ness, a new ASPR-based output
feedback control method is proposed, and the stability analysis and convergence of the actual
error are discussed. Finally, the effectiveness of the proposed method is confirmed via numerical

simulations.
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1. INTRODUCTION

Recently, with technology advances, controlled systems
have become more complex and with higher orders, and
controlling such complicated systems efficiently and safely
is an important issue. Therefore, several control schemes
such as model predictive control (Garcia et al., 1989;
Yoon and Clarke, 1994) and model reference adaptive con-
trol (MRAC) (Monopoli, 1974; Nam and Araposthathis,
1988) have been proposed to tackle this challenge. How-
ever, in model predictive control, it requires more accu-
rate controlled system models to achieve better control
performance. On the other hand, in the MRAC method
initiated by Monopoli (1974), it was only required to know
some rough information about the controlled systems such
as orders of plants to design controllers. Furthermore, in
these two types of methods, since controllers should be
designed according to plant orders, as the plant dimension
becomes higher, controllers have a more complex struc-

ture, resulting in extra difficulties in the implementation
of controllers.

Therefore, the control system design scheme based on
Almost Strictly Positive Real (ASPR)-ness, with the ad-
vantage that controllers have a relatively simple struc-
ture, has been proposed and implemented (Bar-kana, 1987;
Mizumoto and Iwai, 1996; Kaufman et al., 1997; Fradkov
and Hill, 1998; Kim et al., 2016). The definition of an
ASPR system is that the resulting close-loop system by
applying the output feedback is Strictly Positive Real
(SPR) (Bar-Kana, 1991). As one of the characteristics on
an ASPR model, it is known that the control system can be
stabilized by simple output feedback control. That is why
the designed controllers can have the simple structure. For
ensuring ASPR-ness, three conditions should be satisfied:
1) the relative degree of the system is 1 or 0; 2) the
system is minimum-phase; 3) the high frequency gain of
the system is positive. However, those three conditions,
especially 1) and 2), are strict for practical systems; thus
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the applicable areas of this ASPR-based output feedback
control had been limited in the past.

Taking this restriction into account, in order to relax the
above three conditions, several alleviating methods have
been proposed (Astrom, 1980; Bar-kana, 1987; Fradkov,
1996; Mizumoto and Iwai, 1996). One of them was to in-
troduce a Parallel Feedforward Compensator (PFC) (Bar-
kana, 1987; Mizumoto and Iwai, 1996). In this method,
a PFC is applied to the controlled system in parallel as
shown in Fig. 1 to render the augmented system ASPR.
After applying the PFC, the augmented system applied
with the output feedback control can be stabilized. How-
ever, any given PFC cannot render the augmented system
ASPR; so it is important how to select PFC. For now,
several PFC design methods have been proposed such as a
model-based PFC (Mizumoto et al., 2010) and an adaptive
PFC (Takagi et al., 2015). Among them, it is supposed
that the adaptive PFC design method is more effective
for uncertain systems since it does not need accurate in-
formation about the plant. After those methods had been
developed, it turned out to be relatively easy to obtain the
ASPR property; so more practical control design methods
with a PFC have been proposed to solve different control
tasks, including output tracking (Mizumoto et al., 2010;
Mizumoto and Kawabe, 2017). In Mizumoto and Kawabe
(2017), by introducing a feedforward input based on a
radial basis function neural network (RBF NN), output
tracking is achieved. In Mizumoto et al. (2010), a PID
controller is applied with a PFC for the same purpose. In
those methods, the stability of the designed control system
is guaranteed based on the ASPR-ness, but the discussion
on convergence of the actual error was neglected.

In this paper, considering the virtual PFC model and
introducing an auxiliary input to guarantee the ASPR
property, a new output feedback control method based on
ASPR-ness is proposed for ensuring the convergence of the
output tracking error. Furthermore, we compose a two-
degree-of-freedom (TDOF) system with the feedforward
based on RBF NN to achieve output tracking. In addition,
we verify the stability of the resulting control system
and the convergence of the actual error throughout the
numerical analysis. Finally, numerical simulation is done
to confirm the effectiveness of the proposed method.

2. PROBLEM STATEMENT

In this paper, the following n-th order LTI continuous time
stable SISO system is considered:

z(t) = Aaz( ) + bu(t)
y(0) = (), .
where, ®(t) € R™, u(t) and y(t) € R are the state vector,

input and output, respectively. A € R™*™ is an unknown
matrix, and b, ¢ are unknown vectors.

At this moment, regarding G(s) as the transfer function
of the control system in (1), the system output y(t) will
be also expressed as

y(t) = G(s)[u(@)]- (2)
This notation in (2) means the output of the system G(s)
under the input wu(t).
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ASPR system

Fig. 1. The augmented system with a PFC

For ensuring the existence of an ideal feedforward input
v*(t), the following assumption about reference signals is
imposed.

Assumption 1. The reference model r(t) should be gen-
erated by the following neutral stable exo-systems:

8(t) = m(s(t))

r(t) = ¢(s(t))

p(0) = 0, ¥(0) =0
where s(t) € R" is an unknown vector, and this exo-
system is neutral stable, which means all eigenvalues on

2] "t e

on the imaginary axis (Isidori, 1995).

the linear approximation A, =

Under this problem formulation, we design an output
feedback control system based on ASPR-ness with a vir-
tual PFC. In addition, we introduce the RBF NN-based
feedforward input to achieve the output regulation.

3. THE DEFINITION OF THE IDEAL PFC

Here, the ideal PFC is defined (Mizumoto and Kawabe,
2017). First, designers give an n,-th ASPR model for the
controlled system (see Fig. 1). Then, it is supposed to be

Gr(s) = Mal®) _  Manao18" T+ 4 na1s + o
¢ d:;(s) sMa +dana718na_l +"'+da15+da07

and the ideal ASPR model output 7, (t) can be obtained
as

Yau(t) = Go () [u®)] = y(t) + 7, (1), (3)
where y3, (t) is the ideal PFC output, and it is an available
signal since y(t) is measurable. Here, take the ideal PFC

model H*(s) as

bnhflsnh_l + -4+ b18 + bO

H*(S) _ n*H(S)

Codi(s) s A an, 5™l b ags + ao;
Y7,(t) can be also expressed by
Yru(t) = H"(s)[u(t)]. (4)

Note that the ideal PFC model H*(s) is unknown.
Furthermore, introducing the following filter f(s) to (4),

1 1 (5)
f(S) smh +fn;L—18nh_1+"'+f13+f0’
eventually, we can transform y},(¢) into the parametric
representation as

2s)
/(s)

i)+ 2 ) =

e Py Z5u(0), (6)

Yru(t) =

where,
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p; = [znh—l Znp—2° 20 by —1bp,—2 - bO}T7
(zi = fi —a;) (7)
S"”_l 1
th—l 1 T
m[u(t)] - m[u(t)] ) (8)

Here, we approximate the ideal PFC output y}, (t) with a
smaller order ny.

Assumption 2. For the given order as ny < n,+n and a
compact set 0(t) := [y}, (1), u(t)]” € Qp C R?, the ideal
weight vector p}, is defined as

P?zz?uz(tﬂ} 9)

Py = argmin { sup [y, (t) —

P ER™ Q)eay
subject to by,—1 7 Nan, 1
where 27%,,(t) is the same as (8) substituting ns = ny, and
then the ideal PFC output y}éu(t) can be approximated as
(10)

i) = P11 25 (t) +€pu(t),

satisfying

lerur®)] < €funs [Eru(t)] < €futo-
Remark 1. Note that if the order of the filter f(s) is given
as ny < ng, then we can make sure ny < n, +n.

4. THE IDEAL FEEDFORWARD INPUT

As mentioned before, under Assumption 1, there definitely
exists an ideal feedforward input v*(¢) (Isidori, 1995). It
can be composed as a non-linear function of s(t) such as
v*(t) = c(s(t)). Here, we try to approximate this function
by using the following signal based on RBF NN:

o(t) = ps . (s(1)), (11)
where, ¢,(s(t)) is a given ls-th radial basis function and
p, is a weight vector. For sufficiently large node [, and a
compact set S5 € R", the ideal weight vector p¥ is defined
as

— P ds(s())I},

and then, the approximation of v*(t) can be expressed as

vi(t) = T du(s(1) +es(s()), les(s()] < e,
where e4(s(t)) is an approximation error and should be
bounded (Ge et al., 2002).

ps =arg min{ sup [|[v*(¢) (12)

P.€R's S(t)eS,

5. THE ADAPTIVE CONTROL SYSTEM DESIGN
WITH AN AUXILIARY INPUT

In this section, considering the virtual PFC, an adaptive
control system design scheme is explained, and Fig. 2 is
the final obtained system.

Using (3), the actual output y(t) can be expressed as

y(t) = Ga(s)[u(®)] = y7.(0),

and, from Assumption 2, y(t) can be represented as
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s(t)
Adaptive FF
+ v(t)
o PO~ e® u®) ]y
system ¥ G(s)
-Adaphve
P;L(t)i;ul(f) Compensator
Fig. 2. The adaptive control system
y(t) = Go()u®)] — P 25 (t) — € gult)-
Now, considering the following signal
i Z5u(t) = Go(s) [P 2 (1)) (13)
Pfl Zful a\S)Pf1 Z ful
Zha(t) =G (9) 25 (t)] (14)
Eru(t) = Go 7 (s)leu ()], [Epu(t)] < €fu (15)

we have

y(t) = Go(s)[u(?)

= P Zju(t) = Eru(t)].

Finally, y(t) can be also expressed as
y(t) = Ga()[u(t) = pji Zju(t) — Eru(t)] £ G (s)[v" (1))
=Ga(s)ult) —v*(t) = P Zpu(t) = Epur(t)]
+G () (O] + H (s)[v* (1)),

and utilizing the following relationships

e(t) = y(t) —r(t), r(t) = G(s)[v" (1)]
eno(t) = G () H (s)[v" ()], [eno ()] < s
)

we have that the actual error e(t) can be obtained as

e(t) = Ga(s)[u(t) — v*(t) = pji Zju(t) = Eur(t) + eno(t)]-

Here, the control input is designed as

u(t) = ue(t) + v(t) (16)
ue(t) = —k(t)e(t) + pfi(t)Z . (t) (17)
v(t) = ps (), (s(1))- (18)

The first term in (17) plays a role as the output feedback,
and the second term in (17) plays a role as the auxiliary
input to ensure the ASPR-ness of the system. Moreover,
(18) is the actual feedforward input.

Each parameter is estimated by adjusting laws as follows:

k(t) = e (t) — ouk(t) (19)
pfl( )= —Ffzzfuz(t) e(t) —onpp(t) (20)
ps(t) = =T (s(t))e(t) — aspy(s(t)), (21)

where I‘fl =Ty >0, FS =TIy >0 and yx,0k,04,0, > 0.

Eventually, the actual error system can be represented as

e(t) = G (s)[=k(t)e(t) + Apg (1), (s(1))
+HAPL ()25 (t) + eno(t) — Epult) —

3 es(1)]-(22)
where, Ap,(t) := p,(t) —

)
ps App(t) = pp(t) — ph-
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6. THE STABILITY ANALYSIS

Since G%(s) has a relative degree of 1 due to ASPR-ness,
(22) can be transformed to the following canonical form:

é(t) = —(bak™ — aq)e(t) + ba{—Ak(t)e(t)
+Apl(t)e (S(t)) + APfl( )23 (1)
Feno(t) = es(t) = Eru(t)} + ey (t)
M4(t) = Agn,(t) + bye(t ),

with an appropriate constant a, and a positive constant b,
and an appropriate vector ¢,,. Where, Ak(t) := k(t) — k*
with an ideal feedback gain k*. Since G%(s) is minimum-
phase, A, should be a stable matrix, and then it is ensured
the existence of symmetric positive definite matrices P,
and @, satisfying the following Lyapunov inequality:

T
A, P+ PyAy = —Qy <0.
Now, the following Lyapunov function is set:

(1) + T (1) Pyma(t) + 22 AR (1)
Yk

+ba ApL (DT Ap,(t) + ba AP [ (DT 7 Ap (1),

Eventually, the time derivative of V'(¢) is evaluated as

. 1 1 1
< — * _ - 2
Vit) < Q{ba <I<; 256) Gq ~ %, 3, }e (t)

V(t) =

—(Amin[Qn] = 01llen | = 8211Pyby |2 1. (8) ]|
b a0k
2R AR (t
- (t)
—ba051(2Amin [T _1] —53)||Apﬂ(t)||2
~ba0s(2Amin[L5 1] — 64) [ Ap, (1) ||
baok % b Ul
ok 242 ||Fﬂ IR
b Us ba
s Y2 ||ps||2

Je
with p081tlve constants 01 to 04 and d.. Here, |ep,(t) —
éfl(t) - €5(t)| <eg*.

By considering a sufficiently large value of k*, there
exist 07 to 94 and J. such that all coefficients on
e(t), m,(t), Ak(t), Apy(t), Apy(t) are positive, so these
five signals must be bounded.

Next, the boundedness of the signal z7%,,(?) is discussed.
Before that, we consider z},,() as follows:

T RO I
7@ O om@ a1

We apply G%71(s)G%(s) to the element related to wu(t).
Here, y¥,(t) can be obtained as

Gul(s)[=k(t)e(t) + p7 (1), (s(1))
+Ap 1 (HZ 5 (D] + P 2 (1)

=y1(t) + P 2 (D),

Zpa(t) =

Yault) =

where
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yi(t) = Go(s)[=k(t)e(t) + pI (1) (s(t)) + Apfy (1) 2}, (1)].

Furthermore, from (22), it can be obtained that

e(t) = Gu(s)[=k(t)e(t) + pg ()4 (s()) + Apfy (1) 2 (1)]
+Go(8)[=piT D (5(1)) + eno(t) — Epur(t) — es(t)]

(
Since e(t) and —p* Tqbs( (t)) —|—€;w(t) Erul(t) — es(t) are
bounded and n}(s) is stable, y1(¢) is bounded.

Then, given that y},(t) = p’}sz}ul(t) + epw(t) and y1(t),
2%,(t) can be also expressed by

* _C al O Lty t 0
2p(t) = 6 Cfaz] [‘E;hgtﬂ déh] u(t)
= Cfawfa (t) + dya(y1(t) + Pl 23 (1)), (23)

%, () = x

i )+ bfal(sz 25 (t) + e ru(t))

+bfa2(y1( )+Pfl 253 (t))
= Araxy,(t) + bfa3Pfl 25 (t)
+bfa1€ful (t) + bfa2y1 (t)7 (24)

with appropriate matrices Crq1, Cra2 Af, Afn and vec-
tors bra1, bra2, braz = bpa1 + bpee and scalar dyp, =

1/nan,—1; and x3,(t) := [(B}E(t), mﬂ(t)]T

Since f(s) and n}(s) are given as stable polynomials, Ay,
should be a stable matrix. Therefore, there exist symmetric
positive definite matrices Py, and @) ., which satisfy the
following Lyapunov inequality:
A?apfa + PfaAfa = —Qfa < 0.

From (23), it can be obtained that

bnf—l

P 2 jui(t) = PYi Craaa(t) + (W1 (t) + P 2 (1))

ang—1
where pﬁdfa =bn;—1/Nan,—1-
Under Assumption 2, it can be obtained that

nanafl b"f—l

Pii Craya(t) + y1(t) (25)

ab Nab

by 1.

Setting Via(t) = L (t) Prax}, (1), Via(t) is

P Zpu(t) =

where ngp = Ngn,—1 —

Via(t) = =275 ()Qfa (1)

Znana -1 %

+ fa(t)Pfabfa3p;?Cfam;a(t)

Nab
+ anf—l

* (t)Prabrg t
-~ x4 (t) Prabyasyi (t)

2% (t) Prubpun e pu(t) + 255 () Prubpuoyi (t)
Here, the following assumption related to p;‘cl is imposed.

Assumption 3. There exists p}; which satisfies either of
the following three cases:

Case 1: ng, > 0, and all eigenvalues of Pfabfa3p}g10fa is
negative or 0.



Kota Akaike et al. / IFAC PapersOnLine 56-2 (2023) 9245-9250

Case 2: ngp < 0, and all eigenvalues of PfabfagpjllTC'fa is
positive or 0.
Case 3: ||Pfabfa3p}lTC’faH < Amin[Qfal-

Under Assumption 3, it can be evaluated that

Via(t) < —(Aminl@ral — 0ra1llPrabrasl® — 6 a2l Prabyaz|®
—08¢asl| Prabsar||*]) 12}, (t) ||

(et s Do+ s
- +— +——ch,
5fa1n3b 5fa2 y 6fa3 ful

with some positive constants 0,1 and dfq3. By setting
0 < ||Qsall < 1, the coefficient on @%,(t) should be

positive, so the boundedness of x},(t) can be ensured.

Moreover, under Assumption 2 and from (23), we can
obtain that
(I = dfapii )2 5u(t) = Cratia(t) + drayn(t)
2hu(t) = BT Cra}y (t) + B~ dpaya (1) (26)
with B = I — d.p},. It can be evaluated that
125l < exll25,(0)] + ealya (0] + 5 < +oc.
with positive constants ¢; to cs.
Finally, the boundedness of Z’Jiul(t) is discussed based on

the preliminary. Here, it can be obtained from (14) that
sMae + dana—lsna_l + -+ dals + daO

z%(t) = x (4

zful( ) n(ma_lsnafl + o ng1S + Ngo [zful( )]
1 .

= o Fra®) Fyp ) T yp(t), (27)

where m is an appropriate constant and m(s) is an

appropriate polynomial, and since z}ul(t) is bounded and
*

ng(s) is a stable polynomial, y(t) = mz},(t) and
t) = ——=[2%,,(t)] are bounded.

Here, £%,,(t) can be obtained as

Z5(t) = E7'Cra},(t) + B~ 'dyatn (t)
= E7'Cra(Apat},(t) + brazpfl 2, (t) + brazya (t)

+brarefu(t)) + B dyatn (t).
Since G (s) is an ASPR model, y;(¢) can be obtained as

91(t) = aay1 (t) + ba(—k(t)e(t) + pL (1), (s(t)
+APL(DZ}u(t) + ey (1)
1) = Ay, (£) + byya (B).
Then, 2%,,(t) can be also represented as
Zu(t) = B Cra(Apu@hy, (1) + bruspfi 27u(t) + bruayn (t)
+brureru(t) + B~ dga{aay: (t) + ba(—k(t)e(t)
+p5 ()@, (s(t) + Apfy ()25, (1) + cym ()}

Setting V,(t) = 0¥ (t)Pyn, (t), Vy(t) can be obtained as

. 1
V(1) < =Amin[@n] — 89| Py 1) [m1 (1) + ;yf(t)
n
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Since y (t) is bounded, there exists 0, that the coefficient
on m,(t) is positive, which leads to the fact that m(¢) is
bounded.

Defining

z(t) = B~ Cra(Agu}, (t) + brure pu(t) + bruay ()
+E dya{aqi (t) + ba(—k(t)e(t) + pl (£)py(s(t)))

+epmy (1)},
we have that it is a bounded signal. Therefore, it can be
obtained that

Z5(t) = E7 Crabruspfl 25u(t) + 2r(t)
b B A ()Z ().
Then, from (27), E}M(t) can be expressed by
1
Nan, —1
0 B o Apfi ()25, (1)) + y 1 (1) + Y pa(t).

From b, = ngn,—1, setting F(t) = I = E’ldfaAp?l(t),
we can obtain that

Zpa(t) = (B~ Crabruspii 2pu(t) + 2 (t)

1

P70 = - —{ B Crabpapif 25l + = (1)}
ang—

Ty () +ypot). (28)
Here, the following assumption for the designed PFC
parameter is imposed.

Assumption 4. For all operating time, the PFC parame-
ter by, 1(t) is designed which satisfies by, —1(t) # Man, 1

Remark 2. Under Assumption 2, by setting I't;, o ap-
propriately, Assumption 4 can be satisfied.

Under Assumption 4, the inverse matrix F~!(¢) exists.
Therefore, from (28), we can obtain that

127 < crarllZza @] + crazlly i ()]

Feraslly pa2 (Ol + craallzr ()] + cras
with positive constants cfq1 to cpe5. Since all the signals
in the right-hand side are bounded, 27%,,(t) is bounded.
Hence the following result is obtained.

Theorem 1. All the signals in the control system com-
posed of (16) to (22) are bounded provided Assumptions
2-4 hold.

7. THE CONVERGENCE OF THE ACTUAL ERROR

By setting 3 = Anin[['7'], 64 = Amin[L5 1], 60 = &%, R*
can be represented as

2 b0 b
Vi k*
banl”Fﬁl”Q * 112 ba05||F5_1H2 *1|2
W\\pﬂll + mllpsll .
Then, it can be obtained that
V(t) < —a1€?(t) + R*. (29)

Integrating and taking limit of (29), we can eventually
evaluate
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---- Reference
— Control Output

0 10 20 30
Time [sec]

Fig. 3. The reference signal and output

1 T R*
lim —/ A(t)dt < —.
T 0

T—o0 (051
Applying the Cauchy-Schwarz inequality, we have that

T *
lim %/0 e(t)|dt < | 2.

T—o0 (6751

Here, we set some parameters as follows:

—12 _
%< 2 Ufl”Ffl | <1 Us||Fsl||2

< ) - <1, T <1, (30)
Tk )\mzn [Ffll] /\min [Fs 1]
and then, we can evaluate that
1 T R* 1
. - < *—1/2 .
Th_{r;O T /0 le(t)|dt < o € o(k ) (31)

This leads to the following result.

Theorem 2. Under the conditions in (30), the mean abso-
lute value of the actual error e(t) satisfies the convergence
condition given in (31).

8. THE NUMERICAL SIMULATION

At this time, we set the following 3rd-order non-minimum
system having a relative degree of 2:

—100s 4 1200
= . 2
() = #1157 1 500s 1 2500 (52)
This model in (32) is definitely a non-ASPR model. Thus
we give G (s) and f(s) as follows:

Gr(s) — 5110 1 1
o\ T 2 505 + 1007 f(s) 52+ 24s + 144

The parameters are set as

e =50, op =107, I'y =10, 0, =107
't =diag[10, 10, 1, 10], o4 = 107°.

The initial values of the parameters are given by

k(0) = 0,ps(0) = 0, p5(0) = [1,1,0.5,1]".

The result is shown in Fig. 3, which shows the reference
signal and output. The system output tracks the step
signal quite accurately.

9. CONCLUSION

In this paper, a new ASPR-based output feedback control
method was proposed with a virtual PFC model. In addi-
tion, introducing an RBF NN-based feedforward input, we
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obtained output tracking with respect to the actual out-
put. Finally, the stability of the obtained control system
and the convergence of the actual error were ensured with
some assumptions. In the future, we would analyze how to
set design parameters for Assumption 4.
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