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Abstract 

The human TRKA gene encodes a high-affinity tyrosine kinase receptor for nerve growth 

factor. Congenital insensitivity to pain with anhidrosis (CIPA) is an autosomal recessive 

genetic disorder reported from various countries and characterized by anhidrosis (inability 

to sweat), the absence of reaction to noxious stimuli, and mental retardation. We have found 

that TRKA is the gene responsible for CIPA. We have studied TRKA in 46 CIPA 

chromosomes derived from 23 unrelated Japanese CIPA families, including three that have 

been previously reported, and identified 11 novel mutations. Four (L93P, G516R, R648C, 

and D668Y) are missense mutations that result in amino acid substitutions at positions 

conserved in the TRK family, including TRKA, TRKB and TRKC. Three (S131fs, L579fs, 

and D770fs) are frameshift mutations. Three (E164X, Y359X, and R596X) are nonsense 

mutations. The other is an intronic branch-site (IVS7-33T A) mutation, causing aberrant 

splicing in vitro. We also report the characterization of eight intragenic polymorphic sites, 

including a variable dinucleotide repeat and seven single nucleotide polymorphisms, and 

describe the haplotypic associations of alleles at these sites in 106 normal chromosomes and 

46 CIPA chromosomes. More than 50 % of CIPA chromosomes share the frameshift 

mutation (R548fs) that we described earlier. This mutation apparently shows linkage 

disequilibrium with a rare haplotype in normal chromosomes, strongly suggesting that it is 

a common founder mutation. These findings represent the first extensive analysis of CIPA 

mutations and associated intragenic polymorphisms; they should facilitate the detection of 

CIPA mutations and aid in the diagnosis and genetic counseling of this painless but severe 

genetic disorder with devastating complications. 
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Introduction 

Nerve growth factor (NGF), the first growth factor identified and characterized, supports the 

survival of sympathetic ganglion neurons and nociceptive sensory neurons in dorsal root ganglia 

derived from the neural crest and ascending cholinergic neurons of the basal forebrain 

(Levi-Montalcini 1987; Thoenen and Barde 1980). TRKA (also named NTRK1) was isolated from 

a colon carcinoma as a potential new member of the tyrosine kinase gene family (Martin-Zanca 

et al. 1986) and was later found to be expressed in the nervous system (Martin-Zanca et al. 1990). 

TRKA protein is a receptor tyrosine kinase that is phosphorylated in response to NGF (Kaplan et 

al. 1991; Klein et al. 1991). The human TRKA gene maps to chromosome 1q (Miozzo et al. 1990; 

Morris et al. 1991). 

Congenital insensitivity to pain with anhidrosis (CIPA: MIM 256800) is a rare autosomal 

recessive disorder, also known as “congenital sensory neuropathy with anhidrosis”, “hereditary 

sensory and autonomic neuropathy type IV” or “familial dysautonomia type II”. It is 

characterized by recurrent episodes of unexplained fever, anhidrosis (inability to sweat), the 

absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation (Dyck 

1984; McKusick 1994; Swanson 1963). A case similar to CIPA was reported in terms of 

“generalized anhidrosis” in Japan (Nishida et al. 1951). A pathological feature of CIPA is the 

absence of small diameter afferent neurons that are activated by tissue-damaging stimuli (Rafel et 

al. 1980; Swanson et al. 1965). Anhidrosis is probably attributable to a loss of the innervation of 

eccrine sweat glands by sympathetic neurons (Ismail et al. 1998; Langer et al. 1981).  

Mice lacking the orthologous gene of human TRKA share dramatic phenotypic features of 

CIPA, including the loss of responses to painful stimuli (Smeyne et al. 1994; Snider 1994). 

However, anhidrosis is not apparent in these animals. The deficient mice also have extensive 

neural cell loss in all dorsal root ganglia neurons associated with nociceptive functions. We have 
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therefore considered human TRKA as a candidate gene for CIPA and identified the genetic basis 

for this disorder by detecting mutations in the TRKA gene in an Ecuadorian and three Japanese 

families (Indo et al. 1996). We and others have independently determined the structure and 

organization of human TRKA (Greco et al. 1996; Indo et al. 1997). Recently, we have established 

a method to amplify all coding exons from genomic DNA and analyzed seven CIPA families 

from five different countries; our results suggest that TRKA mutations cause CIPA in various 

ethnic groups (Mardy et al. 1999). 

In the present study, we have investigated the TRKA gene for mutations and intragenic 

polymorphic sites in 106 normal and 46 chromosomes derive from 23 unrelated CIPA families, 

including three that have been previously reported. We have detected 11 novel mutations and 8 

polymorphic sites and characterized the haplotype association. A common founder mutation in 

the Japanese families seems likely. The analysis of the associations between the CIPA mutations 

and the TRKA polymorphisms provides useful data for population genetic studies and for 

investigating the history of the mutations. 
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Materials and methods 

Patients 

We studied TRKA in 46 CIPA chromosomes derived from 23 unrelated Japanese CIPA families, 

including three that had previously been reported. Family KI-15 had two affected siblings. CIPA 

was diagnosed in all patients on the basis of clinical findings or by pharmacological and 

pathological analyses. They had characteristic features of CIPA, viz., recurrent episodes of fever, 

insensitivity to pain, and anhidrosis. Five families (KI-01, KI-02, KI-03, KI-0, 5 and KI-11) were 

consanguineous. A study of mutations but not polymorphism for the remaining three families 

(KI-01, KI-02 and KI-03) has been reported (Indo et al. 1996). Clinical data on the KI-04 patient, 

including a radiological study, has also been reported (Iwanaga et al. 1996). At least 32 

unaffected Japanese individuals were screened in order to verify that mutations found in the CIPA 

patients were absent in the normal population. DNA samples for all patients, their family 

members, and normal individuals were obtained from peripheral blood leukocytes using 

Puregene kits (Gentra Systems). DNA samples from patients and both parents (obligate carriers) 

were analyzed, except for four families. DNA samples of the patients in two families (KI-05 and 

KI-16) or of both parents in the other families (KI-07 and KI-14) were not available for testing. 

Blood was collected from patients with CIPA and from family members referred to the 

investigators. Informed consent was obtained from all tested subjects. 

 

Polymerase chain reaction amplification of TRKA exons and sequencing 

TRKA exons were amplified from genomic DNA by using specific primers derived from the 5’ 

and 3’ intronic or exonic sequences, and AmpliTaq Gold (PE Applied Biosystems) or the Expand 

Long PCR system enzyme (Boehringer-Mannheim). Two or three consecutive exons (i.e., 2 and 

3; 5 and 6; 9, 10, and 11; and 13 and 14) were amplified simultaneously. The corresponding 
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polymerase chain reaction (PCR) products were sequenced directly or were subcloned into the 

plasmid vector. The primers and sequencing of PCR products have been described elsewhere 

(Mardy et al. 1999). Sequencing of the PCR products was performed by dRhodamine Terminator 

Cycle Sequencing Kits (PE Applied Biosystems). Sequences were resolved and analyzed on an 

ABI PRISM 310 Genetic Analyzer (PE Applied Biosystems). Detected mutations were described 

according to a nomenclature system for human gene mutations (Antonarakis 1998). 

 

Restriction digestion analysis 

For the analysis of some mutations, genomic DNA was amplified with a corresponding set of 

primers. PCR products were digested with each restriction enzyme and electrophoresed onto a 

1.5 % agarose or a 4 % NuSieve agarose gel (FMC BioProducts). 

 

Exon trapping system 

An Exon Trapping System (Gibco BRL) was used to confirm a putative branch-site mutation in 

intron 7; this was heterozygous in five patients. DNA samples from patient KI-19 were used as 

representatives. From the patient, a 2.6-kb fragment containing exons 7 and 8  and part of the 

flanking introns was amplified and subcloned into a plasmid vector and sequenced (Mardy et al. 

1999). A mutant or a wild- type allele in the exon trapping vector, pSPL3 (Gibco BRL), was 

transfected into COS-1 cells by Lipofectamin (Gibco BRL) and characterized by reverse 

transcriptase/PCR (RT-PCR), as described elsewhere (Mardy et al. 1999). 

 

 

Polymorphism and microsatellite analysis 

Single nucleotide polymorphic sites in intron 2 (IVS2+49 and IVS2+84), intron 5 (IVS5+100), 
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intron 13 (IVS13+118), exon 14 (c.1740), intron 14 (IVS14-4), and exon 15 (c.1953) were 

characterized by direct sequencing of the PCR products from patients and parents. The primers 

were same as those used for the amplification of exons 2+3, 5+6, 13+14 and 15 (Mardy et al. 

1999). 

An analysis of a microsatellite, D1S506 (=AFMa127wh9), in intron 12 was made by using 

PCR and human genomic DNA. An FAM-labeled forward primer and an unlabeled reverse 

primer (AFMa127wh9-F and -R, respectively) were used according to the manufacturer’s 

protocol (Research Genetics). The PCR products were resolved on an ABI PRISM 310 Genetic 

Analyzer, and the results were analyzed by the ABI Genescan Analysis software (PE Applied 

Biosystems). 

A haplotype was established according to the combination of polymorphisms at each site. The 

disease or normal allele associated with single nucleotide polymorphic site(s) was deduced by 

inspection of segregating genotypes in the families. First, haplotypes were categorized for the 

normal alleles derived from both parents in all CIPA families, and then haplotypes in 32 normal 

controls were deduced by assigning a relatively common haplotype in one allele. 

 

Statistical Analysis 

One- and two-sided Fisher’s exact tests were used to compare the frequencies of the alleles at 

polymorphic sites among different groups. 
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Results 

Mutations in TRKA in CIPA families 

In the present study, 20 unrelated Japanese CIPA families were screened for putative mutation(s) 

in the TRKA gene. This represents a total of 40 CIPA chromosomes. We have screened for a 

single base deletion (c.1726delC) that causes a frameshift after amino acid Arg548 of TRKA 

(R548fs), since the mutation can be detected by a PCR-restriction enzyme analysis (Indo et al. 

1996). If the mutation was found in the heterozygous state or was not found in a sample DNA, 

we amplified and sequenced all 17 exons of the TRKA directly.  

We detected TRKA mutations in all 40 CIPA chromosomes. Six and eight families were 

homozygous and heterozygous for the R548fs mutation, respectively, indicating that the mutation 

was carried by 20 CIPA chromosomes. Eleven novel mutations were identified in the 

heterozygous state in 14 CIPA families. Four were missense mutations, resulting in the following 

amino acid substitutions: L93P, G516R, R648C, and D668Y. Three, S131fs, L579fs and D770fs, 

were frameshift mutations (c.475-476delTC, c.1820delT, and c.2393^2394insT). Three were 

nonsense mutations (E164X, Y359X, and R596X), and one was the intronic mutation 

IVS7-33T A (Table 1, Fig. 1a-k). IVS7-33T A, D668Y, R596X and R648C were shared by 

five, four, two and two families, respectively.  

None of the eleven novel mutations was observed in a sample of 64 normal control 

chromosomes or in a sample of 42 parental chromosomes that were not transferred to the CIPA 

patients, suggesting that these changes do not represent frequent polymorphisms. Mendelian 

inheritance of the mutations was confirmed in 16 families for which both patient and parent 

samples were available for testing (data not shown). 

 

Exon trap analysis of intronic mutation 
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We characterized the IVS7-33T A mutation by using exon trap analysis, since mRNA 

preparations from the patients were not available for testing. We wanted to know whether intron 7 

was excised from a primary transcript and whether exons 7 and 8 were incorporated into an 

mRNA. RT-PCR analysis demonstrated that the corresponding exons were incorporated in the 

wild type allele but not in the mutant allele (Fig. 2a). A large DNA fragment was observed in the 

mutant sample. Sequence analysis of this fragment revealed an intronic sequence from IVS7-137 

to IVS7-1, including the T-A substitution at IVS7-33 (Fig. 2b).  

 

Polymorphic sites within the human TRKA gene 

We analyzed microsatellite, D1S506, since a (GT)n repeat located in intron 12 was noted during 

inspection of the 23-kb-long sequence of the human TRKA gene (Indo et al. 1997). Sequence 

analysis of the TRKA gene during the search for mutations in CIPA patients revealed nucleotide 

alterations that each could be regarded as a single nucleotide polymorphism (SNP). We report the 

identification and analysis of seven SNPs at the TRKA locus. The seven SNPs correspond to 

IVS2+49G/T, IVS2+84G/A, IVS5+100C/T, IVS13+118T/C, c.1740G/A, IVS14-4A/delA, and 

c.1953C/T (Fig. 3). The c.1740G/A and c.1953C/T mutations are silent and are located in exons 

14 and 15, respectively. IVS2+49G/T, IVS2+84G/A, IVS5+100C/T, IVS13+118T/C, and 

IVS14-4A/delA are located in introns 2, 2, 5, 13 and 14, respectively. We determined the allele 

frequency at eight sites in two groups: one was a sample of 64 chromosomes from 32 disease-free 

Japanese controls, whereas the other was a sample of 42 parental chromosomes not transferred to 

the affected patients. The latter “internal control” was recommended for use in association studies 

(Lander and Schork 1994). We combined these two control groups, since no significant difference 

in distribution was observed in each polymorphic site, when compared by the Fisher’s exact test 

(data not shown). The allele frequencies at these polymorphic sites in a total of 106 normal 
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Japanese chromosomes are shown in Table 2. 

 

Haplotype analysis of polymorphic sites within the TRKA gene 

Haplotype associations between alleles at eight polymorphic sites within the TRKA gene were 

established for the total of 106 normal and 46 CIPA chromosomes. A large number of different 

TRKA haplotypes was generated when the polymorphic microsatellite repeat D1S506 was 

incorporated into categorization of haplotypes. To eliminate excessive variability in the analysis 

and to obtain useful information on the genetic structure of the Japanese population, with regard 

to the TRKA locus, we did not consider variation at this site. For this reason, we studied the 

haplotype association at seven polymorphic sites: IVS2+49G/T, IVS2+84G/A, IVS5+100C/T, 

IVS13+118T/C, c.1740G/A, IVS14-4A/delA and c.1953C/T. We detected six representative 

haplotypes that were shared by at least 1 % of normal controls (Table 3). We termed these 

haplotypes A, B, C, D, E, and F. The most frequent haplotype was A (~44%), followed by B 

(~37%), C (~4%), D and E (each ~3%), and F (~2%). We also detected eight rare haplotypes with 

less than 1 % frequency in normal controls. As indicated above, each of these haplotypes showed 

considerable variability at the D1S506 site. However, as indicated in Table 3, particular D1S506 

alleles were more frequently associated with each of these haplotypes.  

In contrast, we detected five representative haplotypes in the 46 CIPA chromosomes, three of 

whose haplotypes (CIPA1, CIPA2, and CIPA3) are shown in Table 3. CIPA1 but not CIPA2 and 

CIPA3 was detected in one of 106 normal chromosomes. The other two haplotypes were A and B, 

which were commonly found in normal chromosomes. 

 

Association study of the TRKA mutations and haplotypes 

To establish the haplotypic association between the TRKA polymorphisms and the TRKA 
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mutations in the CIPA patients, all eight polymorphic markers were characterized. A complete 

description of the TRKA haplotypes for 46 CIPA chromosomes from 23 CIPA families is 

presented in Table 4, including three families reported elsewhere (Indo et al. 1996). The 

frequency of the R548fs mutations was 52 % in a total of 46 CIPA chromosomes. Eighteen 

R548fs mutations were associated with a rare haplotype, CIPA1. We were not able to phase three 

CIPA patients carrying this mutation because either patient’s DNA (KI-05) or parent’s DNA 

(KI-14) was not available for testing in two families and the patient and both parents showed 

heterozygosity at two polymorphic sites (KI-19). Thus, the haplotype of four chromosomes 

carrying this mutation could not be considered definite. However, this is most likely to be CIPA1, 

as determined by an inspection of the distribution and segregation pattern of the genotypes. If we 

count the haplotype of these four chromosomes as a CIPA1 haplotype, more than 90 % of the 

R548fs mutations are associated with the unique haplotype and over 80 % of the R548fs 

chromosomes share a 137 allele at the D1S506 locus. Two R548fs chromosomes derive from a 

homozygous patient (KI-01) have a C instead of a T at the polymorphic site, viz., IVS5+100C/T. 

 IVS7-33T A was detected in five chromosomes, four of which were associated with the 

haplotype CIPA2. A substitution from the T to a G at the site IVS2+49 was observed in the other 

IVS7-33T A chromosome. All IVS7-33T chromosomes share the same allele at the D1S506 

locus.  

 All four D668Y chromosomes were associated with haplotype B, which was relatively 

common in normal controls. Both G571R and R596X mutations were noted in two chromosomes 

and were associated with haplotype A , which was most common in normal controls. Each of two 

R648C chromosomes was associated with haplotype A or B. Each of the remaining seven novel 

mutations (L93P, S131fs, E164X, Y359X, G516R, L579fs and D770fs) was carried on one 

chromosome. All these chromosomes, except for L579fs, were associated with either common 
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haplotype A or B. The L579fs chromosome was associated with haplotype CIPA3 , which was 

not found in normal controls. 
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Discussion 

Twenty-four of the 46 CIPA chromosomes carried the same R548fs mutation, suggesting that it is 

a common mutation in Japanese. We have also identified 11 novel mutations, including four 

missense mutations, three frameshift mutations, three nonsense mutations, and one intronic 

branch-site mutation, all being detected in the heterozygous state. All missense mutations altered 

amino acid residues conserved among the human TRK families, including TRKA, TRKB, and 

TRKC (Nakagawara et al. 1995). In addition, G516 and R648 are conserved among at least 14 

receptor tyrosine kinases (Martin-Zanca et al. 1989), which means that they are probably 

important for the activity of the protein. The effects of all these missense mutations on the 

functions of the TRKA protein are currently unknown, and experiments are in progress to address 

this question. The frameshift and nonsense mutations are self-evident for CIPA.  

We detected the intronic mutation IVS7-33T A in five CIPA patients; this causes aberrant 

splicing in vitro. The mutation is involved in a branch-site that is critical for intron excision. The 

site usually resides anywhere from 9 nucleotides to 59 nucleotides upstream of the 3’ splice site 

and has the RNA consensus sequence YNYURAC (where A is the nucleotide of branch 

formation; Maquat 1996). The “invariant A”is critical for the formation of the lariat structure, an 

intermediate of normal eukaryotic splicing (Reed and Maniatis 1988; Ruskin and Green 1985). 

CCCTGAC (IVS7-36 to IVS7-30) of intron 7 in TRKA is the only consensus sequence detected 

upstream of the 3’ splice site in intron 7. The mutation IVS7-33T A substitutes A for a 

conserved T (U in the transcript) at the fourth position of the branch-site and causes aberrant 

splicing of intron 7 in vitro. Alternative splicing observed in the mutant allele resulting in an 

insertion of a 137-bp segment is probably attributable to utilization of an upstream cryptic splice 

acceptor site. In vitro splicing studies demonstrate that altering the U to A at the fourth position of 

the branch-site severely reduces splicing efficiency (Reed and Maniatis 1988). In addition, 
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similar mutations at the fourth position of the branch-site have been noted in genetic disorders 

(Burrows et al. 1998; Kuivenhoven et al. 1996). Thus, the IVS7-33T A mutation is probably 

responsible for CIPA.  

Recently, two missense mutations, Met581Val and Arg774Pro, have been noted in the tyrosine 

kinase domain of the TRKA, one from Japan (Yotsumoto et al. 1999) and the other from Italy 

(Greco et al. 1999). The former was detected in three affected patients in a large family with 

many consanguineous marriages; all these patients live in a small remote island of the southern 

part of Japan. Interestingly, two patients were homozygous for the Met581Val mutation, but the 

other was a compound-heterozygote having R548fs in a separate allele, probably derived from 

outbred marriage. The Italian Arg774Pro mutation is interesting, since the residue is not 

conserved among the TRK families but does show a loss-of-function effect (Greco et al. 1999). In 

our two previous consecutive studies, we detected three (Indo et al. 1996) and eleven (Mardy et 

al. 1999) novel mutations in various regions of TRKA. Thus, we have detected a total of 25 

mutations, 13 of which have been detected in the Japanese and do not overlap with those in other 

countries, including UAE, Kuwait, Spain, Italy, and Canada (Mardy et al. 1999).  

We have characterized seven single nucleotide polymorphic sites: IVS2+49G/T, IVS2+84G/A, 

IVS5+100C/T, IVS13+118T/C, c.1740G/A, IVS14-4A/delA, and c.1953C/T in the TRKA gene. A 

comparison of our sequence data with the published cDNA sequence shows two differences at 

c.1833 and c.1884. The nucleotide of these two sites is a T instead of a C in all DNAs that we 

have analyzed. Four SNPs (two in exon 14, one in exon 15, and one in intron 15) have been noted 

in a study of prostate tumors from a mixed race population, viz., white, black, oriental, and 

unknown (George et al. 1998). These correspond to c.1740G/A, c.1833C/T, c.1953C/T, and 

IVS15-16T/C according to our nomenclature system. Polymorphism at the two sites c.1740G/A 

and c.1953C/T has also been observed in the present study, which suggests that these are 
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polymorphic in various ethnic groups. The study of prostate tumors also showed a T at position 

c.1833 instead of a C, but it did not refer to the site c.1884. In contrast, we could not detect 

polymorphism at the site IVS15-16 in any DNA sample that we analyzed. A site that is 

heterozygous in one population may be monomorphic in others; hence, an SNP marker map must 

be developed for multiple populations. 

The IVS14-4A/delA polymorphic site is interesting, since it is located at the 3’ splice site in 

intron 14. The potential splice scores for IVS14-4A and IVS14-4delA are 94.3 and 95.9, 

respectively (Shapiro and Senapathy 1987). The deletion probably does not affect the score, 

because the nucleotide at this position is usually an N (any nucleotide). IVS14-4delA has been 

detected in the heterozygous state in 5 of 64 normal control chromosomes. It has also been 

detected in the maternal mutant allele in a CIPA family (KI-10). This allele carries a frameshift 

mutation, L579fs, responsible for CIPA in this family. Thus, we consider that IVS14-4delA is a 

polymorphism, not a mutation.  

We found a microsatellite, D1S506(AFM127wh9), in intron 12 of the TRKA gene, when we 

characterized the entire structure (Indo et al. 1997). In the present study, we have shown that 

heterozygosity and the size range at this locus are 71 % and 129-139, respectively, in 106 normal 

Japanese controls. Heterozygosity and size range at the D1S506 (AFM127wh9) are 57 % and 

123-141, respectively, in Caucasians (Dib et al. 1996). We have observed that allele sizes and 

each frequency in Japanese differ from those in Caucasians. Recently, such differences of allelic 

distributions at many of the marker loci have been noted in these two racial groups 

(Yamane-Tanaka et al. 1998).  

We have also analyzed the association between haplotypes and CIPA mutations. Some CIPA 

mutations are strongly associated with rare TRKA haplotypes, although a few variations can be 

detected at some polymorphic sites. Chromosomes carrying the most common R548fs mutation 
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were found to share the unique haplotype that was detected in less than 1 % of normal 

chromosomes. This strongly suggests that the mutation was derived from a single ancestral 

mutation that occurred in the Japanese population. We consider that the R548fs mutation shows 

linkage disequilibrium with this rare haplotype. The association has not been significantly eroded 

during the population’s history, but we predict at least one recombination between intron 5 and 

intron 12 and two mutations at the D1S506 locus that might have occurred separately. Some 

variations at markers in these CIPA chromosomes suggest that the R548fs mutation is not a recent 

event. It is tempting to speculate that the mutation originated in an isolated region of Japan before 

the people were allowed to move freely about 130 years ago in this country. Perhaps the mutation 

recently spread into various regions in Japan. However, one cannot completely rule out the 

possibility that the R548fs mutation originated in ancient Japanese populations and spread 

through Japan. In either case, the R548fs mutation is a common founder mutation in Japanese 

CIPA families.  

 The IVS7-33T A mutation is also associated with a unique haplotype. Variation in one 

chromosome seems to be derived from recombination. Again, this argues in favor of a common 

origin for the CIPA chromosomes carrying IVS7-33T A, albeit the frequency is low compared 

with that of the R548fs. In contrast, the D668Y mutation is associated with a common haplotype 

in normal controls. 

The major mutations, R548fs, IVS7-33T A, and D668Y, account for 72 % of 46 

chromosomes from 23 unrelated Japanese CIPA families. The present findings should facilitate 

the detection of CIPA mutations and aid in the diagnosis and genetic counseling of this painless 

but severe genetic disorder with devastating complications. The data in this article also represent 

the first extensive analysis of CIPA mutations and associated intragenic polymorphisms and 

provide a general understanding of the variability at the TRKA locus in both CIPA and normal 
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Figures  

Fig. 1a-k. Eleven novel mutations of TRKA detected in 20 Japanese CIPA families. 
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Fig. 1a-k. Eleven novel mutations of TRKA detected in 20 Japanese CIPA families. A summary 

of each mutation is shown in the upper box, including the name of the restriction enzyme, if a 

mutation destroys or creates such a site. Sequences of a representative mutation and a normal 

control are shown in the middle and lower boxes, respectively. All mutations in the patients were 

detected in the heterozygous state. Results of direct sequencing are shown, except for three 

frameshift mutations in which mutant alleles were subcloned and sequenced. The arrow in the 

middle box and a bar with bilateral closed circles indicate the position of the mutation and an 

affected codon, respectively.  

a  A T C transition at nucleotide 362 in exon 2 causes a Leu Pro substitution at amino acid 

93. The patient and father carry this mutation in family KI-17. 

b  A 2-base deletion at nucleotides 475-476 in exon 4 causes a frameshift after amino acid 

Ser131. The patient and father carry this mutation in family KI-13. 

c  A G T transversion at nucleotide 574 in exon 5 causes a Glu Stop substitution at amino 

acid 164. The patient carries this mutation in family KI-07. DNA samples of parents were not 

available for testing. 

d  A T A transversion at nucleotide –33 in a putative branch-site for splicing in intron 7. The 

mutation was detected in five families: KI-08, KI-13, KI-18, KI-19, and KI-23. The patients and 

fathers (in KI-08 and KI-18) or mothers (in KI-13, KI-19, and KI-23) carry it. 

e  A C A transversion at nucleotide 1161 in exon 8 causes a Tyr Stop substitution at amino 

acid 359. The patient and mother carry this mutation in family KI-04.  

f  A G A transition at nucleotide 1630 in exon 13 causes a Gly Arg substitution at amino acid 

516. The patient and mother carry this mutation in family KI-21. 

g  A single base deletion at nucleotide 1820 in exon 14 causes a frameshift after amino acid Leu 

579. Reverse sequences are shown. The patient and mother carry this mutation in family KI-10. 
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h  A C T transition at nucleotide 1870 in exon 14 causes an Arg Stop substitution at amino 

acid 596. Reverse sequences are shown. The patient and father carry this mutation in family 

KI-04. The patient in family KI-14 also carries it, but DNA samples of parents were not available 

for testing.  

i  A C T transition at nucleotide 2026 in exon 15 causes an Arg Cys substitution at amino 

acid 648. Two affected siblings and the patient carry this mutation in families KI-15 and KI-16, 

respectively. Their father is heterozygous for this mutation.  

j  A G T transversion at nucleotide 2086 in exon 15 causes an Asp Tyr substitution at amino 

acid 668. The mutation was detected in four families: KI-07, KI-12, KI-15, and KI-18. The 

patient and father carry this mutation in family KI-12, whereas affected patients and mothers 

carry it in the other families.  

k  A single base insertion at nucleotides 2393-2394 in exon 17 causes a frameshift after amino 

acid Asp770. The patient and mother carry this mutation.  
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Fig. 2a, b Exon trap analysis of the branch-site mutation in TRKA. 

 

 

 

 26  



 

Fig. 2a-b Exon trap analysis of the branch-site mutation in TRKA. 

a  Characterization of the IVS7-33T A mutation.  

A fragment containing exons 7 and 8, and parts of flanking introns, was subcloned into the exon 

trap vector, pSPL3, and transfected into COS-1 cells. RT-PCR analysis was performed on the 

mRNA from such cells transfected with each vector construct. A vector alone (lane 1), a vector 

with a normal TRKA gene (lane 2), a vector with a mutant TRKA gene (lane 3), and a PCR 

without a product by reverse transcription (lane 4) are shown. Sequencing of the PCR product 

from a normal sample revealed the presence of consecutive exons 7+8, whereas sequencing of 

the product from mutant sample showed the presence of a 137- base intronic sequence from 

IVS7-137 to IVS7-1, including a T A transversion at IVS7-33. A housekeeping gene was 

analyzed, as a control for the integrity of the mRNA and of the RT-PCR. 

 

b  Schematic representation of the IVS7-33T A mutation.  

The 5’ splice site, 3’ splice sites, a putative branch-site, and a cryptic splice acceptor site in intron 

7 are shown. Dots are interrupted sequences. An arrow indicates the substituted A for a conserved 

T (U in the transcript) at the fourth position of the branch-site. This mutation activates an 

upstream cryptic splice acceptor site at IVS7-138, resulting in an aberrant splicing. Thus, a 137- 

base fragment is incorporated into the mRNA between exons 7 and 8. 
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Fig. 3 Localization of mutations and polymorphic markers in TRKA. 

 

 

 

Fig. 3 Localization of mutations and polymorphic markers in TRKA.  

Amino acid numbering of the TRKA protein and the structure of the TRKA gene are according to 

Martin-Zanca et al. (1989) and Indo et al. (1997), respectively. Mutations reported in this study 

are listed above the TRKA gene diagram. Asterisk indicates mutation previously reported but not 

detected in 40 chromosomes in this study. Polymorphic markers are listed below the TRKA 

diagram. IVS2+49G/T, IVS2+84G/A, IVS5+100C/T, IVS13+118T/C, c.1740G/A, 

IVS14-4A/delA, and c.1953C/T are single nucleotide polymorphisms. D1S506 is a dinucleotide 

repeat. 
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Table 1  TRKA mutations identified in Japanese CIPA patients 

Mutation Type Nucleotide 
change 

Amino acid 
change 

/predicted 
consequence 

No. of 
chromoso

mes 

Reference 

L93P Missense c.362T C Leu93Pro 1 Present report 
S131 fs Frameshift c.475-476delTC Truncation after 

Ser131 
1 Present report 

E164X Nonsense c.574G T Truncation on 
Glu164 

1 Present report 

IVS7-33T
A 

Branch site 
mutation 

c.935-33T A Aberrant 
splicing 

5 Present report 

Y359X Nonsense c.1161C A Truncation on 
Tyr359 

1 Present report 

G516R Missense c.1630G A Gly516Arg 1 Present report 
R548 fs Frameshift c.1726delC Truncation after 

Arg548 
24 Indo et al. (1996) 

G571R Missense c.1795G C Gly571Arg 2 Indo et al. (1996) 
L579 fs Frameshift c.1820delT Truncation after 

Leu579 
1 Present report 

R596X Nonsense c.1870C T Truncation on 
Arg596 

2 Present report 

R648C Missense c.2026C T Arg648Cys 2 Present report 
D668Y Missense c.2086G T Asp668Tyr 4 Present report 
D770 fs Frameshift c.2393^2394insT Truncation after 

Asp770 
1 Present report 

Positions of nucleotide change are from the transcription start site, as described (Martin-Zanca et al. 
1989).  
The ATG initiation codon is located at nucleotide position c.85. The structure and organization of 
human TRKA are as described by Indo et al. (1997). 
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Table 2  Polymorphic markers within the TRKA gene 
 (HET heterozygosity. PIC polymorphism information content, FRQ frequency) 
 
Marker Type HET PIC Allele FRQ 
IVS2+49G/T Single base change 0.090  0.086  G 0.953  
    T 0.047  
IVS2+84G/A Single base change 0.037  0.036  G 0.981  
    A 0.019  
IVS5+100C/T Single base change 0.155  0.143  C 0.915  
    T 0.085  
D1S506 (GT)n 0.707  0.658  129 0.358  
    131 0.085  
    133 0.028  
    135 0.038  
    137 0.377  
    139 0.113  
IVS13+118T/C Single base change 0.499  0.375  T 0.519  
    C 0.481  
c.1740G/A Single base change 0.478  0.364  G 0.604  
    A 0.396  
IVS14-4A/delA Single base deletion in 

splice acceptor site 
0.090  0.086  A 0.953  

    delA 0.047  
c.1953C/T Single base change 0.073  0.070  C 0.962  
    T 0.038  
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Table 3  TRKA haplotypes in normal controls and CIPA patients 

Name Frequencya bIVS2 IVS2 IVS5 D1S506 IVS13 c.1740 IVS14-4 c.1953
+49G/T +84G/A +100C/T +118T/C G/A A/delA C/T 

A 0.443  G G C 129 T G A C 
     133     
     137     
     139     
B 0.368  G G C 129 C A A C 
     131     
     133     
C 0.038  T G C 137 T G A C 
D 0.028  G G C 129 C G delA C 
E 0.028  G G T 135 C G A T 
F 0.019  G G T 129 C A A C 
          
CIPA1 0.009  G G T 137/139 T G A C 

cCIPA2 0.000  T G C 129 C A A C 
cCIPA3 0.000  G A C 129 C G delA C 

a The frequency of each haplotype was calculated for 106 normal Japanese chromosomes.

b D1S506 alleles that are found predominantly associated with each of the TRKA haplotypes. 

c Haplotypes CIPA2 and CIPA3 were observed in CIPA patients but not in normal chromosomes. 
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Table 4  TRKA haplotypes associated with CIPA alleles (P paternal allele, M maternal allele, 
numbers 1 or 2 at the end indicate each allele in the corresponding CIPA family) 
 Fre- 

quency 
Associated polymorphism 

Mutation (n=46) IVS2+
49G/T 

IVS2+
84G/A 

IVS5+
100 
C/T 

D1S
506 

IVS13+
118T/C

c. 
1740
G/A

IVS14-4
A/delA 

c. 
1953 
C/T 

Allele 

R548 fs 24 G G T 137 T G A C KI-06-P 
  G G T 137 T G A C KI-06-M 
  G G T 137 T G A C KI-08-M 
  G G T 137 T G A C KI-09-P 
  G G T 137 T G A C KI-09-M 
  G G T 137 T G A C KI-10-P 
  G G T 137 T G A C KI-11-P 
  G G T 137 T G A C KI-11-M 
  G G T 137 T G A C KI-16-M 
  G G T 137 T G A C KI-17-M 
  G G T 137 T G A C KI-20-P 
  G G T 137 T G A C KI-20-M 
  G G T 137 T G A C KI-21-P 
  G G T 137 T G A C KI-22-P 
  G G T 137 T G A C KI-22-M 
  G G T/C 137 T G A C KI-05-1 
  G G T/C 137 T G A C KI-05-2 
  G/T G T/C 137 T G A C KI-19-P 
  G G T 139 T G A C KI-03-P 
  G G T 139 T G A C KI-03-M 
  G G C 137 T G A C KI-01-P 
  G G C 137 T G A C KI-01-M 
  G G T 125 T G A C KI-23-P 
  G G T/C 125/

137 
T G A C KI-14-1 

IVS7-33
T A 

5 T G C 129 C A A C KI-08-P 

  T G C 129 C A A C KI-23-M 
  T G C 129 C/T A/G A C KI-13-M 
  T/G G C/T 129 C A A C KI-19-M 
  G G C 129 C A A C KI-18-P 
D668Y 4 G G C 129 C A A C KI-07-1 
  G G C 129 C A A C KI-12-P 
  G G C 129 C A A C KI-15-M 



 

  G G C 129 C A A C KI-18-M 
G571R 2 G G C 139 T G A C KI-02-P 
  G G C 139 T G A C KI-02-M 
R596X 2 G G C 137 T G A C KI-04-P 
  G G C/T 137/

125 
T G A C KI-14-2 

R648C 2 G G C 129 C A A C KI-15-P 
  G G C 137 T G A C KI-16-P 
L93P 1 G G C 131 T G A C KI-17-P 
S131 fs 1 G G C 133 T/C G/A A C KI-13-P 
E164X 1 G G C 129 C A A C KI-07-2 
Y359X 1 G G C 133 T G A C KI-04-M 
G516R 1 G G C 129 C A A C KI-21-M 
L579 fs 1 G A C 129 C G delA C KI-10-M 
D770 fs 1 G G C 137 T G A C KI-12-M 
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