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A perturbation calculation shows that the relative formation energies of solitons and polarons in

halogen-bridged linear-chain complexes depend strongly on the transfer term and Coulomb interactions

even if the electron-lattice coupling is dominant. As the values of the transfer term and Coulomb in

teractions increase, various soliton states tend to have energies close to one another. It is suggested that

the neutral soliton of two-site type is the lowest-energy defect state in a certain range of the strengths of

those perturbations. This situation is consistent with the results of the ultraviolet-induced EPR experi

ment in [Pt(en)2][Pt(en)2Cl2](ClO4)4 (with en=ethylenediamine). The present theory provides an ex

planation for a highly mobile character of the neutral soliton observed in this material.

I. INTRODUCTION

Halogen-bridged mixed-valence complexes of platinum

and palladium consist of linear chains of the form of

-M2+-X--M4+-X--M2+-X--> where M and X are metal
and halogen atoms, respectively. The chains are sus

tained parallel to each other by a hydrogen bond network

which links counterions with ligands of metal ions. The

linearly periodic structure of the valence of metal ions is

a charge-density-wave (CDW) state which results from

electron transfer between neighboring metal sites in the

original chain -M3+^~-M3+-*~-Af3+-X~-. Most of
the materials of this family exhibit order of the CDW

state in one dimension only, indicating that the inter

chain interaction is very weak.1'2 In recent years, there
has been a great deal of effort in characterizing the nature

of the intrinsic defects excited in this quasi-one-

dimensional CDW state. In particular, the complex

[Pt(en)2][Pt(en)2a2](clO4)4» where en denotes an
ethylenediamine molecule, has attracted much attention

because, in this material, a long-lived defect state bearing

spin can be created by uv irradiation.3'4 The electron-
paramagnetic-resonance (EPR) spectrum shows that this

defect is formed by dimerization of a pair of Pt ions,5 and

has solitonlike characters,4

Ichinose6 has described the excitation spectrum of the
linear chain by introducing a nearly site-diagonal

electron-lattice coupling which is in contrast to the site-

off-diagonal coupling in fra/«-polyacetylene. According

to his arguments, soliton excitations corresponding to

propagating domain walls can take place* if the electron-
lattice coupling is strong compared to the transfer ener

gy. Subsequently, Onodera7 has proven that the soliton
excitations are possible even if the electron-lattice cou

pling is weak. To provide a guide for interpreting spec-

troscopic properties, Baeriswyl and Bishop* have evalu
ated the electronic structures and formation energies of

solitons, polarons, and bipolarons in the system where

the transfer energy and Coulomb interactions are negligi

bly weak in comparison with the electron-lattice cou

pling. More recently, Mishima and Nasu9 have studied
an extended Peierls-Hubbard model to investigate the

properties of these intrinsic defect states in an

intermediate-coupling system. Upon choosing a set of

the transfer energy and Coulomb interactions which are

comparable in strength to the electron-lattice coupling,
they have performed Hartree-Fock analyses of the adia-

batic potential energies of solitons and polarons.

The purpose of the present paper is to calculate forma

tion energies of intrinsic defects in the one-dimensional

CDW system by.extending Baeriswyl and Bishop's mod

el. The small size of the solitonlike paramagnetic defect

clarified by the EPR experiment4'5 verifies that
[Pt(en)2][Pt(en)2Cl2](ClO4)4 is a strong electron-lattice

coupling system. We, therefore, consider the cases where

the transfer integral is smaller than that employed by

Mishima and Nasu.9 We take account of the on-site and
intersite Coulomb interactions, since these energies affect

strongly the charge distributions in defects. Treating the

effect of the transfer term by means of the perturbation

theory, we investigate how the transfer term and

Coulomb interactions influence the formation energies of

intrinsic defects in the strong electron-lattice coupling

system.

n. MODEL HAMILTONIAN AND GROUND STATE

OF A REGULAR LATTICE

Since the interchain interaction is weak in the com

plexes we are concerned with, we consider a single and

long chain which consists of Pt and Cl ions as shown in

Fig. 1. It is assumed that each Pt3+ ion can supply or ac
cept an electron to become Pt4+ or Pt2+, respectively,
and a strong electron-lattice coupling causes the mixed-

valence state. The model Hamiltonian of this system is

expressed as6"9

1 9 (1)
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FIG. 1. A model structure of a chain. K is the spring con

stant of the bond connecting Pt and Cl ions, Uj is the displace

ment of the Q" ion at the /th site, and nt is the number of elec

trons on the Pt ion at the /th site.

#0=

(2)

(3)

where ala and nla (=a}aala) are, respectively, the annihi
lation and number operators of an electron with spin a

on Pt in the /th unit cell, ut is the displacement of Cl~

along the chain direction, K is the spring constant of a

Pt-Cl bond, £ is the electron-lattice coupling constant, U

is the on-site Coulomb interaction, V is the intersite

Coulomb interaction, and t (>0) is the transfer integral

between neighboring Pt sites via an intervening Cl" ion.

Throughout the present theory, we employ an adiabat-

ic approximation and regard u{ as a classical quantity

which is determined by minimizing the energy of the sys

tem. Let (nla) be the expectation njunber of electrons

with spin a on the /th site in the ground state determined

by H. Then the equilibrium ut can be expressed as fol

lows:

(4)

(5)

The unperturbed states are described in terms of Ho. In

spite of the absence of the transfer term in HQy we use the

W/'s given by Eq. (4) to generate the site potential of the

unperturbed states. Those W/'s are chosen so as to be

consistent with the charge distribution which is realized

in the presence of the transfer term. We introduce the

electron numbers {nfa >'s to represent the starting eigen-

states. The expectation number <«/) can be a nonin-

teger, while < nf) (=2<,< nfQ )) should be only 0, 1, or 2
at any Pt site. Substituting Eq. (4) into Eq. (2) and re

placing nla in Eq. (2) by < nfa ), we obtain the total energy
of a state represented by given charge distribution
(n&Vsas

A,

8

with

(7)

If t equals 0, the total energy of the regular lattice, that

is, the state which supports no defect, can be calculated

by further replacing \nt) by <n/°) in Eq. (6). A CDW
state whose charge distribution is given by { n\m ) =2 and

(n 2m +1) =0 for any integer m has its total energy

where the number of Pt sites is assumed even (2N) and

large enough for the end effects to be negligible.10 The
state, on the other hand, whose charge distribution is

given by (n ° > = 1 for any / has its total energy

S0=2NV . . (9)

It follows from Eqs. (8) and (9) that, if a relationship

U—2V<A holds because of the strong electron-lattice

coupling, the CDW state becomes the ground state of the

regular lattice.

Before proceeding to the calculation of the formation

energies of defects, the perturbation correction to the to

tal energy <?0 of the regular CDW lattice is calculated

here on the assumption that r/A is small enough to be an

expansion parameter. We are interested in the intermedi

ate states of the perturbation which are generated by

transferring an electron while maintaining the displace

ments of Cl~ ions unchanged. Let G(m,+,cr) or

<£( m, —, a) be the energy of the intermediate state result

ing from the transfer of an electron with spin cr from the

mth Pt site to the (m +1 )th or (m — 1 )th site, respective

ly. After some algebraic manipulations we obtain

(10)

We may obtain <£(m,— ,a) by replacing + of Thus <n°(m,+,a)> is identical with <n°a> except for
</z/°(m,+,a)> and £(m,+,cr) in Eq. (10) by -. The /=m and /=m + l, while </i/°(m,--,o-)) is identical
quantity </i°(m,+,a)) or {nf(m,— ,a)> represents the with {nfG) except for /=m and/=m —1.
electron number at the /th site in the intermediate state The presence of the transfer term Hx affects the equi-

with the energy &{m,+,a) or <£(m,— ,a), respectively. librium displacements of CP ions. We choose <H/)'s
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and thus a/s such that the deviations of «/'s due to Hx

arise from the second- and/or higher-order terms of t /A.

Then, as shown in the Appendix, the deviations of the

W/'s do not affect the total energy of the system as far as

we are concerned with the energy within the accuracy up

to (f/A)2. In the regular lattice, therefore, («/) in Eqs.

(4) and (10) can be replaced by </i/°>, so that Eq. (10)

gives

(11)
G(2m,-9a)

for any m. Applying the second-order perturbation

theory to Hx and using Eqs. (8) and (11), we obtain the

energy of the regular CDW lattice S(R ) as

m,a

A-C/+
2&-U+3V

(12)

This expression has been also derived by Nasu on the

basis of a mean-field theory.11

HI. CHARACTERIZATION OF DEFECT STATES

In this section, we summarize the characteristics of

possible defect states. They arje classified into two

categories. One is the domain wall which intervenes be

tween the ordinary charge order and its antiphased

charge order. This category of defect is called soliton,

which we specify by S in this paper. The other category

is obtained by locally modifying charges and ion displace

ments without changing the phase of charge order. This

state is called polaron, which we specify by P. There ex

ist three cases of possible charge states. The positively

and negatively charged defects are specified by the

suffixes + and —, respectively; the neutral state is

specified by a suffix 0. In general, the energy and the size

of a defect depend on its position. For simplicity, we deal

with the following two types. One is the state which

gains the maximum energy of the electron-lattice cou

pling at f —>0.8 Its defect region is restricted mostly to a

single site of Pt. We call this state type I. The other

type, i.e., type II, is obtained by translating a defect

which is originally of type I along the chain to the mid

point between the initial and next positions of the type-I

defect. This state consists mainly of two Pt sites. We

should also pay attention to the spin state. If a defect has

an unpaired electron the defect forms a Kramers doublet,

while if a defect contains two unpaired electrons, it forms

the spin singlet and the spin triplet.

In this work, we calculate the formation energies of de

fects created on the initially perfect lattice in the CDW

state. The total number of electrons and the total spin

are conserved in forming defects. Besides, the phase of

charge order at both ends of the lattice is assumed to be

conserved, since we are interested in creating defects in

the interior of a very long chain. Taking account of these

conditions, we consider formations of pairs of mutually

"conjugate" forms. When a kind of defect D consists of

conjugate forms D and JD, this situation is written as

(13)

Our classifications give the following kinds of defects:

=

where the superscript T denotes spin triplet.

IV. FORMATION ENERGIES OF DEFECTS

In general, different kinds of defect which are defined

in the preceding section are mixed with each other by the

transfer term. However, if the electron-lattice coupling is

sufficiently strong, |w/|'s are so large that the overlap in

tegrals between vibrational wave functions of different de

fects are sufficiently small. Consequently, the defect

states in Eq. (14) are effectively orthogonal to each other

even if t is nonvanishing.

Dividing the chain lattice consisting of IN Pt sites into

two portions, we introduce 3) in one portion and 3) in the

other portion as shown in Fig. 2. Let us denote the total

energy of the portion containing 3) as <£(2)). Then the

formation energy ofD is defined by

Figures 3-9 show <n/)'s and/or </2/°)5s of all the defect

states defined in Sec. Ill along with their electronic

energy-level diagrams in the case of U= V=0 and f-*0.

In this connection, we should remark upon the applica

bility of the adiabatic approximation in the present

theory, which prepares two sites with equivalent poten

tials. The type-II defects can no longer be stable if the

transfer energy is small compared to the phonon energy

e^ of the M-X stretching mode. Thus, as seen from the

following arguments, the formation energies calculated

for the type-II defects are meaningful in the region

t /A > Sp /A for solitons and t /A > \Z6p /A for polarons.

The type-I defects, on the other hand, can be stable no

matter how small the transfer energy.

2 0 2 0

-A-H H-

2 0 2 0 2 0

44 H—

FIG. 2. General structure of the charge sequence of Pt ions

in a chain supporting a defect 3) and its "conjugate" S. Both 3)

and 3) include odd and even numbers of Pt sites for solitons and
polarons, respectively. Vertical arrows represent electrons with

up and down spins. The horizontal lines represent the energy

levels. Numbers represent (nl)9s of Pt sites.
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A

0

2 0 2 0

-A -H-

2 10 2 0

A

0

2 0 1.5 1.5 0 2 0.5 05 2 0

(Q)

FIG. 3. Charge sequences and energy levels of the neutral

solitons of type I, <£j and 3*0. Numbers represent <n/°>'s of Pt

ions. Vertical arrows represent electrons with up and down
spins.

A. Neutral soliton of type I: Sl0

The excited states given by Eq. (10) mix with the

ground state through the transfer term. Since there exists

no degeneracy in the ground state for f=0, {nt) in Eq.

(10) can be replaced by (nf) shown in Fig. 3. Substitut

ing G(£\) and G(£\) obtained from second-order pertur
bation theory into Eq. (15), we arrive at

(-3A/4)

4t2

l-7A/4)+U-2V -2A+C/-3F
(16)

Here, E0(D) represents E(D) at f->0, given in Table I.

B. Neutral soliton of type II: S#

The charge sequences < nt> of ^J1 and $" are shown in
Fig. 4(a). Fractional (n^'s • • •, 0, 1.5, 1.5, 0, • • • of*?,

for instance, are realized by bonding of the two eigen-

states *?a and <S^ whose <H/0>'s are • • •, 0, 2, 1, 0, • • •
and * * •, 0, 1, 2, 0, • • •, respectively, as shown in Fig.

4(b). Note that the energies £(<*&) and €(£$) are de

generate. We substitute <«/>'s and <«/°)'s into Eq. (10)

and count the perturbation processes except the transfer

between *?a and £ffe to obtain S(^a) and G(£#p). Then,
Lowdin's perturbation theory12 gives G(£$) as the lower

eigenvalue of the matrix

-t

— t

A parallel calculation is made to obtain

(17)

). We final-

A

0

- A

A

0

- A

2 0 2 10 2 0 12 0

°oa

2 10 2 0 2 0 12 0

(b)

' II
oa 0/9

FIG. 4. (a) Charge sequences and energy levels of the neutral

soliton of type II, ^J1 and S^. Numbers represent («/ )'s of Pt
ions. Vertical arrows represent electrons with up and down

spins, (b) Starting eigenstates of £# and $". Numbers represent
<H/°>'sofPtions.

ly arrive at

2t2

(-5A/4)+£/-2F

It1 10f2

(-15A/8)+l7-3F -2A+U-ZV

t2 , It1

(-5A/4) (-15A/8)+tf-2F '
(18)

Note that the bonding between the degenerate two states

cPja and Sfp results in an energy gain of — f.

C. Charged soliton of type I: ST±

The charge sequences <«/0)'s are shown in Fig. 5. The

same procedure as that described in Sec. IV A gives

2 0 2 2 0 2 0 0 2 0

TABLE I. Formation energies of various defects at f/A—»0.

Defects

sh

s*±
sY

Pl±
Pi

E0(D)

0.75A-0.5U+2F

(■jf)A-0.5£/+2K

0.5A+2F

1.25A-U+3V

0.75A-0.5C/+2F

(i)A-0.5l/+2F

- A -H-

-M-ff

■H- -H-

*L l
FIG. 5. Charge sequences and energy levels of the charged

solitons of type I. <£!_ and <£+. Numbers represent <«/°)'s of Pt

ions. Vertical arrows represent electrons with up and down

spins.
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E(Sl±)-E0(S1±)+ (_
4t2

2 112 0 2 0 110

-2A+U-3V '

(19)

A

n =*=0

-H-

(Q)

D. Charged soliton of type H:
[I(D

Both the positively and negatively charged solitons of

this type have two unpaired electrons, so that each is split

into the spin singlet and the spin triplet.

First, we deal with the spin singlet S§ shown in Fig.
6(a). The transfer term mixes the three states e?+a, <£+£,

and (£"r shown in Fig. 6(b). The calculations analogous

to the case described in Sec. IV B give 5(<f?a), St*!^),
andtf(*5r). Clearly, «(*?o) equals 61S$P). By the use
of these results, <?(<£+) is given as the lowest-energy ei

genvalue of the matrix

(20)

<£(<£") can be obtained by making parallel calculations

with respect to the states S^.af $FLp and <8*Ey shown in
Fig. 6(b). The formation energy of Sl± is then given by

It2

0 -V2f

0

/°/ oil

A

0

- A

A

0

- A

2 2 0 2 0 2 0 2 2 0 2 112 0

-H-—

2 0 2 0 0

oil

2 0 0 2 0

-H-

(b)

2 0 110

FIG. 6. (a) Charge sequences and energy levels of the spin-

singlet charged solitons of type II, <£*2 and <£+. Numbers

represent (nt )'s of Pt ions. Vertical arrows represent electrons

with up and down spins, (b) Starting eigenstates of <£" and c£".
Numbers represent < nf) 's of Pt ions.

lor
+ ■

-A-V (-7A/4)+C/-2K -2A+C/-3F -A+U-3V

I6t2+ U-V+

It2

(-7A/4)+E/-3F (-7A/4)+£/-F

2f2 , It2 It2

-A+C/-3F (-7A/4J+I7-3F (-7A/4)+C/-F

-A-F (-7A/4)+C/-2F

1/2

(21)

For sufficiently large values of f in comparison with U

and V, E(5±) turns out to contain the term — It. This

energy gain originates from the fact that two electrons

with different spins fall into a bonding state.

Next, we proceed to the spin triplet state Sl±T. The
charge sequences < nf) of ^I^and <£+r are shown in Fig.

7. Since both states have no orbital degeneracy, the cal

culation is straightforward, yielding

It2

-A-F

(-7A/4)+E/-2F -

2 112 0 2 0 110
(22)

2 0 2 12 0 2 0 0 2 0

- A

> II T

A

0

- A -H- -H-

FIG. 7. Charge sequences and energy levels of the spin-

triplet charged solitons of type II, ^"r and <£"r. Numbers

represent <«/°)'s of Pt ions. Vertical arrows represent electrons

with up and down spins.

FIG. 8. Charge sequences and energy levels of the polarons

of type I, Tl- and Vl+. Numbers represent <«/°)'s of Pt ions.

Vertical arrows represent electrons with up and down spins.
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E. Polaronoftypel: P]t

In this case, there exists no degeneracy in the ground

state for f=0, so that <«/)'s are replaced by (n?)'&

shown in Fig. 8. Then, we obtain

E(Pl±)=EolPI±
(-5A/4)-2F

(-7A/4)+ff-2F -2&+U-3V '
(23)

(-3A/2)-2F (-13A/8)-2F

It2 . It2
; + ■

: + ■

-2A+C/-3F '
(25)

F. Polaronoftypell: i>£

The state P+ shown in Fig. 9(a) is constructed by mix

ing P^a, P1^ and f*lr shown in Fig. 9(b). £(?*) is
given by the lower eigenvalue of the matrix

(24)

with £(P+a)==:G(Pslp)<£(<Pilr). Similar calculations
with the use of </a7°>'s shown in Fig. 9(b) for PLC

and P5y give GiP1!). The eigenvalues S(Pi) and
yield

1

V. NUMERICAL RESULTS AND DISCUSSION

Figure 10 shows the calculated formation energies of

the defects as a function of t/A for U=V=0. For this

case, Nishimura13 made a numerical calculation of the
formation energies of solitons by using the tanh function

as a trial function for the spatial variation of the ion dis

placements; the soliton size was chosen to be the varia-

tional parameter. In Fig. 10, his results are also plotted

for comparison. The results of the two approaches agree

well with each other, particularly for SJ and S$, showing

that our perturbation method gives satisfactory correc

tions as far as r/A^0.4. The disagreement seen for S±

and 5± suggests that, for the charged solitons, higher-

order corrections become significant at comparatively

2 05 2 05 2 0 2 0

«■■■

1.5

•

0 1.5 0

:

(Q)

0

A

2 12 0 2 0 202120 2 1 112 0

-4k-

A

0

2 0 2 0 1 0

(b)

-A -H-

2 0 11 0

—

2 0 2 0 I I I 0

-H-

FIG. 9. (a) Charge sequences and energy levels of the polarons of type II, TlL and P?. Numbers represent <«/ >'s of Pt ions. Verti

cal arrows represent electrons with up and down spins, (b) Starting eigenstates of Pll and T+. Numbers represent <«/°>'s of Pt ions.
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1.2

U/A=0.0

V/A=0.0

0.2

t/A

0.4

FIG. 10. Normalized formation energies E{D)/A of defects

vs t/A for U=V=0. The values of E(D)/A calculated by

Nishimura (Ref. 13) for S^, 5j, 5^, and S" are shown by dia

monds, squares, triangles, and circles, respectively.

1.2

1.0

0.8

0.6

\
\
\

gll

—

\s»

U/A=0.25

V/A=0.01

0.2

t/A

0.4

FIG. 11. Normalized formation energies E{D)/A of defects

vs r/A for U/A=0.25 and K/A=0.01.

large values of t /A.

Figures 11 and 12 show the calculated formation ener

gies as a function of t/A for (t7/A,K/A)= (0.25,0.01)

and (0.5,0.1), respectively. For small values of f/A,

U/A, and V/A, the formation energy is dominated by

the electron-lattice coupling, so that the type-II solitons

have appreciably higher energies than the type-I solitons.

(See also Table I.) As t/A increases, however, the ener

gies of the type-II solitons except 5±rare lowered almost
linearly because the valence electrons in those type-II sol

itons occupy the bonding state rather than the states lo

calized on Pt sites. The type-I solitons and Sl±T are un

able to gain such a bonding energy. Consequently, the

differences in energy between the type-I and type-II soli

tons (except Sl±T) are reduced rapidly with increasing

t /A; Sl±T stays energetically far above other solitons.

As U increases, unpaired electron states become favor

able. This means that U also affects significantly the

energy-level scheme of the defects. Figures 13-15 show

the U dependence of the formation energies for fixed

values of t /A and V/A. We notice that there exist the

following three cases concerning the defect with the

lowest energy. (1) For small values of t/A and C//A, the

lowestrenergy state is 5±, which has no unpaired elec

tron. (2) If U/A is significantly large, 5q may become the

lowest-energy state. This is because unpaired electrons of

Sq do not cost the on-site Coulomb energy, and localize

at a Pt site to gain the electron-lattice coupling energy as

much as possible. (3) If t/A is large compared to U/A,

the S" state becomes even lower than Sq as seen in Figs.

12 and 14. In this case, if the values of t/A and U/A

exceed 0.3, all the solitons (except S"7) have energies

close to each other. Mishima and Nasu9 have treated the
system with large t and U, i.e., t/A= U/A=0.5 and

F/A=0.05, in which the density of an unpaired electron

ofS" spreads over about six Pt sites.

Although the polarons have unpaired electrons, they

1.2

U/A=0.5

V/A = 0.1
s»T

0 0.2 0.4

t/A

FIG. 12. Normalized formation energies E(D)/A of defects

vsf/Afor 07A=0.5and F/A=0.1.
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1.2

1.0

0.8

0.6

\ t=0.15A
\ V=0.0U

\

XS»T

\ s«

• - si

1

0.2

U/A

0.4

FIG. 13. Normalized formation energies E(D)/A of defects

vs U/A for t /A=0.15 and K=0.

1.2

1.0

0.8

0.6

^^ siIT

t=0.3A

V=0.2U

1 Pi1

s"" —s±

0.2

U/A

0.4

FIG. 15. Normalized formation energies E(D)/A of defects

vs U/A for r/A=0.3 and F=0.2C/.

cannot gain the transfer and electron-lattice coupling en

ergies as much as the solitons can. Therefore, any set of

the reasonable parameter values cannot make Pl± and P±

lowest. One may also see from a comparison between

Figs. 14 and 15 that the introduction of small Fdoes not

change the qualitative consequences obtained with F=0.

The energy parameters A and t reported to date14'15 for
[Pt(en)2][Pt(en)2Cl2](ClO4)4 are summarized in Table II.

1.2

1.0

0.8

0.6

\

-

_ __

i i

t=0.3A

V=0.0U

^k Pi

0 0.2 0.4

U/A

FIG. 14. Normalized formation energies E(D)/k of defects

vs U/L for t/A=0.3 and V=0.

From optical measurements, Wada and Yamashita have

deduced the exciton energy 2£CT to be 2.74 eV.16 Accord
ing to Nasu,17 the exciton energy is given by

Substitution of £CT=2.74 eV and the values of A and t

listed in Table II into Eq. (26) enables us to estimate the

value of U—3V. The results are also listed in Table II.

The value of t/A ranges from 0.2 to 0.4, while the value

of ((7-3 V)/A from 0.13 to 0.3. The energy Sp of the

M-X stretching vibration is known to be 38 meV in this

material.18 Then, we have ^/A—0.02 and

VGP/A-0.15, both being smaller than t/A. This fact

ensures that type-II defects are stable as well as type-I de

fects.

For the parameter values given in Table II, our calcu

lation predicts that all the types of solitons except 5{IT
are energetically close to each other. It appears from

Figs. 11, 14, and 15 that the energy differences can be of

TABLE II. Values of gap parameter A, transfer integral f,

and the Coulomb interaction parameter U—3V in

[Pt(en)2][Pt(en)2Cl2j(ClO4)4.

Parameters Ref. 14 Ref. 15

A (eV)

t (eV)

r/A

C/-3F (eV)

(U-3V)/A

1.5

0.3

0.2

0.2a

0.13

1.8

0.67

0.37

0.6a

0.3

aEstimated from Eq. (26) with the aid of the experimental value

Ecr=2.74eV(Ref. 16).
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44-
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FIG. 16. Changes in the charge sequence and in energy levels

of a neutral soliton during its translational motion. The flow

from (1) to (5) corresponds to its movement from left to right by

two lattice spacings.

order of 0.01A or less. This result gives us insight into

the dynamical properties , of solitons in

[Pt(en)2][Pt(en)2ClJ(ClO4)4. The recent EPR experiment4

shows that S$ solitons are induced in this material by uv

irradiation. Contrary to a previous conjecture,19 the in

duced solitons are quite mobile at moderate tempera

tures, since the thermal activation energy for their hop

ping motion is as low as 13 meV. Figure 16 illustrates

the motion of a neutral soliton. It is seen from this figure

that the 5" soliton moves from one site, to the next via
the'S'o state. Nishimura13 has shown for U=V=0 that
the formation energy takes its extremum values when the

central position of a soliton accords with those of type I

and type II. Based on an argument parallel to that given

by Su, Schrieffer, and Heeger for polyacetylene,20 we can

expect that the energy difference between the 5" and 5j

states corresponds to the activation energy for the hop

ping motion. Our calculated energy difference explains

the observed activation energy of the order of 0.01A.

In CH polymers such as polyacetylene, if one takes

t/A~0.5, the activation energy for the motion of a soli

ton amounts theoretically to about 0.1 eV,21 being much

larger than that in the halogen-bridged linear-chain com

plexes treated in the present work. The soliton would be

immobile in those polymers. Such a contrast between the

two quasi-one-dimensional systems may originate from

the difference in the scheme of the electron-lattice cou

pling.

Finally, we would like to point out that the calculated

energy difference between charged and neutral solitons

can be of the order of 0.01A~ 15 meV, as well. This re

sult suggests that once free solitons are created by any

means, the charged solitons can also populate thermally

at moderate temperatures.

VI. CONCLUSIONS

We have described a perturbation theory for the for

mation energies of intrinsic defects in the mixed-valence

linear-chain complexes with a strong electron-lattice cou

pling. Particular attention is paid to the roles of the

transfer integral and Coulomb interactions. The results

provide the physical picture for the valence structures

and the dynamical properties of the defects under the

influences of these perturbations. The two-site-type neu

tral soliton S$ can have the lowest energy in a range of

the strengths of the perturbations appropriate to the

complex [Pt(en)2][Pt(en)2Cl2](ClO4)4. This result is con

sistent with the EPR experiment in this material.4 Our

calculation gives also an explanation of the experimental

observation that the 5" soliton is quite mobile along the
chain axis.
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APPENDIX

We show here that the perturbation corrections to the

equilibrium Cl~ displacements give rise to terms of the

order of t* in the total energy. For simplicity, we consid
er a nondegenerate ground state whose energy is given by

/(<n/°>-<«f_1>)

i>), (Al)

where f/7 is the equilibrium displacement in the presence

of the perturbation, the third term represents the

second-order perturbation correction to the energy, and

/(t/7) is a function of i/7. Minimization of e(2?7) with

respect to Ut gives

(A2)

where ut is the equilibrium displacement in the absence

of the perturbation corrections given by Eq. (4) with

< nf) instead of < nt). Substituting Eq. (A2) into Eq. (Al)
and expanding /(Ut) in powers of t2, we obtain

(A3)

It is evident from Eq. (A3) that the deviations of w7 due to

the transfer term can be all neglected as far as we calcu

late the energy of the system within an accuracy up to

U/A)2. The above arguments can be easily extended to a
system with degenerate ground states.
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