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To investigate the kinetics of photoexcited states in MX chain compounds the diffusion-controlled irrevers

ible reaction of A +A—>0 on a disordered linear lattice is examined by numerical simulation, where A and 0

denote the photoexcited state and its annihilation, respectively. The lattice disorder is introduced by irregular

energy barriers of which the height obeys a Gaussian distribution around a given value. As the irregularity

evolves the survival probability S(f), £=#£/)*, of A is transformed from Torney-McConnelTs form or its

modified one into the Kohlrausch form S(£) = exp[-(f/f1/c)£], so that S(£) becomes still more nonexponen-

tial, where No, D, and t are the initial density, diffusion coefficient, and reaction time, respectively. The

argument ft is reduced as if the fractal dimension of the lattice is reduced from unity. Concurrently, the

parameter £l/e increases, so that the l/e decay time r at a given temperature increases significantly. As long as,

however, the mean height of the barriers remains unchanged, the temperature dependence of r is not altered by

the irregularity. The present results are consistent in various respects with the decay properties of long-lived

solitons observed in degenerated MX chain compounds.

L INTRODUCTION

Nonequilibrium kinetics of quasiparticles states in nature

often encounters the problem of an irreversible reaction of

random walkers. To treat the diffusion-controlled irreversible

reactions, one has to solve for the diffusion equation with

adequate boundary and initial conditions incorporated. In

conventional analyses of decay phenomena of electric exci

tations in solids we assume implicitly that the reaction in

question is homogeneous during the whole course of the pro

cess. For bimolecular reactions in such a special situation,

the survival probability S of a particle at time t after the start

of reaction is given by1

S(t)=-
1

where No is the initial density and f(f) is the time integral of

the rate coefficient of the reaction. If the rate coefficient is

constant, being equal to c, Eq. (1) is reduced to a familiar

form of 5(0 = ( l+Noctyl.

In a microscopic view, however, diffusion-controlled re

actions are spatially nonhomogeneous and do not obey Eq.

(1). There is no general approach to the nonequilibrium ki

netics of diffusion-controlled reactions, and thus the problem

of random walk has still been the subject of much recent

interest.2 Nonhomogeneous reactions are known to cause a
distinct deviation of S from the t~l power law which is
postulated by Eq. (1). In fact, as for the bimolecular reactions

of A+i4-»0, where A and 0 denote the reacting particle and

its annihilation, respectively, taking place on an infinitely

long, continuous medium of one-dimension, a good approxi

mate solution is given by the Smoluchowsky-Noyes

formula3'4

(2)

where D is the diffusion coefficient of a particle. Torney and

McConnell have developed the stochastic theory for this re

action to show that S is given exactly by4

where erfc* is the complementary error function defined as

1 -erfo. The nature of the kinetic process is manifested by

the dimensionless time variable £ that is proportional to Nq

and by a strongly nonexponential time evolution of S(£).

Subsequently several groups of workers have extended the

theory to the reactions taking place on a long periodic

lattice.5"7
Another important ingredient for nonexponential temporal

behavior is the disorder of the potential energy of the me

dium which governs the motion of reacting particles. In

amorphous semiconductors, for instance, the photolumines-

cence and photoconduction intensities and/or the photoin-

duced dielectric relaxation obey the Kohlrausch decay law

(4)

(5)

where r and C are constants. These functions can be ex

panded by the Laplace transform into a continuous series of

e~vt with a given distribution function of v.s This conse
quence tells us that a nonexponential behavior may result

from superposition of exponential decay functions with dif

ferent life times 1/z/s. Theoretically, these decay laws are

or the power law of
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realized by pseudounimolecular reactions of excited charge

carriers.9 In such reactions P and a depend on the dimen

sionality of the medium. Furthermore, if the medium has a

fractal character, the fractal dimension is directly reflected in

the values of /3 and a.1 There are, however, not many studies

on the physical roles of the randomness in nonequilibrium

relaxation phenomena of electronic excitations in solids

other than amorphous materials.

Photoexcited solitons and polarons in conjugated

polymers10"16 and MX chain compounds17"19 exhibit strik
ingly nonexponential decay profiles. Here we are concerned

with the solitonic excitations created by a continuous irradia

tion with a cw blue light in single crystals of a degenerated

MX chain compound [Pt(en)2][Pt(en)2Cl2](BF4)4, where

(en) denotes ethylenedyamine. Those excitations can be an

nihilated only through mutual collisions in the course of ran

dom walks on the linear chain lattice. Since the chain lattice

has local disorders serving as energy barriers of the order of

0.5 eV, the nonequilibrium states have an exceedingly long

lifetime: The lie decay time r depends on samples but is

typically of the order of 10 min at room temperature, becom

ing infinitely long below 150 K.17 When the barriers are

uniform the observed S(t) agrees with 5™(f) given by Eq.

(3) well. Interestingly, when the barriers are irregular, S(t) is

changed into the Kohlrausch form given by Eq. (4), and at

the same time, r is elongated by an order of magnitude re

gardless of temperature.17'19 Viewed from the fact that very
similar characteristics of r are observed also in

[Pt(en)2][Pt(en)2Cl2](ClO4)4,2a21 the underlying kinetic

mechanism is likely to be common to solitonic photoexcita-

tions in degenerated MX chain compounds, particularly the

PtCl compounds.

What is specific to the decay kinetics of solitonic photo-

excitations in the degenerated MX chain compounds is that

the spatial nonhomogeneity of potential energies due to lat

tice disorders is concurrent with the nonhomogeneity of re

actions due to random walks. There have been a few at

tempts of numerical simulation of the power decay laws of

photoexcitations in disordered CHn polymers.22'23 To date,
however, no theories which adequately describe the kinetics

of the long-lived photoexcitations in the MX chain com

pounds are available. To obtain an insight, therefore, into the

properties of those photoexcitations we perform a numerical

simulation of S(t) of the A+A->0 reaction on a locally

disordered linear-chain lattice. Our concern is to investigate

how S(t) is influenced by the irregularity of the energy bar

riers. The model of the calculation is described in Sec. n.

The results are discussed in Sec. m and are compared with

experiments in Sec. IV. This study is summarized in Sec. V.

H. MODEL

We deal with the aforementioned bimolecular reaction A

+A—>0 of particles moving on a ring of a chain lattice of

which all sites are divided by the intersite energy barriers as

shown in Fig. l(a). The lattice sites are periodically arrayed

with a spacing of a. In addition the height of the energy

barriers is assumed to be fluctuated with a Gaussian distri

bution around the central height Eo

(a)

JU
© A-particle

(b)

1
Eo

FIG. 1. (a) A model of a disordered linear-chain lattice and (b)

a schematic representation of the MX chain lattice with local disor

ders. The solid circles in (b) denote M atoms.

g(E)= (6)

The particles hop from site to site across these barriers at the

rate

(7)

where w0 is the hopping-rate constant, k is the Boltzmann

constant, and Tis the lattice temperature. For cr=O, the defi

nition of the hopping rate by Eq. (7) gives the diffusion

coefficient of a particle to be

(8)

To model the degenerated MX chain compounds we sup

pose that the MX chains are divided into segments physically

by irregular energy barriers, as shown in Fig. l(b), due to

some local disorders of the chain bonds.17 We suppose fur
thermore that the photoexcitations move very quickly in the

segments so that their kinetics is governed by their random

walks of jumping over the energy barriers. This situation

corresponds just to the model shown in Fig. l(a). The aver

age length of the chain segments gives the lattice constant a

of the present model.

The calculation is carried out with respect to a lattice ring

comprised of 104 sites by the standard method. Initially, an
even number of particles are placed at random on the lattice

sites on the basis of binomial occupation. The reaction is

assumed to take place instantaneously when two particles

collide with each other. Therefore, once two particles meet

on the same site, they are removed immediately from the

lattice ring. The hopping-rate constant w0 and mean height

EQ of energy barriers are fixed to be 106 step""l and 0.40 eV,
respectively. To investigate general properties of the kinetics

of particles, the initial density No, lattice temperature T, and

magnitude cr of fluctuations of energy barriers are each

changed in a wide range as follows: Noa

= 0.05,0.10,0.20,0.30, and 0.40; 7=200,225,250,273,300,

and 350 K; (7=0,0.01,0.03,0.05, and 0.10 eV. For Noa

= 0.05, to reduce statistical errors, calculations are also car

ried out by increasing the number of lattice sites to 2X104.
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Soliton E0=0.4 eV o=0 eV

FIG. 2. S(£) in the uniform lattice ring. The markers are calcu

lated values and the dotted line shows S™(f)- The inset shows

S(O at different values of Noa and S™(Q in a region 0^f^0.3.

m. RESULTS AND DISCUSSION

Previous theories, including the theory of Torney and Mc-

Connell, have mostly dealt with reactions in continuous me

dia, although reactions of quasiparticles states in solids take

place on lattice spaces. A continuous medium corresponds to

a lattice with infinitesimal lattice constants. In a one-

dimensional space, the reaction on a uniform and continuous

ring, which is expressed by S™(£) given by Eq. (3), de
scribes the reaction in the low-density limit Noa-+O on a

discrete lattice ring. Lushnikov5 and Spouge6 have extended
the theoretical treatment to a lattice medium and have shown

exact solutions for 5(t) in special cases of Noa = 0.5 and 1.0.

Balding, Clifford, and Green have derived the general

solution,7 but in the case of arbitrary Noa their solution gives

rise to the difficulty of evaluating a summation of an infinite

number of terms consisting of modified Bessel functions at

any values of t. Hence only little is known about the depen

dence of S(£) on Noa in a lattice space. For this reason, we

examine the reactions on the regular lattice of cr=O to begin

with, and then proceed to irregular lattices of a=£0.

A. Regular lattice

Figure 2 shows the plot of the results of calculation for

various different values of Noa and T to compare them with

S™(Q- The results of our calculation agree well with

S™(0 in a wide range of £. Note that S™(£) falls verti
cally at £=0. This is because in a continuous ring there exist

particles almost contacting each other even at f=0. In a lat

tice ring, as shown in the inset of Fig. 2, the initial part of

S(C) deviates significantly from S™(£). The deviation de
pends on Noa. As Noa approaches zero, S(£) approaches

S™(£) asymptotically. We note that the deviation is caused

by the presence of a linear component at an early stage of

decay.

FIG. 3. Dependence of -d(/dS(O on Noa.

To quantify the linear component we employ a modified

Smoluchowsky-Noyes formula

l
(9)

where p and q are adjustable constants. Taking #—>°°, while

maintaining p2/q=32/'ir, one obtains the original formula

given by Eq. (2). The solid lines in the inset of Fig. 2 show

the best curves of S(£) calculated from Eq. (9). Figure 3

shows a plot of p~l, which gives —d^ldS at the initial

stage, as a function of Noa. The value of -d£ldS appears to

be rather linear to Noa with a coefficient of —0.25.24 This
finding implies that in a discrete lattice ring a finite waiting

time is needed for particles residing on consecutive lattice

sites to collide with each other and that the fraction of those

closely assembling particles increases with increasing No.

B. Irregular lattice

To extend our treatment to irregular lattices, we redefine

NlDot as £. As the irregularity of energy barriers evolves,

is found to become still more nonexponential. An ex

ample of the calculation on the a dependence at Noa=0.1

and T= 250 K is shown in Fig. 4. Figure 5, on the other

hand, shows the results of calculations at various tempera

tures for the case of (cr,Noa) = (0.03 eV,0.2).

Comparing Figs. 4 and 5 with Fig. 2, we note that the

lattice disorder gives rise to the following striking effects.

(i) For a given value of Noa, the initial ^-linear decay is

faster than in the case of cr=O, because the presence of

barriers lower than Eo promotes the reaction at an early

stage. However, since the reactions at longer times are gov

erned by the particles left between relatively high barriers,

the lie decay parameter £Ve increases from 0.195(=£™)
with increasing cr. As a consequence, S(£) can no longer be

reproduced by S™(f) nor modified SSN(£)- Of course, as
mentioned later again, the dependence of £Ve on a varies as

Nqci increases.

(ii) Like the case of a regular lattice, the temperature ef

fect on S(C) is manifested only by the temperature variation

of £. Namely, the value of £ye and the functional form of

S(£) are independent of temperature. The same is true for

any set of a and Noa examined. Consequently, as shown in

Fig. 6, regardless of the values of a and Noa an Arrhenius
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FIG. 4. S(£) at Noa = Q.l and T=250 K in the irregular lattice

ring of different values of cr. The dotted line shows S™(£).

plot of the temperature dependence of the lie decay time

r(—£\ieNo2DoX) yields a thermal activation energy that is
almost identical with the value, 0.40 eV, employed for £"0 in

the calculation.

Provided the particles do not react, it is expected from the

distribution function g(E) given by Eq. (6) that a particle has

a mean diffusion coefficient of Z>0exp[(a/fc7)2/2]. The factor

Qxp[(a/kT)2/2] depends strongly on temperature. In the case
of (7=0.05 eV, for instance, exp[(a/fc7)2/2] changes an order
of magnitude upon a change in temperature from 200 to 300

K. When particles react, however, as manifested by our nu

merical calculation the irregularity of energy barriers yields

no apparent influences on the diffusion coefficient of par-

ol 0.5

2

Noa = 0.2

a o 0.03 eV

+ 225 K

• 250 K

* 273 K

o 300 K

0.1 0.2 0.3

t = N02Dt

0.4 0.5

106

105

a 104

S

103

102

101

Eo = 0.4 eV Noa = 0.2

a

□ 0.10 eV

A 0.05 eV

• 0 eV

1000/T (K-1)

FIG. 5. S(f) at various temperatures in the irregular lattice ring

in the case of (a,Noa) = (0.03,0.2).

FIG. 6. Temperature dependence of r at Noa=0.2 and different

values of cr.

tides. Instead, the form of S(£) is changed. For a

^0.01 eY,S(£) is found to be reproduced well by the Kohl-

rausch law of S(£) = exp[—(f/£i/<,)^] in a wide range of £.
Examples of the curve fits are shown in Fig. 4 along with the

values of S(£) calculated for various cr at NQa = 0A. For a

^0.03 eV, the fits are yet imperfect, so that the fitted curves

run below the true values as £ goes beyond 1. For a

5*0.05 eV, however, S(f) can be reproduced very well by

the Kohlrausch law up to £=5 for any value of Noa.

Figures 7(a) and 7(b) show the tr dependence of the rela

tionships of Cue an(i A respectively, to Noa. For the above-

mentioned reason, the fitting analysis for the cases of cr

^0.03 eV is made in a region of 0^£<0.5. We see from

Fig. 7 that ft, as well as die > depends significantly on cr and

Noa. On increasing tr from 0.01 to 0.1 eV, /? decreases

distinctly from 0.4-0.5 to 0.2-0.3. The trapping process of a

pseudounimolecular reaction is known to obey the Kohl

rausch law with f3=d*/(d* + 2) in a space of the fractal

dimension of d*.1'25 It appears from the present calculation
that f3 decreases with increasing a as if the fractal dimension

d* is reduced by cr, even though the reaction treated here is

strictly bimolecular and the disorder of the lattice is not nec

essarily fractal. In the present case we note that the depen

dence of (3 on cr is enhanced as Noa increases.

The discrete-lattice effect discussed in the preceding sub

section causes Cye *° increase with increasing Noa. A small

but distinct increase seen for £ye at or=0.01 eV in Fig. 7(a)

is almost identical with that at <r=0 within errors of numeri

cal calculations. The effect of cr on £ye becomes pronounced

when cr is elevated from 0.01 eV. In Fig. 8 the values of Cue

at various values of Noa are plotted as a function of a. This

plot illustrates that if Noa is given, £ye increases almost

exponentially with cr. The increase in £ye leads to an en

largement of r. Let us write the enlargement factor as

(10)

with a temperature-independent parameter 77. Then Fig. 8

shows that if the initial density of particles is sufficiently

small such that N0a<0.1, r is enlarged by the order of 50 at

cr=0.1 eV, yielding 77^ 19. As Noa increases, since the av

erage interparticle distance decreases, the probability that
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102

10

(a)

FIG. 7. Dependence of (a) £lle and (b) /? on Noa at different

values of a.

there are no barriers of E>E0 between pairs of particles

increases. Consequently, an increase in Noa results in a re

duction of 77.

IV. COMPARISON WITH EXPERIMENTS

Crystals of [Pt(en)2][Pt(en)2Cl2](BF4)4 can be classified

in decay properties of long-lived photogenerated solitons

10

0.1

• 0.05

□ 0.10

O 0.20

V 0.30

A 0.40

0.05

a(eV)

0.1

FIG. 8. Dependence of £l/e on cr at various values of Noa.

0.3

FIG. 9. (a) Time decay of peak absorbance ^peak of the photo-

induced midgap band in [Pt(en)2][Pt(en)2Cl2](BF4)4 at 273 and

298 K. (b) Normalized peak absorbance K^IKq versus t'

=Klexp(-E0/kT)t with E0=0A5 eV. The solid lines are the best
fit of the Kohlrausch curve to the experimental data.

into two groups. In one group the decay obeys S™(£) given

by Eq. (3) well,19 while in the other group the decay exhibits
the Kohlrausch behavior.17 As for the former group of crys
tals it has been confirmed from measurements of the pump

ing power and temperature dependencies of the time decay

that S is universal if the time variable is chosen as £

^N\Dt with £0«0.45 eV.19 This fact means that the crys
tals of the former group contain rather uniform energy bar

riers. Hence it is strongly suggested that the Kohlrausch be

havior observed in the crystals of the latter group originates

from random distribution of barrier height. The value of {$ of

the Kohlrausch law is in a range 0.25-0.35. Viewed from the

result of our numerical calculation [Fig. 7(b)] those crystals

might contain irregular energy barriers of o-/E0=0.1-0.2.

Figure 9(a) shows typical examples of the experimental

data17 on the time decay of the photoinduced midgap absorp
tion in the irregular crystals. These data are obtained at 273

and 298 K by using a same sample. At both temperatures the

decay of the photoinduced absorption is extremely nonexpo-

nential, slowing down so fast with time that it cannot be

expressed by the Torney-McConnell and Sasaki-Nakagawa

formulas. The point to observe is that the decay obeys the

Kohlrausch law very well with /?=0.26-0.28 at both tem

peratures and with r=35.7 and 13.8 min at 273 and 298 K,

respectively, as shown by solid lines in Fig. 9(a).
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In Fig. 9(b) the experimental values of peak absorbance

^peak normalized by the respective initial value Ko, being

0.48 and 0.35 at 273 and 298 K, respectively, are plotted as

a function of tr=Klcxp(-EQ/kT)t with E0=0A5 eV. De

spite the large difference in the decay time r, the data of

^peak/^o at *e two temperatures lie on a single curve well.

Consequently the Kohlrausch curve of S seems to be a uni

versal function of £. This is consistent with our numerical

calculation on the temperature dependence of S(£): As illus

trated in Figs. 5 and 6, S(£) is insensitive to temperature and

r obeys the Arrhenius law well. Regarding the dependence

on the initial density No, we note that the difference in the

value of Ko by about 40% yields no significant influence on

the observed lie decay parameter Cx/e • Thisls ^so plausible

from Fig. 7(a), because as far as Noa is of the order of 0.1 or

less a 40% change in No gives only a small change in £1/e.

On the other hand, Cxie is sensitive to the irregularity of

energy barriers. The present calculation on the cr dependence

of S (Fig. 8) shows that in irregular crystals of cr/£0=0.1

~0.2, £ye should be significantly greater than the value

£™=0.195 regardless of No. Indeed, the experimental value

of C\/e at a given temperature is an order of magnitude

greater than that of homogeneous crystals.19

V. SUMMARY

We have examined the kinetics of the diffusion-controlled

reaction of A+A—>0 on a disordered linear-chain lattice by

numerical simulation. We have introduced irregular energy

barriers between consecutive lattice sites. 'The A particles are

rendered to perform thermally activated random walks on

this lattice. In the present study the irregularity of energy

barriers is assumed to obey a Gaussian distribution around a

central energy Eo.

If the half width cr of the Gaussian distribution is suffi

ciently small, the survival probability S(t) of a particle at a

time t agrees well with the Torney-MacConnell formula or a

modified Smoluchowsky-Noyes formula. As a increases,

S(t) is transformed into the Kohlrausch form of S(£)

= exp[-(£/£1/<?)£] with £=NlDot, where No and Do are the
initial density and specific diffusion coefficient, respectively.

The lie decay parameter Cxie enlarges exponentially with

increasing cr, while the argument P decreases to make S(£)

still more nonexponential. The enlargement factor of Cxie ex~

ceeds 50 if cr/E0 exceeds 0.25. Nevertheless, both Cxie aad P

are independent of temperature, so that the lie decay time is

reduced with elevating temperature as DQl~exp(E$/kT).
These findings are consistent with experimental decay

properties of long-lived photoexcited solitons in degenerated

MX chain compounds. Since our model is not restricted to

the MX chain compounds, the present results will be appli

cable to diffusion-controlled annihilation reactions of solito-

nic excitations in various disordered one dimensional sys

tems.
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