
Mechanical Changes in Materials Caused by Explosive Precompression

Shock Waves and the Effects on Fragmentation of Exploding Cylinders

T. Hiroe1a, K. Fujiwara1b, H. Hata1c,K. Watanabe2'd and M. Yamamoto3'e

1 Department of Mechanical System Engineering, Kumamoto University, Kumamoto 860-8555

2Graduate School of Science and Engineering, Kumamoto University

technical Division, Faculty of Engineering, Kumamoto University

ahiroe@gpo.kumamotChu.acjp/Fujiwara@kumamoto-u.acJp/hata@mech.kumamoto-u

d064d8539@gsst.stud.kumamoto-u.ac.jp,eyfanriily@mech.kumamoto-u.ac.jp,

Keywords: Mechanical Properties, Shock Wave Transmission, Momentum Trap, Cylinder

Explosion, Fragmentation Energy

Abstract Explosive driven rapid fracture in a structural body will be preceded by a compression

process, and the compression effects on mechanical properties ofthe materials are clearly important

to understand shock-induced failure such as spall or fragmentation phenomena. In this study, incident

shock waves in plate specimens of aluminum A2017-T4 and 304 stainless steel are generated by

plane detonation waves in the high explosive PETN initiated using wire-row explosion techniques,

and the compressed specimens are successfully recovered without severe damages due to the

reflected expansion waves with use ofmomentum trap method. A hydro code, Autodyn-2D is applied

to determine test conditions: thicknesses of explosives, attenuators, specimens and momentum traps

and to evaluate experimental results, simulating time-histories of stress waves in the layers ofthe test

assembly. Microhardness distributions in cross-sections, tensile strength, fracture ductility and yield

stress are measured for the recovered specimens, using miniature tensile and compression test pieces

machined from them. They are compared with those of virgin specimens, showing significant

increase ofhardness, tensile and yield strength and remarkable reduction of elongation and ductility

for shocked specimens. The results are taken into consideration for evaluation of experimental

fragmentation energy in cylinder explosion tests.

Introduction

The understanding of high-strain-rate deformation and fracture behavior of materials and structural

components has been of great importance in safety evaluation and fracture control design for

accidental impact ofvehicles and crashworthiness shielding, blast of high-energy storage containers

and space applications. Such high speed failure phenomena are typically initiated by impacts

between solid or gas bodies and strong compressive stress waves are created and transmitted through

the bodies prior to the terminal tensile deformation and fracture of structures, but usually such

preceded processes have been involved implicitly in the evaluation ofposterior fractural phenomena.

Authors had applied wire explosion techniques [1] to produce diverging and planar detonation

waves in the powder high explosive pentaerythritoltetranitrate (PETN) for the studies on spall

fracture ofplates [2] and uniform expansion and fragmentation of cylinders [3,4] ofaluminum alloys

and a stainless steel. Experimentally derived values ofspall strength [5] and fragmentation energy [6]

of materials used for fracture evaluation effectively had been obviously affected by prior strong

compressive pulses. In this study, explosively shocked plate specimens of aluminum A2017-T4 and

304 stainless steel are successfully recovered without a large amount ofdamages due to the reflected

expansion waves using momentum traps designed with help of numerical simulations. Measured

mechanical properties ofthe recovered specimens reveal remarkable changes from those ofthe virgin

materials, giving some considerations on the dynamic fracture [2-4,7] induced by shocks.



Experiments for Recovery of Explosively Precompressed Plates

Test assembly. Explosively loading experiments are performed using the explosion test facilities at

the Shock Wave and Condensed Matter Research Center, Kumamoto University. Figure 1 illustrates

the developed test assembly for recovery of precompressed plate specimen, which consists of four

layers of a PETN slab packed to 0.90-0.95g/cc with attached parallel copper wire-rows (wire dia.:

175nm) for generation of planar detonation [1], an air layer as an attenuator (AT), a circular plate

specimen (TP) ofA2017-T4 or 18Cr-8Ni stainless steel (JIS SUS304), and a circular momentum trap

plate (MT) ofthe same material as specimen. The PETN are filled up to 15mm and 20mm thick for

A2017 and 304SS respectively. The air layer AT of 10mm thickness is inserted in case to transfer

lower incident shock pressure only for A2017 specimen. The contact surfaces of specimens and the

momentum traps are lapped to superfine finish. A planar detonation front is produced in the PETN

layer immediately after simultaneous explosion of wire-rows with use of an impulsive discharge

current from a capacitor bank of40kV, 12.5jjF and a triangular-type pressure pulse transfers into TP

and MT. Tt is expected that the TP would be recovered without severe damages with effect ofthe MT.

The thicknesses tj and t2 ofprovided TP and MT are 5,10,15mm: 9 kinds ofcombinations for A2017

and 10,15mm: 4 kinds for 304SS and A2017 (AT attached type), and represented as TPt!MTt2. All

the test conditions are determined using the following numerical results.

Numerical simulations and recovery tests. Numerical simulations were performed for all the

experiments using a hydro code: Autodyn 2D based on Finite Difference Method (FDM), where the

Steinberg-Guinan model [5] is adopted for the constitutive equation for metals. Figure 2 (a), (b)

shows typical numerical time-histories of spatial distributions of normal stress (compressive stress:

positive) in the test assembly layers for TP10/MT10 (304SS) and AT10/TP10/MT15 (A2017).
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Figure 2. Typical numerical time histories of special stress distributions in the test

assembly of (a) TP10MT10(elapsed time: 0-8.6^s) for 304SS and (b)

AT(air)10TP10MT15 (elapsed time: 0-18u.s) for A2017
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Figure 3. Typically recovered momentum trap

(right) and specimen (left) plates for A2017 /TP10

MT10

Figure 4. A typical vertical cross-section

of a recovered specimen plate (A2017

/TP10MT10), showing the locations for

the microhardness measurement

Damage criteria are not adopted in these calculations. It is seen that triangular compressive stress

waves propagates through TP and MT, and the reflected tensile stress waves generated in MT do not

transfer into TP for both cases. The gap elements are inserted numerically between TP and MT. There

small tensile waves still arise in TP because of reflection of remained compressive wave tail at the

emerged free surface ofTP as shown in (a). The effect of attenuator, air layer is apparently shown in

(b), and the incident shock pressure in TP is 53.8% of that in case of TP without AT, which almost

corresponds to the numerical pressure reduction rate in cylinder explosion tests [4,7] with an air layer

between cylinder specimen and the inner explosive column. Other numerical study has reproduced

experimental spall failure in MT using a damage criterion. Recovery tests of explosively compressed

specimens were successfully performed inside a cushion-filled chamber without secondary damages

in TP and MT. Macroscopic severe damages were not observed in almost all the TP specimens except

2-3 samples, but spall or scab damages were produced in most MT palates, as shown in Fig. 3. Such

damages in MT are similar to those estimated previously by numerical simulations.

Mechanical Properties of Recovered Plates and Discussions

Microhardness. The vertical cross-section of the recovered specimens was surface-finished as

shown in Fig. 4, which revealed no presence of macroscopic cracks. The microhardness of the plate

was measured at an interval of lmm axially and 5mm radially using a load of0.98N and 15s duration

at the 25 locations in total for all the specimens. Figure 5 shows a typical radial hardness distribution

ofA2017/TP10MT10. Generally the distributions incases ofthicker TP orMT became more uniform.

All the results revealed a remarkable increase in hardness in comparison with those (144.3Hv/A2017,

237.5Hv/304SS) ofvirgin materials: 10.0-23.9%, 28.4-37.1%, 6.8-12.3% increases of average values

per a cross-section for A2017,304SS, A2017 (AT attached), respectively.

200,

190

180

170

j 160-

150-

178.9

140-

130-

191.7

I8&? 18S.7 18&3 185.1-

17d6

163.8 KB/7
16&7

164.3-

A2017-T4TP10MT10

6

I
Average dataof
\iiginmaterial

5 10 15 20

Dmm|

25

Figure 5. Typical measurement results of

Vickers microhardness distributions in the

cross-section of a recovered specimen plate

ofA2017/TP10MT10
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Figure 6. Typical photos of (a) a

tested miniature tensile specimen

(initial sizes/ 0 :2mm, L:5mm) for

A2017/TP15 MT15 and (b) small

specimens (05m, L7.5mm) before

(left) and after (right) the 20%

compression test for 304SS/TP15
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Figure 7. Typical compressional stress-strain curves obtained using small specimens

machined from virgin and recovered shocked plates for the test cases of (a)

A2017/TP10MT15 and (b) SUS304/TP10MT15

Tensile and compressional properties. Miniature tensile specimens (minimum tested zone /

0:2mm, L:5mm) and small compression specimens (0:5mm, L:7.5mm) were machined parallel and

vertically to plate surfaces from the recovered shocked plate specimens, and loaded to break under

2mm/min chuck velocity for tensile tests and compressed to 20% strain under the strain rate of

4.4 x 10"3 s~l for compression tests as shown in Fig. 6 (a), (b), using Shimadzu AG-25TB Autograph

and full digital servo-hydraulic testing system FHF-EG50kN-10L. In the tensile tests, tensile

strength^, elongation X and reduction of area q> (RA) were obtained measuring breaking load,

elongated length between two Vickers indentations with distances ofgauge length L and section area,

which showed very small reduction as shown in Fig. 6(a). It is well known that the empirical

proportional relation between strength [MPa] and hardness [Hv] written as equation (1) and the

fracture ductility sf is also estimated from RA using the following equation (2), which is sometimes

more effective to evaluate practical local ductile fracture than averaged elongation A.

aB=C-Hv

ef =

(1)

(2)

Tensile tests results indicated large increase of <rB and remarkable reduction rate ofA, q> and sf

(ascending order) as shown in the photo of Fig. 6 (a), and C = 2.75-3.16 in Eq. 1. In the

compression tests, compressive stress-strain curves were compared with those of virgin materials as

shown in Fig. 7, revealing obviously different precompression effects between two materials. The

results indicate that A2017 has a gradually decreasing strain-hardening characteristic, then the



differences of stress levels in the stress-strain curves between virgin and shocked materials become

smaller as the strain grows, and in the contrary, 304SS which has a constant hardening characteristic
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Figure 8. Mechanical properties, fracture

ductility sf and 0.2% proof stress ao.2

obtained from tensile and compression tests,

using specimens machined from virgin and

recovered shocked plates of (a) A2017, (b)

A2017 (shocked through attenuator) and (c)

304SS (some tests are incomplete)

shows rather upper shifted stress-strain curves. The proof stresses of 0.2% plastic strain: <r02 are

adopted as replaced yielding stresses for both materials. Figure 8 represents all the data of fracture

ductility sf and proof stress <j02 obtained from the tensile and compressional tests for shock-loaded

specimens ofA2017, A2017 (AT attached) and 304SS.

Discussions and Conclusions

In the previous study [2] on spall strength of plates shocked directly by plane detonation waves of

PETN, VISAR signals indicated 262-308MPa and 352-453MPa as the spall strength cr^ for A2024

Figure 9. Relations between strain-rates and

fragmentation energy [3, 4, 7] based on

Grady's model and configurations of

recovered fragments in explosively loaded

cylinder explosion tests for A5052 and

304SS.



-T4 and 304SS respectively, which are twice to several times of static tensile strength. It has become

obvious that such large increase of dynamic strength involves not only well known strain-rate effect

but also basic growth of aB or hardness due to precompression learned in this study.

Other previous studies [3,4,7] on fragmentation ofexploding cylinders ofA5052 and 304SS driven

by uniformly expanding detonation waves in inserted PETN column had revealed that the

fragmentation energy rvalues estimated from the Grady's fragmentation model [6]: equation (3)

using strain-rate e of expanding cylinders and measured average width s of recovered fragments

differ depending on the amount ofexplosives or strain-rates as shown in Fig. 9, although T is defined

as a material constant.

rl (3)
24

The fragmentation energy T ofa material is often expressed [6] as a half of a product ofyield stress

aY and critical crack opening displacement^, then, the following equation (4) is obtained on the

assumption that Sc is proportional to fracture ductility £f.

T = aY'Sc/2cca02'S/ (4)

Figure 9 indicates that the r values based on Eq. 3 descend for A5052 and increase for 304SS as the

strain-rates or the amount of explosives or the intensities of precompression loads subjected to

cylinder walls increase. It is noticeable that this tendency almost corresponds with the data ofFig. 8,

where the ratio of the products of <r02 • sf in Eq. 4 of precompressed specimens to those for virgin

materials are 63.9% (A2017), 84.6% (A2017/AT-attached) and 122.4% (304SS), although cylinder

fragmentation phenomenon must be affected by some other factors.
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