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Abstract

Tubular metal specimens are explosively expanded to fragmentation, and the effects of wall materials,

thicknesses, notches in walls, explosive driver diameters and the initiated locations are investigated on the

deformation and fracture behavior of the cylinders experimentally and numerically. In the standard tests, the

driver is a column of low density powder of high explosive PETN, inserted coaxially into the bore of a smooth-

walled cylinder and initiated by exploding a bundle of fine copper wires at the column axis using a discharge

current from a high-voltage capacitor bank. Notched cylinders with single axial slit, various grooves in the walls,

and smooth cylinders with varied wall thicknesses were tested. Low-carbon steels and an aluminium alloy A5052

were provided in addition to the standard smooth-walled 304 stainless steel cylinder, and they were folly or

partially charged with varying explosive column diameters. The initiated locations in the explosive column are

changed for comparison, placing the bundle of fine copper wires eccentrically from the central axis or replacing

the fine wire bundle into a bold wire line except the middle portion at the central axis for central point initiation.

Additionally an explosive-filled cylindrical vessel with welded endplate at the one end is initiated at the other end

explosive surface exploding wire-rows and expanded by axially propagating explosive detonation to fracture for

comparison with the uniform expansion.

Deformation and crack initiation of expanding cylinders are observed with high speed camera, and most of

the fragments have been recovered successfully. Recovered fragments have been measured and investigated using

a fragmentation model. The effects of test parameters on the deformation and fracture behavior of metallic

cylinders are discussed with use ofnumerical simulations, indicating applicability ofthe fragmentation model and
suggesting future necessary studies.
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1. Introduction

Explosively loaded systems are the experimental techniques requiring the least capital investment,
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and are suited [1] for start-up of a shock-loading research program. The authors have applied the wire-

explosion techniques to develop such explosive loading devices [2-5] producing planar, imploding, and

diverging detonation waves using powder pentaerythritol-tetranitrate (PETN). The generated

cylindrically expanding detonation waves were used to examine the dynamic response of steel cylinders

at high strain rates of 104 s-1 [4], which is one-order higher strain rate than those in similar studies [6].

Most of the fragmentation models [7] for cylinders are based on axially phased detonation initiated at

one end ofthe cylinders.

In this study, rapid uniform expansion and fragmentation behavior for a fully explosive-charged

smooth cylinder of 304 stainless steel are compared with those for the tests of cylinders with different

parameters such as wall materials, amount of explosive charge, wall thicknesses, notches (groove or

slit) and explosive-initiated locations. Most of the observed deformation behaviour are reproduced by

the numerical simulation using Autodyn 2D. The effects of test parameters on fragmentation are

investigated, suggesting future necessary studies [8] on mechanical changes in materials caused by

precompression shock waves and a modification ofthe Grady model.

2. Experimental procedure

Experiments were performed utilizing the explosion test facilities at the Shock Wave and

Condensed Matter Research Center, Kumamoto University. The developed test assembly for axially

uniform or axially phased rapid expansion of cylinders driven by explosives is illustrated in Fig. l(a),

(b), (c) and (d). Fig. l(a) shows a basic test assembly for tubular specimens of four kinds ofmetals: 304

stainless steel (304SS), A5052 and two kinds of carbon steels (C.S/ A and B) were explosively

expanded to fragmentation. Table 1 shows the material properties used in this study. A column of the

high explosive PETN (powder explosive made by Asahi Kasei Chemicals Ltd., charged density: 0.90-

0.95 g/cc) was inserted into the central bore and initiated by exploding a bundle of three copper wires

(diameter 175/jm) set along the central axis of the column using a discharge current from a high-

voltage capacitor bank (40kV, 12.? /*F). The cylindrical diverging detonation wave and generated gas

becomes the driver for the cylinder specimens. Specimens were machined from drawtubes to the

cylinders of 100 mm length, outer diameter (Do): 34-38 mm and wall (/): 3-3.5 mm as standard test

specimens for every material. Mostly PETN columns filled the steel tubes, but, partially charged

smaller diameter changes were also provided for cylinders of 304SS, A5052 and C. S. /A. In latter cases

an air-layer between the explosive and the cylinder wall is left. In addition, explosive-filled cylindrical

vessels with welded endplate at the one end are provided for 304SS and C.S/B and C, and initiated at

the other end surface by exploding fine cooper wire rows as shown in Fig. 1 (b) and expand by axially

propagating explosive detonation to fracture for comparison with the uniform expansion. Other type

cylinders with varying wall thickness t: 1.65 mm, 6 mm (Do: 40 mm) and notched cylinders with

single/double axial/circumferential grooves (GR; 1.5 mm width and depth on the inside/ outside wall

surfaces) or single axial slit (SL; 1.5 mm width, space: filled with paste) in the walls were also provided

as shown in Fig. l(c) and compared with smooth wall cylinder (SM) for only 304SS cylinders.

Additionally, the initiation location in the explosive column were changed and compared by placing the

bundle of fine copper wires 7mm eccentrically from the central axis or replacing the fine wire bundle

into a bold wire line except the middle portion (a fine wire line of 5mm length) at the central axis for

central point initiation for 304SS cylinders as shown in Fig. l(d). The dimensions of specimens and
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explosives for four kinds of test types or groups are tabulated in Table 2. All the test conditions in this

study are summarized as test No. 1-22 in Table 1. At least two tests: observation of expansion behavior

and recovery of fragments were conducted for every test condition, because both can not be completed

at one test.

Deformation and crack initiation of expanding cylinders were observed with high speed cameras:

IMACON 468 and Shimadzu/HPV-1 (frame rate of 30-106 fps), using a combination of lights from a
xenon lamp as a back light and front lit by the use of mirrors to reflect the flash of exploding wires at

the both edges of the cylinder. The fragments of exploded specimens were recovered for all the test

conditions in a steel chamber filled with waste cloth.

Test cylinder

PETN Column

Copper wi

Copper wires ( $

=0.175junx3wires)

To capacitor bank «==

(a) Basic test assembly

Endplate Test cylinder fully filled

with PETN

(b) Test assembly for vessel type specimens

©
Standard

(Smooth)

(f
Xs .

Slit

(t ■

1-Grooved

(outer)

2-Grooved 2-GroovedU

(outer) (inner) 2-Circumferentially

grooved (outer)

(c) Specimens for notch effects

7mm

5mm

I point

m) initiation

(d) Variations of wire locations

Fig. 1. Schematics of test assemblies for (a) uniform explosion of cylinders and (b) axially propagating expansion of vessels,

(c) wall configurations for notch effects, and (d) varied wire-locations
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Table 1. Material properties used in this study

Material symbol 304SS A5052 C.S/A C.S/B GS/C

Tube /plate Tube Plate Tube Tube Tube Plate

Material names

and contents

JIS

contents

SUS304

18%Cr-8%Ni

stainless steel

A5052TD-H34

2.5% Mg

aluminium alloy

SGP-E-G

0.14% carbon

steel

STKM-

13A

0.25%

c. steel

S55C

0.55%

c. steel

Tensile strength ,MPa

Yield stress (0.2%proof

stress), MPa

*( > 520)

220, (>205)

274, (>

235)

264, (>

175)
190

435,

O370)

420,

O215)

Test

Types
Mat

Cylinder sizes, mm

Do t L
Size parameters, mm

(>539)

O392)

* values inside parenthesis are those written in Japan Industrial Standard (JIS); others are those in mil-sheets

Table 2. Dimensions oftest specimens and explosives for test types

Wall

thick

PETN

diameter

Notch

effects

Initiation

locations

304SS,

304SS,C.S/A

A5052

304SS

304SS

C.S/B

34,40

34

35

34

34

38

100

100

100

100

100

3.5 100

f=1.65,3,6(Do=40)

PETN dia. = 28,16,12 (304SS), 28,16 (C.S/A)

PETN dia.= 29,16,8

Axial Axial one Axial two Axial two

one slit groove(out) groove(in)

1.5width 1.5wxl.5d 1.5wxl.5d

2) Central

short line
1) Eccentric line

(offset:7)

1) Central short line

(5L)

(5L)

Circumferential

groove(in) two groove(in)

1.5wxl.5d 1.5wxl.5depth

3) Endsurface of

PETNcolumn,

(Vessel endplate: 50(j> x 6t)

2) Endsurface ofPETN column,

(Welded Vessel endplate: 48«j> x 6t)

3. Experimental and numerical expanding behaviour

Fig. 2 shows typical framing records for a fully charged smooth-walled standard cylinder of304SS

expanding symmetrically and uniformly. A number ofcrack initiation and axial propagation are seen on

the surface at 16 and 22 jis, these features were also seen in other smooth-walled cylinders of A5052

and carbon steels A/B. Fig. 3 shows the comparison of streak camera records at the mid-length for

exploding fully charged cylinders of 304SS with the different wall configurations: (a) smooth, (b)

axially singly grooved and (c) axially singly slit walls. For grooved wall cylinder, early gas venting is

seen at 20 jis only in the groove, and for slit wall cylinder, detonation gas starts venting at the instance

ofdetonation arrival at the slit, but we see overall deformation behaviour is similar to that ofthe smooth

wall cylinder. The values of RIR: strain rates accurately only for uniform expansion of standard

cylinders and wall velocities R at the estimated fracture initiation periods were 0.55-5.66x 104 s"1 and
130-1757 m/s for all the test conditions as listed in Table 3, where R is outer radius ofthe cylinder and

the superscript dots denote differentiation with respect to time t. The R values are obtained from the

average expansion rates at the periods from the streak camera records as shown in Fig. 3. Those values

are smaller (60-90%) than Gurney velocities [9] as shown in Table 3. Fig. 4 shows typical framing

records for exploding fully charged 304SS cylinders with smooth walls but anomaly initiated (a) with
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an axial copper wire line placed eccentrically from the central line and (b) at a central point.

Table 3. Summary of experimental conditions and observed deformation data

No

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Mat

304SS

304SS

304SS

304SS

304SS

304SS

304SS

304SS

304SS

304SS

304SS

304SS

A5052

A5052

A5052

C.S./A

C.S./A

C.S./B

304SS

304SS

304SS

C.S./B

Initiation

locations

C. Axis

C.Axis

C. Axis

C.Axis

C.Axis

C.Axis

C.Axis

C.Axis

C.Axis

C.Axis

C.Axis

C.Axis

C.Axis

C. Axis

C.Axis

C. Axis

C.Axis

C.Axis

Ecc. Axis

C. Point

End-surface

End-surface

Cylinder types

/Vessel

Smooth(standard)

Smooth(standard)

Smooth(standard)

Smooth

Smooth

A.1 Slit

A.1 Slit

A.I Grooved

A. 1Grooved

A. 2Grooved

A. 2Grooved (in)

C. 2Grooved (in)

Smooth(standard)

Smooth(standard)

Srnooth(standard)

Smooth(standard)

Smooth(standard)

Smooth(standard)

Smooth(standard)

Smooth(standard)

Vessel

Vessel

Cylinder sizes,

mm

D. t L

34

34

34

34

40

34

34

34

34

34

34

34

35

35

35

34

34

38

34

34

34

38

3

3

3

1.65

6

3

3

3

3

3

3

3

3

3

3

3

3

3.5

3

3

3

3.5

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

PETN

dia,

mm

28/full

16

12

30.7/full

28/full

28/full

16

28/full

16

28/full

28/full

28/full

29/full

16

8

28/full

16

3 I/full

28/full

28/full

28/full

3 I/full

m/s

1000

348

130

1367

450

1000

398

983

382

1000

900

1184

1757

915

280

1180

417

863

968

1275

1073

1043

Gnrney

vel.,

m/s

1154

1564

761

1145

1127

*R/R,

{£),

10V1

3.66

1.33

0.55

4.97

2.00

3.66

1.57

3.82

1.51

3.76

3.44

4.52

5.66

3.28

1.26

3.75

1.50

3.12

3.06

4.97

3.73

2.53

' R, RIR, (£) are the data at the estimated fracture initiation period, and derived from an average expansion rate at the
central portion of cylinder.

Wire-explosion (3us) Expansion (9us) Crack growth (16ns) Fragmentation (22us)

Fig. 2. Typical framing records for an exploding standard 304SS cylinder with fully charged PETN (test No. 1)
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40ns 0 40|iS 0 40ns

(a) Smooth (test No. 1) (Grooved offrotf^ test No. 8) (0 Slit (Slit on front side, test No. 6)

Fig. 3. Streak records at the mid-length for exploding fully charged cylinders of 304SS with (a) smooth, (b) one-grooved and

(c) slit walls - test No. 1,8 and 6 respectively.

.•-■

20us 25ns 30ns

(a) Initiated at an eccentrically placed axial line; see an inserted white line on the first photo (test No. 19)

L
20ns 25ns 30ns

(b) Initiated at a central point (a short line of 5mm), see a white mark laid on the first photo (test No. 20)

Fig. 4. Typical framing records for exploding fully charged standard 304SS cylinders with smooth walls anomaly initiated (a)

at an eccentrically placed axial line and (b) a central point - test No. 19 and 20 respectively

A white line and a white mark inserted on the first photos represent the initiated line and point

respectively. In case of eccentric line initiation, axially uniform expansion behaviour is similar to that

of the standard cylinder except a considerable time gap in deformation start at the top and bottom sides

ofthe cylinder. Circumferential corrugations during expansion were often seen in other test cases and it

seems to be a local expansion caused by reduction of area due to the axial tensile stress. In the latter
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case of central initiation, wall velocity at the mid-length of the cylinder is 28% larger man that in the

uniform cylinder expansion as shown in Fig. 3(a) and summarized at Table 3. The streak and fi-aming

records for the axially phased expanding casing model vessels showed the radial wall velocities were

slightly larger than those of the corresponding uniformly expanded cylinders, and the initial fracture

occurred at the weldedjoints ofa cylinder and an end plate.

— PETN<|>28mm

—-PETN<|>16mm

• ■ - PETN<J>12mm

304SS

¥60

-50

40-

$30

2 20

0 10 20 30 40 50 60 70 80 90100

Time [jis]

(a) 3O4SS smooth cylinders with PETN variations (test No. 1,2 and 3)
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1 / »
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£
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End Surface
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(b) Fully charged cylinders of three

materials (test No. 1,13 and 16)

304SS

0 10 20 30

Time[ n s]

40 50

(c) Fully charged cylinders and a

vessel of304SS, showing the effects

of the initiation locations (test No.

1,19,20,21)

Fig. 5. Experimental time-histories ofwall radii at the mid-length for expanding (a) smooth cylinders with variations of

charged PETN diameters and wall materials, and (b) 304SS smooth cylinders with variations of initiated locations; standard

central line, eccentric axial line (top: near wall, bottom: far wall), central point and end-surface (vessel). Horizontal lines and

dots show the fracture radii estimated from the thicknesses ofrecovered fragments. See corresponding test numbers in Table 3.



T. Hiroe et al. /International Journal ofImpact Engineering

Time-histories of expanding outer wall radii at the mid-length of the cylinders obtained from the

streak records are shown in Fig. 5 for expanding (a) smooth cylinders with variations of charged PETN

diameters and (b) wall materials, and (c) fully charged 304SS smooth cylinders with variations of

initiated locations; standard central line, eccentric axial line (top: near wall, bottom: far wall), central

point and end-surface (vessel). Horizontal short lines in the figure show the fracture radii Rf estimated

from the thicknesses ofrecovered fragments. Fig. 5(b) represents that fully explosive-charged cylinders

expand earlier in ascending order of A5052, 304SS and carbon steel/ A, but the average expansion

velocities are very similar for 304SS and C. S. /A except in the final stages of acceleration for 304SS.

These phenomena seem to be related with dynamic stress-strain relations of materials and lower yield

stress and larger work-hardening of304SS compared with carbon steel. The explosive energy or PETN

column diameter effect on cylinder expansion is also predicted. Fig. 5(c) represents overall time-

histories of wall radii for the cylinders with variations of initiated locations. The time-histories are

almost similar to that of uniformly expanding standard cylinder, and only the cylinder initiated at the

central point expands a little faster at the mid-length. Such deformation phenomena resemble the

observed insensitivity to notches inserted in cylinders, and these seem to be characteristics for rapid

expansion of cylinders with the expansion rate ofover 104 s*1 as shown in this study.
Numerical simulations were performed for all the experiments using a hydro code, Autodyn 2D

based on finite difference method (FDM) and smoothed particle hydrodynamics (SPH), examining the

experimental expanding behaviour, numerical stresses and fracture criteria of the cylinders, where the

Johnson-Cook constitutive model [10] (A5083H116 for A5052 and steel 1006 for carbon steels) and the

Steinberg model [11] (304SS ) are adopted. Experimental and numerical time-history curves of outer

wall radii of cylinders coincided well for most cases, and the disjunction ofboth curves or fracture radii

suggests a critical fracture strain of % (=\n(2Rf/Do)). Fig. 6 (a), (b) represents typical examples of

numerical simulations. The former example (a) shows numerical time-histories of circumferential

stresses in the wall at the mid-length for a fully charged standard cylinder of 304SS. It is seen mat prior

strong compressive pulses are present before the following tensile stresses grow, and the period when

all the stresses in the wall reach the equal value of 1.2 GPa corresponds with the estimated fracture time

shown in Fig. 6. Such cyclic large precompressive stress waves must have changed the mechanical

properties and affected the following fracture ofthe cylinders. Preliminary tests [8] produced the results

which support this assumption using momentum trap technique. The latter example (b) shows the

numerical pressure distributions at 23.5 ft s for casing model vessel of 304SS just after the spallation

has been generated, indicating negative pressure distribution and the occurrence of spallation (used

critical stress value: l.OGPa) in the endplate numerically. This numerical overall deformation and

spallation have reproduced the observed results well.

4. Fragmentation and discussions

In the investigation on fragmentation, fragment recovery tests were performed and most fragments

(81-96%) were successfully recovered for all the test conditions inside a cushion-filled chamber without

secondary damage. 61% was collected for the cylinder with the thinnest wall. Fig. 8 (a), (b) and (c), (d)

show typical recovered fragment photos for 304SS cylinders and the comparison of those for smooth

wall cylinders with different initial wall thickness of 1.65, 6 mm and slit wall cylinders (3mm

thickness) with different explosive charges.
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;Na4

' Na3

10 15

Time t(ns)

20 25

f«rt 304SS cylinder ftest No. (to 304SSv«««l ftast Nn.211

Fig. 6. Typical examples of numerical simulations: (a) time-histories of circumferential stresses (minus stress value means

compression) in the wall at the mid-length for a standard cylinder of 304SS with fully charged PETN and (b) pressure

distributions at 23.5 us for casing model vessel of304SS, showing the situation just after the spallation has been generated

numerically in the endplate.(Large compression and tension are expressed similar for grey scale.)

The fragments in the photos are placed from large to small ones except those of edge and notched part

of the cylinder which are easily discriminated examining the machined surface of the fragments. It is

generally seen that fracture of the cylinder portion is predominantly along elongated strips, with the

fracture parallel to the axis. Most of the fragments are 3-6 times longer than they are wide, and shear

fracture appears to be the dominant mechanism for all the materials. In measurement of average widths

of fragments used for fragmentation energy later, a modification procedure was adopted because the

applied fragmentation model [7] for cylinders is one-dimensional, that is, the widths of longer

fragments have larger count numbers than shorter ones and vice versa. The thinly walled or fully

charged cylinders expand more rapidly, and their fragments apparently become smaller or narrower

than those of thick walled or smaller charged ones as shown in figures (a)/(b) and (c)/(d). This basically

matches the fragmentation model mentioned later. The comparison of recovered fragments has

indicated that the fragments of fully charged notched wall cylinder (slit or grooved) are almost similar

to those of the smooth wall cylinder except those neighbouring on the notch (groove or slit) which are

notably larger than others (see Fig. 9 (a) later), but in cases of partially charged explosive or lower

expansion velocity, strain-rate effects on fragment sizes of notched cylinders becomes remarkable

suggesting the notches as an additional parameter in fragmentation as shown in figure (c), (d). The

fragment thicknesses lead to the critical strains based on the volume constant hypothesis, and the values

correspond with those estimated so far from streak records.

In this study, the Grady's fragmentation energy F (=pe S3/24) [7] where p; the density of materials,
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S: circumferential width of fragments ands(= Rl K): circumferential strain rate at estimated fracture

time was obtained for all the test cases.

Figure 9 shows typical histograms of Y values of 304SS fragments for (a): fully charged smooth

and notched cylinders, (b): partially charged smooth and notched cylinders, (c): fully charged smooth

cylinders with various wall thicknesses and (d): fully charged cylinders with various initiated locations.

If the model is perfect, the average values of T for smooth walled cylinders should remain within a

narrow range as a material constant in all the test cases except thinnest cylinder (t: 1.65mm), see Fig.9

(c) where the secondary deformation of thin fragments reduced accuracy in measurement, but actually it

was revealed that the Y values based on the model varied depending on the strain rates or driving

explosive energy. The notch effects on Y values were negligibly small for fully charged cylinders in

Fig. 9 (a) but become noticeable in case of partially charged or slowly expanded cylinders as shown in

Fig. 9 (b) and already mentioned Fig. 8 (c) (d), suggesting need of a modification factor a for the notch

effect in the model: Y =ape S3 /24. Further study is necessary to extend the applicability of this

equation to all the types of notches. Such strain-rate dependency was seen on the Y values for smooth

cylinders of A5052 and carbon steels. Fig. 9 (d) shows that the effects of initiated locations are small

for axially phased expansion tests but rather considerable for eccentric line initiation tests and central

point initiation tests.

The measured average data of fragment sizes: width S and thickness h and calculated Y values

based on Grady's model are summarized for all the test cases as shown in Table 2, where test numbers

i

I

.a

1
Jl

i

,i
d
r.\

a

(a) Smooth thin walled cylinder: t=1.65 mm

(PETN filled up) - Test No. 4

^
1,,; ■

g» ^ tft' -W^ v^-11 «" fe?...,,- -V <•-'

'«•>' *ii> to! ■■'■»

, .

(b) Smooth thick walled cylinder: t=6 mm

(PETN fiUed up) - Test No. 5
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(c) Slit cylinder, PETN filled up: 4>=28mm

(wall thickness: 3mm) - Test No. 6

(d) Slit cylinder, PETN partially filled: <|>=16mm

(wall thickness: 3mm) - Test No. 7

Fig. 7. Typical photos ofrecovered fragments of uniformly exploded cylinders of304SS (a): Smooth cylinder with thin wall
(fully charged), (b): Smooth cylinder with thick wall (fully charged), (c): Slit cylinder (PETN fully charged), (d): Slit cylinder

(PETN partially charged). Sold lines show the location of slits.
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(a) Notches and PETN charge effects -I
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SUS304
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:Ave.=62.8[kJ/m2]
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(b) Notches and PETN charge effects -II
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2
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0

SUS304
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Ave.=173.4[kJ/m2]<Unit:mi11)
Ave.=230.4[kJ/nT]

Central line
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Fragmentation energy (kJ/irf]

(d) Variation effects of initiated locations

Fig. 8. Typical histograms offragmentation energy for 304SS based on Grady's model for (a): fully charged smooth &

notched cylinders, (b): partially charged smooth & notched cylinders, (c): fully charged smooth cyhnders with various wall

thicknesses and (d): fully charged cylinders with various initiated locations

correspond with those in Table 1. Fig. 10 expresses the relations between Fvalues and strain rates of

cylinder walls for all the test cases, showing four data groups: 304SS (smooth), 304SS (notched),

A5052 and C. S. (A, B). It is known that /Values are not constant for materials and decrease as the

strain rates increase for AS052 and carbon steels A/B and vice versa for 304SS. The authors have a bold

assumption that the phenomena are related with mechanical changes [12] in materials caused by

precompression shock waves as shown in Fig. 7 (a), although cylinder fragmentation phenomenon must

involve experimental errors and uncertainly. Authors' other study [8] on mechanical changes by pre-

shockwaves indicates growth of yield stress and reduction of fracture ductility £f for both an

aluminium alloy and 304SS, and their product may be closely related with fragmentation energy of

materials and the degrees of mechanical changes differ in materials showing similar features for then-

products to the results in this study.

Table 4. Summary ofmeasured average data for fragment sizes: width S, thickness h and calculated fragmentation energy

values /"based on Grady's model

No

Fragment

sizes, mm

No 11

h 1.84

S 7.40

r 224.9

h

S

"kJ/m2

12

1.84

6.02

179.5

1

1.76

6.78

173.4

13

1.59

4.48

45.0

2

1.84

13.1

179.1

14

1.78

8.64

74.6

3

2.05

19.2

94.2

15

2.26

18.8

120.4

"4
0.99

"3.83
"57.3

16

1.39

6.94

177.0

5

5.12

10.7

178.1

17

1.50

10.2

420.0

6

1.72

6.26

134.7

18

2.27

7.88

168.1

7

1.91

14.1

365.2

19

1.51

6.29

95.1

8

1.86

6.31

151.7

20

1.61

6.21

230.4

9

1.91

15.5

396.7

21

1.66

6.06

151

10

1.81

7.70

272.0

22

1.49

9.09

222.8
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. "Very thin fragments folded at both sides
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Fig. 9. Relations between fragmentation energy values calculated from Grady's model and strain rates for cylinders of

304SS(smooth) including variation of initiation locations, 304SS(notched), carbon steels C. S. (A, B) and A5052.

AUT00T1UD *O I

(a)

34 mm

(b)
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34mm

(c)

Fig. 10. Numerical fragmentation examples using a smoothed particle hydrodynamics processor and Mott's

stochastic failure modeling in Autodyn2D for smooth 304SS cylinders with (a) fully charged ((t>:28mm) PETN at

40us, (b) partially charged (<t»:16mm) PETN at 72us and (c) fully charged and an eccentric initiation line

(eccentric distance: 7mm to the top side) at 44|as. Average widths are 4.80, 8.63 and 4.32 mm for (a), (b) and (c).

Generally a stochastic failure model has to be introduced to impose some material heterogeneity or

inherent microscopic flaws. In this study an investigation on numerical fragmentation is demonstrated

using the SPH and Mott's stochastic failure model installed in Autodyn 2D: failure probability P =1 -

exp(—Ce^/y), <y:1.2GPa, y:16. Fig. 11 shows typical examples for smooth cylinders of 304SS with (a)

fully charged (<t>:28mm) PETN at 40ns, (b) partially charged (<|>: 16mm) PETN at 72^is and fully charged

and (c) an eccentric initiation line at 44jxs. There still exist some discrepancies between numerical and

experimental average fragment widths but such numerical fragmentation tendency coincides with

experimental results as shown in Fig. 8 (c), (d) and Table 2.

5. Conclusions

Tubular metal specimens are explosively expanded to fragmentation in 22 test conditions with

various parameters: wall materials, thicknesses, notches, explosive driver diameters and the initiated

locations at average strain rates or R/R values of 0.55-5.66x 104 s'1 and a wall velocity of 130-1757
m/s. Observed and numerical cylinder expansion behavior indicated that the effects of explosive energy

and wall materials on cylinder expansion are almost predictably but variations of initiated locations and

notches in cylinder walls are rather insensitive to deformation behavior and such phenomena seem to be

characteristics for rapid expansion of cylinders. The investigation on recovered fragments revealed that

the thinly walled or plenty charged cylinder expands more rapidly, and its fragments apparently become

smaller or narrower than those of thick walled or poorly charged one, which basically matches the

Grady's fragmentation model, and notch effects on fragmentation are small at high strain rates but

become noticeable at lower strain rates suggesting a modification factor for the model. The variations
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of initiation locations affect not much but considerably, because overall expansion rates are essential

and differ a little in this study. The experimental average fragmentation energy values based on the

fragmentation model are not constant but differ depending on the strain-rates for every material of

smooth cylinders and it seems related with mechanical changes in materials caused by explosive

precompression shock waves. Some demonstrative numerical results have shown a possibility of

simulation for fragmentation using the SPH processor and a stochastic failure model, as reported in past

journals. In this paper, experimental acquisition of rapid expansion and fracture behavior of various

types of cylinders is emphasized, and only 2-D analysis was applied to support the understanding ofthe

phenomena, leaving 3-D detailed analysis for future study.
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