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Abstract. For given quasi-continuous functions g, h with g ≤ h and diffusion process M
determined by stochastic differential equations or symmetric Dirichlet forms, characterizations of
the value functions ẽg(s, x) = supσ J(s,x)(σ) and w̄(s, x) = infτ supσ J(s,x)(σ, τ) are well studied so
far. In this paper, by using the time dependent Dirichlet forms, we generalize these results to time
inhomogeneous diffusion processes. The difficulty of our case arises from the existence of essential
semipolar sets. In particular, excessive functions are not necessarily continuous along the sample
paths. We get the result by showing such continuity of the value functions.
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1. Introduction and Preliminaries. Let M = (Xt, P(s,x)) be a, not necessar-
ily time homogeneous, diffusion process on a locally compact separable metric space
X. For given (quasi-) continuous functions g, h on [0,∞) ×X and stopping times σ
and τ , let

J(s,x)(σ) = E(s,x)

(
e−σg(s+ σ,Xσ)

)
,(1.1)

J(s,x)(σ, τ) = E(s,x)

(
e−σ∧τ

(
g(s+ σ,Xσ)I{σ≤τ} + h(s+ τ,Xτ )I{τ<σ}

))
.(1.2)

The main purpose of this paper is to characterize ẽg(s, x) = supσ J(s,x)(σ) and
w̄(s, x) = supσ infτ J(s,x)(σ, τ).

Usually, such problem is considered for

Jf(s,x)(σ, τ) = E(s,x)

(∫ σ∧τ

0

e−tf(s+ t,Xt)dt

)
+ J(s,x)(σ, τ)(1.3)

instead of J(s,x)(σ, τ). But we use J(s,x)(σ, τ) because (1.3) is essentially reduced to
(1.2) by taking g +R1f and h+R1f instead of g and h in (1.3), respectively, where
Rαf is the resolvent of M.

There are lot of works related to our problem. In particular, when M is a dif-
fusion process determined by a stochastic differential equation with Lipschitz con-
tinuous coefficients, the detailed results related to ẽg can be found in [1], [7] and
references therein. In the time homogeneous case, Nagai [10], [11] and Zabczyk [19]
used (symmetric) Dirichlet form theory to solve the problem. The diffusion process
M corresponding to the generator on Rd determined by

Aϕ(x) =

d∑
i,j=1

1

ρ(x)

∂

∂xi

(
aij(x)ρ(x)

∂ϕ

∂xj

)
(1.4)

for a uniformly elliptic functions (aij(x))i,j=1,2,...,d and a function ρ(x) > 0 belonging
to a Sobolev space on Rd is contained in their framework. See also [5] and [8] for
related results.
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The purpose of this paper is to generalize those results to time inhomogeneous
diffusion processes including the case that (aij) in (1.4) admits to depend on time
parameter. In this case, the generator for each t is given by

A(t)ϕ(x) =

d∑
i,j=1

1

ρ(x)

∂

∂xi

(
aij(t, x)ρ(x)

∂ϕ

∂xj

)
(1.5)

and the cooresponding Dirichlet form on L2(Rd; ρ(x)dx) is an extension of

E(t)(ϕ,ψ) =

d∑
i,j=1

∫
Rd

aij(t, x)
∂ϕ

∂xi

∂ψ

∂xj
ρ(x)dx.(1.6)

In the Lipschitz continuous and time homogeneous cases stated above, the (quasi-)
continuity of the value functions ẽg and w̄ follows naturally. The essential step in this
paper is to prove the fine and cofine continuities of the value functions.

The organization of this paper is as follows. In the rest of this section, the
notions of time dependent Dirichlet forms and the basic properties of the associated
time inhomogeneous Markov processes are stated. In section 2, under the separability
condition, quasi-variational inequalities and their solutions are given. In section 3,
the optimal stopping problem is solved dividing into three cases; (I) one obstacle
cases, (II) two obstacles cases under the separability condition and (III) general two
obstacles cases.

Now we shall start with our settings. Let X be a locally compact separable metric
space and m a positive Radon measure on X with full support. We assume that we
are given a family (E(t), F )t≥0 of Dirichlet forms on H = L2(X;m) satisfying the
following conditions:
(i) For each t ≥ 0, (E(t), F ) is an m-symmetric Dirichlet form on H.
(ii) For any ϕ ∈ F , E(t)(ϕ,ϕ) is measurable function of t ≥ 0 and satisfies

λ−1‖ψ‖2
F ≤ E

(t)
1 (ψ,ψ) ≤ λ‖ψ‖2

F ,(1.7)

for some positive constant λ, where E
(t)
α (ψ,ψ) = E(t)(ψ,ψ) + α(ψ,ψ)m and ‖ψ‖2

F =

E
(0)
1 (ψ,ψ).

(iii) F is regular, that is C0(X) ∩ F is uniformly dense in C0(X) and ‖ · ‖F -dense in
F , where C0(X) is the family of continuous functions on X with compact support.
(iv) For any t ≥ 0, (E(t), F ) is local, that is, for any ϕ,ψ ∈ F ∩ C0(X) such that
ϕ · ψ = 0, E(t)(ϕ,ψ) = 0.

For simplicity, we put E(t) = E(0) for t < 0. For each t, there exists an operator
A(t) from F to F ′ such that

−〈A(t)ϕ,ψ〉 = E(t)(ϕ,ψ),(1.8)

for any ϕ,ψ ∈ F . To consider an optimal stopping problem related to the time
inhomogeneous diffusion process Xt with generator A(t), we shall introduce the space-
time process Zt = (τ(t), Xt) on Z = R1 ×X with uniform motion τ(t). Formally, the
resolvent Rαf of Zt satisfies(

α− ∂

∂t
−A(t)

)
Rαf(t, x) = f(t, x).(1.9)
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To define Zt more rigorously, let us introduce the spaces H, F and W. Put H =
{u(t, x) : u(t, ·) ∈ H, ‖u‖H <∞}, where

‖u‖2
H =

∫
R1

‖u(t, ·)‖2
Hdt.

The space F is a family of measurable functions u ∈ H such that u(t, ·) ∈ F for all t
and ‖u‖F <∞, where

‖u‖2
F =

∫
R1

‖u(t, ·)‖2
F dt.

The dual space F ′ is defined similarly by taking F ′ instead of F in the definition of
F . For any function f ∈ F , considering f as function of t ∈ R1 with value in F ′, the
distribution sense derivative ∂f/∂t is defined as a function g(t, ·) on R1 with value in
F ′ such that ∫

R1

g(t, ·)ξ(t)dt =

∫
f(t, ·)ξ′(t)dt

for any ξ ∈ C∞
0 (R1). Using this derivative, define the space (W, ‖ · ‖W) by

W =

{
u ∈ F :

∂u

∂t
∈ F ′, ‖u‖W <∞

}

‖u‖2
W =

∥∥∥∥∂u∂t
∥∥∥∥2

F ′
+ ‖u‖2

F .

Further define the bilinear form E by

E(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

−
∫
R1

(
∂u

∂t
, v

)
dt+

∫
R1

E(t)(u(t, ·), v(t, ·))dt, u ∈ W, v ∈ F∫
R1

(
∂v

∂t
, u

)
dt+

∫
R1

E(t)(u(t, ·), v(t, ·))dt, u ∈ F , v ∈ W.

Then, for f ∈ H, Rαf in (1.9) is considered as a version of Gαf ∈ W of the
solution of

Eα(Gαf, v) = (f, v)ν ,

for any v ∈ F , where Eα( , ) = E( , )+α( , )ν and dν(t, x) = dtdm(x). This equation
is equivalent to

−
(
∂

∂t
Gαf(t, ·), ϕ

)
+ E(t)

α (Gαf(t, ·), ϕ) = (f(t, ·), ϕ)

for any t ≥ 0 and ϕ ∈ F . The dual resolvent Ĝαf ∈ W is defined as a solution of(
∂

∂t
Ĝαf(t, ·), ϕ

)
+ E(t)

α

(
ϕ, Ĝαf(t, ·)

)
= (f(t, ·), ϕ).

for any t ≥ 0 and ϕ ∈ F . Then, for any f ∈ F [resp. f ∈ H], ‖αGαf‖F ≤ C1‖f‖F
[resp. ‖αGαf‖ ≤ ‖f‖H] for some constant C1 and limα→∞ αGαf = f in F [resp. H]
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(see [[14];Lemma 2.1], [[16];I.3, I.4]). Similar results also hold for the dual resolvent

Ĝα.
To choose a version Rαf of Gαf , we need to define a capacity. A function u ∈ F

is called α-excessive if Eα(u,w) ≥ 0 for any non-negative function w ∈ W. Then
u ∈ F is α-excessive if and only if u ≥ 0 and βGβ+αu ≤ u a.e. for all β > 0 (see [14]).
We denote by Pα the family of all α-excessive functions. In particular put P = P1.

For any function h ∈ H, let

Lh = {u ∈ F : u ≥ h ν-a.e.}

and LA = LIA . Then the following results hold (see [9] and [15]).
Lemma 1.1. For any ε > 0 and α > 0, there exists a unique function hαε ∈ W

such that

−
(
∂hαε
∂t

, ϕ

)
+ E(t)

α (hαε (t, ·), ϕ) =
1

ε

(
(hαε (t, ·) − h(t, ·))− , ϕ

)
(1.10)

for any ϕ ∈ F .
Theorem 1.2. Suppose that Lh ∩ W 
= ∅. Then eαh = limε↓0 hαε converges

increasingly, strongly in H and weakly in F . Furthermore, eαh is the minimal function
of Pα ∩ Lh and satisfies

Aα (eαh , e
α
h) ≤ Eα (eαh , w) ,(1.11)

for any w ∈ Lh ∩W.
If u ∈ Pα, then there exists a positive Radon measure μαu on Z such that

Eα(u,w) =

∫
Z

w(z)dμαu(z), for any w ∈ C0(Z) ∩W.(1.12)

We omit the superfix α in eαh and μαu if α = 1. For any open set A of Z such that
LA ∩W 
= ∅, put eA = eIA and μA = μeA . Then μA is supported by the closure Ā of
A. The capacity Cap(A) of A is defined by

Cap(A) = μA(Ā).

If there exists w ∈ W such that w = 1 a.e. on A, then

Cap(A) = Eα(eαA, w).(1.13)

The notion of the capacity is extended to any Borel set by the usual manner. A
set is called exceptional if it is of zero capacity. If a statement holds except on an
exceptional set, then it is called that the statement holds quasi-everywhere (q.e. in
abbreviation).

An increasing sequence of closed sets {Fn} is called a nest if limn→∞ Cap(Z\Fn) =
0. A function u is called quasi-continuous (q.c. in abbreviation) if, there exists a nest
{Fn} of closed sets such that u is continuous on each Fn. The quasi-lower semi-
continuity is defined similarly. Any function u ∈ W has a q.c. modification ũ. In
particular, for any f ∈ H and α > 0, Gαf and Ĝαf have quasi-continuous modifi-
cations. The relation (1.12) can be extended to w ∈ W by taking the q.c. modifi-
cation. For any α-excessive function u ∈ F , define its α-excessive modification ũ by
ũ = limn→∞ nRn+αu. Since ũ is an increasing limit of quasi-continuous functions,
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ũ is quasi-lower semi-continuous. The following theorem and the properties of the
associated diffusion process can be found in [12], [14], [16], [17] and [18].

Theorem 1.3. There exist diffusion processes M = (Zt, Pz) and M̂ = (Ẑt, P̂z)
on Z satisfying the following conditions.
(i) The resolvents Rαf and R̂αf of M and M̂ are quasi-continuous modifications of

Gαf and Ĝαf , respectively.
(ii) Let Zt = (τ(t), Xt) and Ẑt = (τ̂(t), X̂t) be the decompositions of Zt and Ẑt into
the processes on R1 and X respectively. Then τ(t) = τ(0) + t and τ̂(t) = τ̂(0) − t.
(iii) For any open set A of Z, E.(e−ασA) is a quasi-lower semi-continuous modification
of eαA, where σA is the hitting time of A.

For later use, we present two lemmas. The proof of Lemma 1.4 can be found in
[[12];Lemma 3.7].

Lemma 1.4. For any α-excessive function u ∈ F , μ
(α)
u does not charge any Borel

set of zero capacity.
Lemma 1.5. Suppose that a sequence of 1-excessive functions {un} converges to

zero in H. Then, there exists a subsequence {unk
} such that limk→∞ ũnk

= 0 quasi-
uniformly, that is there exists a nest {Fn} such that limk→∞ ũnk

= 0 uniformly on
each Fn.

Proof. Since ũn is quasi-lower semi-continuous, there exists an open set Nk such
that Cap(Nk) < 1/2k and ũn is lower semi-continuous on Z \ Nk for all n. Put
Bnk = {z ∈ Z \Nk : ũn(z) > 1/2k} and Dn

k = Bnk ∪Nk. Then Dn
k is open and, noting

that (eNk
, p) = 〈μNk

, R̂1p〉 ≤ ‖p‖∞Cap(Nk) < 1/2k for any non-negative bounded
continuous function p ∈ H, it holds that

(eDn
k
, p) ≤ (eBn

k
, p) + (eNk

, p) ≤ 2k (un, p) + ‖p‖∞Cap(Nk)

≤ 2k‖un‖H · ‖p‖H +
‖p‖∞

2k
.

For each k, take nk such that ‖un‖H ≤ 1/22k for any n ≥ nk. Then Fm = Z\∪∞
k=mD

k
nk

is a closed set. Since {Z \ Fm} is a decreasing sequence of open sets such that

〈μZ\Fm
, R̂1p〉 =

(
eZ\Fm

, p
) ≤ 1

2m−1
(‖p‖H + ‖p‖∞) ,

for any p satisfying the stated conditions, limm→∞ Cap(Z\Fm) = limm→∞ μZ\Fm
(Z) =

0. Furthermore, limk→∞ unk
= 0 uniformly on each Fm.

2. Quasi-variational inequalities. In this section, we assume that we are given
two obstacles g, h ∈ F which are quasi-continuous and g ≤ h q.e. We say that the
pair (g, h) satisfies the separability condition if there exist ϕ,ψ ∈ P such that

g ≤ ϕ̃− ψ̃ ≤ h q.e.(2.1)

Define the sequences of 1-excessive functions {un} and {vn} inductively by

u0 = 0, vn = eun−1−h, un = evn+g.

For any φ ∈ P, let Lφ be a continuous linear functional on F defined by Lφ(w) =

A1(φ,w). In the proof of Lemma 5.2 in [14], one can see that 2Ĝ1Lφ − φ is 1-
coexcessive, thus in particular non-negative. Hence

φ ≤ 2Ĝ1Lφ ∈ W.(2.2)
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Lemma 2.1. Suppose that the separability condition (2.1) holds. Then
(i) un, vn are well defined.
(ii) limn→∞ un = ū and limn→∞ vn = v̄ converge increasingly, strongly in H and
weakly in F .
(iii) ū ≤ ϕ, v̄ ≤ ψ and g ≤ ū− v̄ ≤ h a.e.

Proof. Clearly u0 = 0 ≤ ϕ. Suppose that un−1 is defined and satisfies un−1 ≤ ϕ.

Then by the separability condition, un−1−h ≤ ϕ−h ≤ ψ. Thus un−1−h ≤ 2Ĝ1Lψ ∈
W by (2.2). Hence vn := eun−1−h is well defined and vn ≤ ψ by Theorem 1.2. Again,

by (2.2) and the separability condition, vn+g = eun−1−h+g ≤ ψ+g ≤ ϕ ≤ 2Ĝ1Lϕ ∈
W. Therefore un := evn+g is well defined and dominated by ϕ.
If un−1 ≤ un, then vn = eun−1−h ≤ eun−h = vn+1 and un = evn+g ≤ evn+1+g = un+1.
Thus un and vn are well defined and increasing relative to n. By virtue of (2.2),

A1(un.un) ≤ 2E1(un, Ĝ1Lϕ) ≤ 2‖un‖F‖Ĝ1Lϕ‖W .

Hence {‖un‖F} is bounded. Similarly, {‖vn‖F} is bounded and the assertion (ii)
holds by Lemma I.2.12 in [6].
Since un ≤ ϕ and vn ≤ ψ, the first assertion of (iii) holds. Furthermore, from the
definition, un−1 − h ≤ vn and vn + g ≤ un. This implies the second assertion of (iii).

Theorem 2.2. Under the separability condition, ū = ev̄+g and v̄ = eū−h. In
particular,

A1(ū, ū) ≤ E1(ū, w), ∀w ∈ Lv̄+g ∩W,

A1(v̄, v̄) ≤ E1(v̄, w), ∀w ∈ Lū−h ∩W.

Moreover, if a pair of 1-excessive functions (u, v) satisfies g ≤ u− v ≤ h, then ū ≤ u
and v̄ ≤ v.

Proof. Since ū is a 1-excessive function in Lv̄+g, clearly ev̄+g ≤ ū. Conversely,
ū = limn→∞ un = limn→∞ evn+g ≤ ev̄+g by Lemma 2.1. Similarly, v̄ = eū−h. The
quasi-variational inequalities are already stated in Theorem 1.2. By Lemma 2.1, if
g, h satisfies the separability condition with (u, v) ∈ P × P, then un ≤ u, vn ≤ v for
any n. Since limn→∞ un = ū, limn→∞ vn = v̄, we obtain ū ≤ u, v̄ ≤ v.

Similar quasi-variational inequality for ū − v̄ also holds. But it will be given in
the next section because we use a probabilistic argument for the proof.

Lemma 2.3. For any g ∈ W, limk→∞ eg−g(k) = 0 in F .

Proof. Since g − g(k) ∈ Lg−g(k) ∩W,

A1

(
eg−g(k) , eg−g(k)

) ≤ E1

(
eg−g(k) , g − g(k)

)
= −E1

(
g − g(k), eg−g(k)

)
+ 2A1

(
eg−g(k) , g − g(k)

)
= −E1

(
g, eg−g(k) − kĜkeg−g(k)

)
+ 2A1

(
eg−g(k) , g − g(k)

)
(2.3)

≤ 2‖g‖W‖eg−g(k) − kĜkeg−g(k)‖F + 2‖g − g(k)‖F‖eg−g(k)‖F
≤ 4‖g‖W(C1 + 1)‖eg−g(k)‖F .

Hence A1(eg−g(k) , eg−g(k)) is bounded. By virtue of [[16];III.Lemma 2.2], eg−g(k) con-
verges to 0 strongly in H and hence weakly in F from [[6];Lemma I.2.12]. Since

‖kĜkeg−g(k)‖F ≤ C1‖eg−g(k)‖F , by the same argument, limk→∞ kĜkeg−g(k) = 0
strongly in H and weakly in F . Hence, from (2.3), limk→∞ A1(eg−g(k) , eg−g(k)) = 0.
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3. An optimal stopping problem. Let M and M̂ be the diffusion processes
given by Theorem1.3. Denote by Rα and R̂α their associated resolvents. For any stop-
ping time σ, define Hσu by Hσu(z) = Ez (e−σu(Zσ)). In particular, put HB = HσB

for the hitting time σB of the nearly Borel set B.

(I) One obstacle case:
Let g be a quasi-continuous function of F such that Lg ∩W 
= ∅. As in the previous
section, denote by eg the minimal 1-excessive function of Lg. Then it is the minimal
function of Lg satisfying the quasi-variational inequality (1.11). The following result
is a time inhomogeneous version of Nagai’s result [10].

Theorem 3.1. Suppose that g ∈ F is quasi-continuous and Lg ∩W 
= ∅. Then

ẽg(z) = sup
σ
Jz(σ) = Ez

(
e−σBg(ZσB

)
)

q.e.,(3.1)

where the supremum is taken over all stopping times σ and B = {z : ẽg(z) = g(z)}.
Proof. Noting that ẽg is the smallest 1-excessive function dominating g q.e., we

have for any stopping time σ,

Ez
(
e−σg(Zσ)

) ≤ Ez
(
e−σ ẽg(Zσ)

) ≤ ẽg(z) q.e.

Hence it is enough to show

ẽg(z) = Ez
(
e−σBg(ZσB

)
)
.(3.2)

This is essentially shown in [[14], Lemma 6.2], but we shall give the outline of the
proof for the completeness. For εn ↓ 0, let gn be a q.c. version of the solution of gn =
(1/εn)G1 ((gn − g)−) determined by Lemma1.1. Let Bn = {z : gn(z) ≤ g(z)} and
σ̇n = σ̇Bn , where σ̇A is the first entry time of A defined by σ̇A = inf{t ≥ 0 : Zt ∈ A}.
Then

gn(z) =
1

εn
Ez

(∫ ∞

σ̇n

e−t(gn − g)−(Zt)dt

)
= Ez

(
e−σ̇ngn(Zσ̇n)

) ≤ Ez
(
e−σ̇ng(Zσ̇n

)
)

≤ Ez
(
e−σ̇n ẽg(Zσ̇n)

)
.

Put σ̇ = limn→∞ σ̇n. Then σ̇ ≤ σ̇B . By virtue of Theorem1.2, since gn ↑ eg a.e., we
then have, for any non-negative function f ∈ H,

(f, ẽg) = lim
n→∞(f, gn) = lim

n→∞Ef ·ν
(
e−σ̇ngn(Zσ̇n

)
) ≤ lim

n→∞Ef ·ν
(
e−σ̇ng(Zσ̇n

)
)

= Ef ·ν
(
e−σ̇g(Zσ̇)

) ≤ Ef ·ν
(
e−σ̇ ẽg(Zσ̇)

) ≤ (f, ẽg).

Hence ẽg(z) = Ez
(
e−σ̇g(Zσ̇)

)
for a.e.z. Since g ≤ ẽg q.e., we also have g(Zσ̇) =

ẽg(Zσ̇) and hence σ̇B ≤ σ̇ a.s. Pz for a.e. z. Therefore σ̇ = σ̇B a.s. Pz and ẽg(z) =
Ez

(
e−σ̇Bg(Zσ̇B

)
)

for a.e. z. By taking the 1-excessive regularization, we get the result.

Remark: Since σ̇B ≤ σB , it holds that

ẽg ≥ Hσ̇B
ẽg ≥ HB ẽg ≥ HBg q.e.

Hence Theorem 3.1 implies that Hσ̇B
ẽg = HB ẽg q.e.z. In particular, the set of irreg-

ular points of B is exceptional.
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(II) Two obstacles case under the separability condition:
We assume that we are given two quasi-continuous functions g, h ∈ F such that
g ≤ h q.e. If the separability condition (2.1) is satisfied, then there exists the
minimal pair of finely continuous functions (ū, v̄) given by Theorem 2.2. They are
given by ū = limk→∞ ūk and v̄ = limk→∞ v̄k with the solutions ūk, v̄k ∈ W of
ūk = (1/εk)Gα ((ūk − v̄ − g)−) and v̄k = (1/εk)Gα ((v̄k − ū+ h)−), respectively. De-
fine the sets Ck and Dk by

Ck = {z : ūk(z) ≤ (g + v̄)(z)}, Dk = {z : v̄k(z) ≤ (ū− h)(z)}.(3.3)

Then Ck ⊃ C and Dk ⊃ D for

C = {z : ū(z) = (g + v̄)(z)}, D = {z : v̄(z) = (ū− h)(z)}.(3.4)

As we remarked before (2.2), ū can be represented as a difference of a function of W
and a co-excessive function. In particular, ū has a q.e. cofinely continuous mod-
ification û given by û = limn→∞ nR̂n+1ū. Since ū is q.e. lower-semicontinuous,

û(z) = limt→0 Êz (ū(Zt)) ≥ limy→zū(y) ≥ ū(z) q.e. Similarly a q.e. cofinely con-
tinuous modification v̂ of v̄ exists and satisfies v̂ ≥ v̄ q.e.

Since v̄ is 1-excessive, there exists a positive Radon measure μv̄ charging no
exceptional set such that E1(v̄, w) = 〈μv̄, w̃〉 for any w ∈ W. In the following two

lemmas, we use the notation μv̄,F = μv̄|F , μv̄,F c = μv̄|F c , v̄F = Ũ1μv̄,F , v̄F c = Ũ1μv̄,F c

and v̂F c = limn→∞ nR̂n+1v̄F c .
Lemma 3.2. Assume that there exists a non-exceptional compact set F such that

F ⊂ {z : (v̂ − v̄)(z) ≥ δ} for some δ > 0. Then v̂F c(z) = v̄F c(z) for q.e. z ∈ F .

Proof. For the simplicity of the notation, put μ1 = μv̄,F , μ2 = μv̄,F c , v̄2 = Ũ1μ2

and v̂2 the cofinely continuous modification of v̄2. Assume that there exists a non-
exceptional compact subset K of F such that v̄2(z) < v̂2(z) for q.e. z ∈ K. For a
decreasing sequence of open sets Gn such that Ḡn+1 ⊂ Gn and ∩nGn = K, since σGn

increases strictly to σK a.s.Pz for q.e. z /∈ K, the left continuity of v̂2(Zt) implies that

lim
n→∞HGn v̄2(z) = lim

n→∞Ez
(
e−σGn v̄2(ZσGn

)
= Ez

(
e−σK v̂2(ZσK

)
)

= HK v̂2(z).

On the other hand, since μ2(K) = 0, for any f ∈ L2
+(Z), we have from [[14]; Corol-

lary 5.1] and [[2]; Theorem I.11.2].

lim
n→∞ (HGn v̄2, f) = lim

n→∞ E1(HGn v̄2, R̂1f) = lim
n→∞ E1(U1μ2, ĤGnR̂1f)

= lim
n→∞〈μ2, ĤGnR̂1f〉 = 〈μ2, ĤKR̂1f〉

= (HK v̄2, f).

Hence HK v̂2 = HK v̄2 a.e. which contradicts to the assumption.
Lemma 3.3. û = ū and v̂ = v̄ q.e.
Proof. We shall divide the proof into three steps.

Step1: The sets {z : v̂(z) > v̄(z), v̂(z) > (û − h)(z)} and {z : û(z) > ū(z), û(z) >
(v̂ + g)(z)} are exceptional.
To prove that any compact subset set of {z : v̂(z) > v̄(z), v̂(z) > (û − h)(z)} is
exceptional, assume that there exists a compact non-exceptional subset F of {z :
v̂(z) ≥ v̄(z) + δ, v̂(z) ≥ (û − h)(z) + δ} for some δ > 0. For any cofinely open

neighbourhood A of F , since HAv̄F = Ũ1

(
ĤAμv̄,F

)
= Ũ1μv̄,F = v̄F , v̄F takes its
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supremum on the cofine closure rF of F . Put γ = q.e.sup v̄F = q.e.sup v̂F and
Fγ = {z : v̂F (z) = γ} ⊂ rF . Then any cofine neighbourhood of Fγ has positive
capacity. Suppose that q.e.sup(ū−h− v̄F c) = γ, then q.e.sup(û−h− v̂F c) = γ. Since
û − h − v̂F c ≤ v̂F , the q.e. supremum of û − h − v̂F c is attained on Fγ ⊂ rF ⊂ F .
But, this is absurd, because û− h− v̂F c is a cofinely continuous function dominated
by v̂F − δ on F . Therefore ū − h − v̄F c ≤ η q.e. for some η < γ. In particular
ū− h ≤ v̄F ∧ η + v̄F c . Since v̄F ∧ η + vF c is an excessive function satisfying

g ≤ ū− v̄ ≤ ū− (vF ∧ η + vF c) ≤ h,

this contradicts to the minimality of v̄. Now we have shown that the set {z : v̂(z) >
v̄(z), v̂(z) > (û− h)(z)} is exceptional. The exceptionality of {z : û(z) > ū(z), v̂(u) >
(v̂ + g)(z)} follows similarly.
Step2: û− v̂ = ū− v̄ q.e.
If (û−ū)(z) < (v̂− v̄)(z), then v̂(z) > v̄(z) and v̂(z) > (û−h)(z), because (û−h)(z) <
(ū+ v̂− v̄−h)(z) ≤ v̂(z). Hence {z : (û− ū)(z) < (v̂− v̄)(z)} is exceptional from step
1. Similarly {z : (û− ū)(z) > (v̂ − v̄)(z)} is exceptional.
Step3: û = ū and v̂ = v̄ q.e.

Note that μū and μv̄ are mutually singular. In fact, if we can write μū = μ
(s)
ū + f ·μv̄

for some non-negative measure μ
(s)
ū and non-negative function f such that 〈μv̄, f〉 > 0,

then

ū− v̄ = Ũ1μū − Ũ1μv̄ = Ũ1

(
μ

(s)
ū + (f − f ∧ 1) · μv̄

)
− Ũ1 ((1 − f ∧ 1) · μv̄)

which contradicts to the minimality of ū and v̄ in Theorem 2.2. Hence there exists
a Borel set B such that μū(·) = μū(B ∩ ·) and μv̄(·) = μv̄(B

c ∩ ·). By virtue of
Lemma 3.2, if {z : v̂(z) 
= v̄(z)} is not exceptional, then there exists a compact non-
excdeptional set F ⊂ {z : v̂(z) > v̄(z)}. Since v̂F c = v̄F c q.e. on F by Lemma 3.2,
v̂F > v̄F q.e. on F and, in particular, μv̄(F ) = μv̄(B

c ∩ F ) > 0. We may assume
that F ⊂ Bc. Then μū(F ) = 0 and hence û = ū q.e. on F . In fact, if û > ū on a
non-exceptional set K ⊂ F , then ûKc = ūKc q.e. on K and hence ûK > ūK q.e. on
K. This implies μū(K) > 0 which is impossible because μū(F ) = 0. Therefore

(û− v̂) − (ū− v̄) = −(v̂ − v̄) < 0

q.e. on F which contradicts to the assertion of step 2.
Since ū is finely continuous, ū(Zt) is right continuous a.s. Pz for q.e.z. Similarly,

û(Ẑt) is right continuous a.s. P̂z for q.e.z. Since ū = û, it becomes continuous along
the sample paths. In fact, for any f, g ≥ 0 and t > 0,

Ef ·ν (g(Zt) : ū(Zs)− 
= ū(Zs),∃s ∈ (0, t))

= Êg·ν
(
f(Ẑt) : ū(Ẑs)+ 
= ū(Ẑs),∃s ∈ (0, t)

)
= Êg·ν

(
f(Ẑt) : û(Ẑs)+ 
= û(Ẑs),∃s ∈ (0, t)

)
= 0.

The similar result also holds for v̄. Hence

Pz (ū(Zt) and v̄(Zt) are continuous for t > 0) = 1(3.5)

for a.e.z. By operating the transition function ps and letting s → 0, (3.5) holds for
q.e.z.
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Let J = {u = u1 − u2 +w;ui ∈ P, w ∈ W}. As in [[14];§5], E can be extended to
J × J by E(u, v) = limα→∞ E(αGαu, v) for u, v ∈ J .

Lemma 3.4. The function w̄ := ū − v̄ is the unique function of J such that,
w̄ = ŵ, g ≤ w̄ ≤ h and, for any w ∈ J satisfying g ≤ w ≤ h,

A1(w̄, w̄) ≤ E1(w̄, w).(3.6)

Proof. For any w ∈ J such that g ≤ w, since

E1(ūn, ūn − v̄ − w) =
1

εn

(
(ūn − v̄ − g)−, ūn − v̄ − w

) ≤ 0,

it holds that

A1(ū, ū) ≤ lim
n→∞ E1(ūn.ūn) ≤ lim

n→∞ (E1(ūn, v̄) + E1(ūn, w)) .(3.7)

For any p ∈ P, since E1(ūn, p) = −E1(p, ūn) + 2A1(ūn, p) and αGα+1ūn is increasing
relative to α and n, we have

lim
n→∞ E1(ūn, p) = − lim

n→∞ lim
α→∞ E1(p, αGα+1ūn) + 2A1(ū, p)

= − lim
α→∞ E1(p, αGα+1ū) + 2 lim

α→∞A1(αGα+1ū, p)

= lim
α→∞ E1(αGα+1ū, p) = E1(ū, p).

This relation can be extended to all p ∈ J and hence, by (3.7),

A1(ū, ū) ≤ E1(ū, v̄) + E1(ū, w).

Furthermore, since v̂ = v̄ q.e. from Lemma 3.3,

E1(ū, v̄) = lim
α→∞ E1(αGα+1ū, v̄) = lim

α→∞ E1

(
ū, αĜα+1v̄

)
=

∫
v̂dμū =

∫
v̄dμū

= lim
α→∞ E1(ū, αGα+1v̄).(3.8)

Thus we get that

A1(ū, ū) ≤ lim
α→∞ E1(ū, αGα+1v̄) + E1(ū, w).

Similarly, for any w ∈ J such that w ≤ h,

A1(v̄, v̄) ≤ lim
α→∞ E1(αGα+1v̄, ū) − E1(v̄, w).

Therefore, for any w ∈ J such that g ≤ w ≤ h,

E1(ū− v̄, w) ≥ A1(ū, ū) + A1(v̄, v̄) − lim
α→∞ {E1(ū, αGα+1v̄) + E1(αGα+1v̄, ū)}

= A1(ū, ū) + A1(v̄, v̄) − 2 lim
α→∞A1(ū, αGα+1v̄)

= A1(ū− v̄, ū− v̄),
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that is, (3.6) holds. To prove the uniqueness of the solution, suppose that w1, w2 ∈ J
satisfy the properties of the lemma. Since (3.8) holds for w1 and w2 instead of ū and
v̄, respectively,

A1(w1, w2) + A1(w2.w1) = lim
α→∞ (A1(w1, αGα+1w2) + A1(αGα+1w2, w1))

= lim
α→∞ (E1(w1, αGα+1w2) + E1(αGα+1w2, w1))

= E1(w1, w2) + E1(w2, w1).

Hence, from (3.6),

A1(w1 − w2, w1 − w2) = A1(w1, w1) + A1(w2, w2) −A1(w1, w2) −A1(w2, w1)

= A1(w1, w1) + A1(w2, w2) − E1(w1, w2) − E1(w2, w1) ≤ 0

which implies w1 = w2 a.e.

Put σ̇k = σ̇Ck
and τ̇k = σ̇Dk

. Since Ck and Dk are decreasing, σ̇ = limk→∞ σk
and τ̇ = limk→∞ τk exist as increasing limits. Clearly σ̇ ≤ σ̇C and τ̇ ≤ σ̇D.

Lemma 3.5. For q.e. z ∈ Z, σ̇C = σ̇ and σ̇D = τ̇ a.s. Pz.

Proof. We shall only prove the assertion for σ̇C . For any � ≤ k,

ū�(Zσ̇k
) ≤ ūk(Zσ̇k

) ≤ (g + v̄)(Zσ̇k
).

Hence, by letting k ↑ ∞ and then � ↑ ∞, we get from (3.5) that ū(Zσ̇) ≤ (g+ v̄)(Zσ̇).
Hence σ̇C ≤ σ̇.

Since ū and v̄ are 1-excessive,

ū(z) ≥ Ez
(
e−σū(Zσ)

)
,(3.9)

v̄(z) ≥ Ez
(
e−τ v̄(Zτ )

)
,(3.10)

for any stopping times σ and τ . From the definition, ūk = 1
εk
R1 ((ūk − g − v̄)−) q.e.

Hence, for any stopping time σ such that σ ≤ σ̇k,

ūk(z) =
1

εk
Ez

(∫ ∞

0

e−t(ūk − g − v̄)−(Zt)dt

)

=
1

εk
Ez

(∫ ∞

σ

e−t(ūk − g − v̄)−(Zt)dt

)
= Ez

(
e−σūk(Zσ)

)
q.e.z.(3.11)

Similarly, if τ ≤ τ̇k, then

v̄k(z) = Ez
(
e−τ v̄k(Zτ )

)
.(3.12)

Theorem 3.6. Suppose that g and h are quasi-continuous functions of F satis-
fying the separability condition. Then

ū(z) − v̄(z) = sup
σ

inf
τ
Jz(σ, τ) = inf

τ
sup
σ
Jz(σ, τ) q.e.(3.13)

Furthermore, (σ̇C , σ̇D) is the saddle point of Jz(σ, τ) and ū− v̄ is the unique solution
of the quasi-variational inequality (3.6).
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Proof. For any stopping time τ , applying (3.10) and (3.11) for σ̇k ∧ τ ≤ σ̇k, we
have

ūk(z) − v̄(z) ≤ Ez
(
e−σ̇k∧τ (ūk − v̄)(Zσ̇k∧τ )

)
= Ez

(
e−σ̇k(ūk − v̄)(Zσ̇k

) : σ̇k ≤ τ
)

+ Ez
(
e−τ (ūk − v̄)(Zτ ) : τ < σ̇k

)
≤ Ez

(
e−σ̇kg(Zσ̇k

) : σ̇k ≤ τ
)

+ Ez
(
e−τh(Zτ ) : τ < σ̇k

)
.

Then, by letting k → ∞, we have

ū(z) − v̄(z) ≤ Ez
(
e−σ̇g(Zσ̇) : σ̇ ≤ τ

)
+ Ez

(
e−τh(Zτ ) : τ < σ̇

)
.

Similarly, for any stopping time σ, by considering σ ∧ τ̇k, it holds that

Ez
(
e−σg(Zσ) : σ < τ̇

)
+ Ez

(
e−τ̇h(Zτ̇ ) : τ̇ ≤ σ

) ≤ ū(z) − v̄(z).

Since σ̇ = σ̇C and τ̇ = σ̇D from Lemma 3.5, the assertion of the theorem follows.

(III) General two obstacles case:
In this case, we assume that g and h are quasi-continuous functions of W. As in the
preceding section, put g(k) = kRkg and h(k) = kRkh. Then the separability condition
holds for the obstacles (g(k), h(k)). For any stopping times σ and τ , put

J (k)
z (σ, τ) = Ez

(
e−σ∧τ

(
g(k)(Zσ)I{σ≤τ} + h(k)(Zτ )I{τ<σ}

))
.(3.14)

Let (ū(k), v̄(k)) be the 1-excessive modifications of the minimal pair of functions de-
termined by Theorem 2.2 for (g(k), h(k)) and put w̄(k) = ū(k)− v̄(k). Then ŵ(k) = w̄(k)

q.e. and satisfies

w̄(k)(z) = sup
σ

inf
τ
J (k)
z (σ, τ) = inf

τ
sup
σ
J (k)
z (σ, τ),(3.15)

where ŵ(k) = limn→∞ nR̂nw̄
(k). By virtue of (3.5), w̄(k) is continuous along the

sample paths almost surely.
Theorem 3.7. Suppose that g, h are quasi-continuous functions of W. Then

w̄(z) := sup
σ

inf
τ
Jz(σ, τ) = inf

τ
sup
σ
Jz(σ, τ)(3.16)

belongs to F and satisfies, for any w ∈ W such that g ≤ w ≤ h,

A1(w̄, w̄) ≤ E1(w̄, w).(3.17)

Moreover, the pair of the entry times (σ̇C , σ̇D) is a saddle point of Jz(σ, τ).
Proof. For any stopping times σ, τ and q.e.z,

Ez

(
e−σ|g(k) − g|(Zσ)I{σ≤τ}

)
≤ Ez

(
e−σ ẽ|g(k)−g|(Zσ)

) ≤ ẽ|g(k)−g|(z)(3.18)

and

Ez

(
e−τ |h(k) − h|(Zτ )I{τ<σ}

)
≤ Ez

(
e−τ ẽ|h(k)−h|(Zτ )

) ≤ ẽ|h(k)−h|(z).(3.19)

Hence

|J (k)
z (σ, τ) − Jz(σ, τ)| ≤ ẽ|g(k)−g|(z) + ẽ|h(k)−h|(z) q.e.
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By virtue of Lemmas 1.5 and 2.3, there exists an increasing sequence of closed sets
{Fn} and a subsequence nk ↑ ∞ such that Cap(Z\Fn) → 0 and limk→∞ ẽ|g(nk)−g| = 0,
limk→∞ ẽ|h(nk)−h| = 0 in F and uniformly on each set Fn. Hence

lim
k→∞

inf
τ

sup
σ
J (nk)
z (σ, τ) = inf

τ
sup
σ
Jz(σ, τ) on Fn.

(3.15) combined with (3.18) and (3.19) implies that

|w̄(k) − w̄(l)| ≤ ẽ|g(k)−g| + ẽ|g(l)−g| + ẽ|h(k)−h| + ẽ|h(l)−h| q.e.

Therefore limk→∞ w̄(k) = w̄(∞) exists in H and a subsequence converges quasi-
uniformly on each Fn and satisfies

w̄(∞) = sup
σ

inf
τ
Jz(σ, τ) = inf

τ
sup
σ
Jz(σ, τ) q.e.z ∈ Fn.

Letting n → ∞, we get that w̄(∞) = w̄ q.e. By virtue of the quasi-variational
inequality (3.6) applied for w̄(k),

A1(w̄
(k), w̄(k)) ≤ E1(w̄

(k), g(k)) = E1(kĜkw̄
(k), g)

≤ ‖g‖W‖kĜkw̄(k)‖F ≤ C1‖g‖W‖w̄(k)‖F .

Hence ‖w̄(k)‖F and ‖kĜkw̄(k)‖F are uniformly bounded relative to k. This com-

bined with limk→∞ w̄(k) = limk→∞ kĜkw̄
(k) = w̄ in H, implies that limk→∞ w̄(k) =

limk→∞ kĜkw̄
(k) = w̄ weakly in F . Therefore, for any w ∈ W such that g ≤ w ≤ h,

A1(w̄
(k), w̄(k)) ≤ E1(w̄

(k), kGkw) = E1(kĜkw̄
(k), w).

By letting k → ∞, the quasi-variational inequality (3.17) follows.
The proof of the last part of the theorem is similar to [19]. It suffices to prove the
following inequalities for any stopping times σ and τ such that τ ≤ σ̇C and σ ≤ σ̇D.

w̄(z) ≤ Ez
(
e−τ w̄(Zτ )

)
q.e.(3.20)

w̄(z) ≥ Ez
(
e−σw̄(Zσ)

)
q.e.(3.21)

In fact, if these hold, by noting w̄(Zσ̇C
) = g(Zσ̇C

), we have for any stopping time τ ,

Jz(σ̇C , τ) = Ez
(
e−σ̇Cg(Zσ̇C

)I{σ̇C≤τ} + e−τh(Zτ )I{τ<σ̇C}
)

≥ Ez
(
e−σ̇C w̄(Zσ̇C

)I{σ̇C≤τ} + e−τ w̄(Zτ )I{τ<σ̇C}
)

= Ez
(
e−σ̇C∧τ (w̄(Zσ̇C∧τ )

) ≥ w̄(z).

Similarly, Jz(σ, σ̇D) ≤ w̄ q.e. for any stopping time σ.
Let C(k) = {z : w̄(k)(z) ≤ g(k)(z)}, D(k) = {z : h(k)(z) ≤ w̄(k)(z)}, σ̇(k) = σ̇C(k) and
τ̇ (k) = σ̇D(k) . Further, for each positive number γ, let ηγ = inf{t ≥ 0 : w̄(Zt) + γ ≥
h(Zt)}. If t < ηγ(ω), then w̄(Zt(ω)) + γ < h(Zt(ω)). Noting that limk→∞ w̄(k) = w̄
and limk→∞ h(k) = h uniformly on each Fn, we can find k0 such that |w̄(k)− w̄| ≤ γ/2
and |h(k) − h| < γ/2 on Fn for any k ≥ k0. Therefore, t < τ̇ (k) and hence ηγ ∧ σ̇Fn

≤
τ̇ (k). In view of (3.9) and (3.12), since (3.21) holds for w̄(k) and τ̇ (k) instead of w̄ and
σ̇D, respectively, it then holds that

w̄(k)(z) ≥ Ez

(
e−(ηγ∧τFn∧σ)w(k)(Zηγ∧τFn∧σ)

)
q.e.
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Letting k → ∞ and then n→ ∞, we have

w̄(z) ≥ Ez

(
e−(ηγ∧σ)w̄(Zηγ∧σ)

)
q.e.

Since w̄(Zηγ ) + γ ≥ h(Zηγ ) and ηγ is increasing as γ ↓ 0, ŵ(Zη0) = w̄(Zη0) ≥ h(Zη0)
for η0 = limγ→0 ηγ . This yields that σ̇D ≤ η0 and hence

w̄(z) ≥ Ez
(
e−σw̄(Zσ)

)
for any stopping time σ such that σ ≤ σ̇D. The proof of (3.20) is similar.

Example Let (Zt, Pz) be the space-time diffusion process corresponding to the

generator A(t)ϕ(x) = d2ϕ
dx2 for t < 1 and A(t)ϕ(x) = 1

2
d2ϕ
dx2 for t ≥ 1. Denote by qt and

Kα the transition function and resolvent of 1-dimensional Brownian motion, respec-
tively. Taking a non-negative, non-zero continuous function φ on R1 with compact
support, let ϕ(x) = K2φ(x),

g(s, x) =

⎧⎨
⎩

e−(3−2s)q2(1−s)ϕ(x), s < 1

e−sϕ(x), s ≥ 1

and

h(s, x) =

⎧⎨
⎩

2e−(3−s)/2q2(1−s)ϕ(x), s < 1

2e−sϕ(x), s ≥ 1.

Furthermore let v̄ = 0 and

ū(s, x) =

⎧⎨
⎩

e−(2−s)q2(1−s)ϕ(x), s < 1

e−sϕ(x), s ≥ 1.

Then g ≤ ū− v̄ ≤ h. Since ū(s, x) = E(s,x)

(∫∞
0
e−tξ ⊗ φ(Zt)dt

)
, for ξ(t) = e−tI{t≥1},

ū is 1-excessive function of Zt and satisfies

A1(ū, ū) =
1

2
e−2

∫ ∞

−∞
ϕ(x)φ(x)dx.

Further, for any w ∈ J such that g ≤ w ≤ h,

E1(ū, w) =

∫ ∞

1

∫ ∞

−∞
e−sφ(x)w(s, x)dxds ≥

∫ ∞

1

∫ ∞

−∞
e−sφ(x)g(s, x)dxds = A1(ū, ū).

Therefore ū− v̄ = ū is a solution of (3.6) and the saddle point (σ̇C , σ̇D) of Jz(σ, τ) in
Theorem 3.6 is given by σ̇C = (1 − τ(0)) ∨ 0 and σ̇D = ∞.
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