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Abstract

For an irreducible symmetric Markov process on a, not necessarily compact, state
space associated with a symmetric Dirichlet form, we give Poincaré type inequalities. As
an application of the inequalities, we consider a time inhomogeneous diffusion process
obtained by a time dependent drift transformation from a diffusion process and give
general conditions for the transience or recurrence of some sets. As a particular case, the
diffusion process appearing in the theory of simmulated annealing is considered.
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1 Introduction

Let X be a locally compact separable metric space and m a positive Radon measure on X
with full support. Consider an irreducible regular Dirichlet form (£, F) on L*(X;m) and its
associated m-symmetric Markov process M = (Xy, P;) on X. M is called transient if there
exists a strictly positive function g € L'(X;m) such that Rg(z) = E, ([5° g(X;)dt) < oo for
a.e. ¢ € X. M is called recurrent if it is not transient or, equivalently, if P,(ocp < o00) =1
qg.e. z € X for any non-exceptional set F' in X, where op is the hitting time of F.

Using the Dirichlet form, transience of M is characterized as follows : M is transient if
and only if there exists a strictly positive function g € L'(X;m) and a constant k1(g) such
that

[ u@)lg@)dm(@) < k(@)@ w2, weF (1)

([4]). As an L%-version of (1), the following result also holds (see [3],[12]): For any non-
negative bounded m-integrable function g such that ||Rg||.c < 00,

/¥ @g@)dm(@) < 2Rl (), u e F. 2)
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In particular, if ||R1]|s < 0o, then (2) holds for ¢ = 1 without the factor 2 in the righthand
side. On the other hand, if M is Harris recurrent, it is known that there exists a strictly
positive function g € L'(X;m), a non-null set C' of X and a constant ko(g) such that

/X [u(z) = (ve, u)lg(z)dm(z) < ka(9)€(u,uw)'/?, e F, (3)

where vo(-) = m(-)/m(C) and (vc,u) = [y u(z) dve(x).

For a given set F' C X, we say that F' is a recurrent set of M if P, (op < 00) = 1 for
a.e. ¢ € X. In this case, limy_,o Py (0 0 07 < 00) =1 for a.e. x € X. If this limit vanishes,
then we call F a transient set of M.

In this paper, we consider some inequalities of Poincaré type related to recurrent Markov
processes and apply them to certain time inhomogeneous diffusion process to give general
criteria for the transience and recurrence of some sets.

As a particular case, if we assume that m(X) < oo and the generator of M has a spectral
gap A1 > 0, then for any A such that 0 < A < Aq,

1
”u_<m7u>H% < Xg(uvu)a UG.F, (4)
where || - ||, denotes the LP(X;m)-norm. In this case, the 1-resolvent R; of M satisfies
1
1BLf = (m, F)ll2 < 7251 = {ma flll2, - £ € L*(X;m). (5)

Note that the constant 1/(1 + A) of the righthand side of (5) is less than 1.
In §2, instead of the existence of a positive lower bound of the spectral gap, we start from

the assumption that

sup [|[R1(z,-) —m ()] < 2v (6)
zeX

for some v < 1, where ||v| denotes the total variation of the signed measure v defined by
|lv|| = v(BT) — v(B™) in terms of the Hahn decomposition X = B* U B~ relative to v. In
this case, it is easy to see that

IR f = (m, Pllz < 29| f = (m, )2, f € LAH(X;m).

But the constant 2+ in the righthand side can be greater than one. Hence, it is not the
optimal constant in the case of L?(m)-setting. In Lemma 2.1, we show that the constant 2y
can be replaces by v in the above inequality, that is,

1R f = (m, f)ll2 S AIf = (m, ]2, f € LA(Xm). (7)

This also shows that (1 — )/~ is a lower bound of the spectral gap, that is,

i
/X (u(z) — <m,u))2 dm(x) < ﬁc‘:(u,u), ueF. (8)



Using this lemma, we shall also show an L?-version of (3) for general Harris recurrent Markov
processes. Although the constant in (7) is sharper than that of (6), to discuss the estimates
for any starting points, we need to use (6).

There are many interesting features concerning the transience or recurrence of some sets
in the time inhomogeneous case because a set can be transient or recurrent depending on
the fluctuation of the generator relative to the time parameter, unlike the time homogeneous
case.

In §3, we consider the time inhomogeneous diffusion process M? = (X, P('Z x)) associated
with the family of energy forms (), F N L?(X; 1)) on L*(X; u¢) defined by

0o ) = 5 [ (t.0) digg (o) ©)

with a strictly positive time dependent weight function p(t, ) € F, where dyu;(x) = p*(t, z)dm(z).
As a main result, we give some general criteria on p for the transience or recurrence of some
sets relative to M? by applying the inequalities (2) and (8). As an example, we apply our
criteria to a Brownian motion B on a compact connnected Riemannian manifold X and a
weight function p(¢,x) given by

plt,x) = exp (~(U(x)/c)log VI +1), ¢>0. (10)

Indeed, more profound properties of the diffusion B? can be found in the theory of simulated
annealing ([5],[6]).

2 Some inequalities related to transience and recurrence

As is stated in §1, some characterizations of transience and recurrence of symmetric Dirichlet
forms (£,F) on L?(X;m) are given in Fukushima et.al. ([4]). The transience of (£,F) is
characterized by (1). Furthermore, in this case, an L2-version (2) holds.

The purpose of this section is, after getting the inequality (8) for the Markov processes
satisfying the inequality (6), to show an L?-version of (3) for general Harris recurrent Markov

processes. To show the inequality (8), we make the following assumptions on M.
(A) M is recurrent and there exists v < 1 such that (6) holds.

In this case, for any n > 1,
[RY(z,-) =m()[| 27", zeX (11)

([11]). Note that (11) implies that m is a probability measure. The condition (A) is satisfied
if X is compact and R, is strong Feller, or more generally, if the density of the absolutely
continuous part of R;(x,-) relative to m is bounded from below by a positive constant ([11]).



Let X = B(x)TUB(z)~ be a Hahn decomposition relative to the signed measure R(z,-)—
m(-). Then

sup [|(Ry = m)flloe = sup ((Ry—m)Ip@)s — (R —m)Ipe)-)
[Iflloo<1 zeX

= sup [[Ri(z,") —m()]| < 2v.
reX

Hence, using the same symbol ||-||,, to represent the operator norm of Ry —m in LP(X;m), we
have || R1 —m||e < 2v. For any f € LY(X;m), put f = f—(m, f) and By = {z : Ry f(z) > 0}.
Then, by the symmetry of R;, we see
IRy —m) fly
— [ Rif@dm@) - [ Rifa)dn)

By X\By
= /Xf(y){(Rl(y,Bf)—m(Bf)) — (Ra(y, X \ By) = m(X \ By))} dm(y)
sup || Ry (y,-) = mQ)| - [ fl1
yeX
290 £l

and thus |R; — m||1 < 27. Denote the total variation measure |R;(x,-) — m(-)| by

|Ry(x,-) —m(-)[(A)
= (Ri(z, AN B(z)") —=m(ANB(x)")) — (Ri(z, AN B(z)") —m(AN B(z)7)).

IN
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Then the operator norm on L'(X;m) determined by | R (x, -)—m(-)| coincides with || Ry —m]|;.
By a similar argument using (11) instead of (6), we have

Ry —mloe < 29" (12)
Let denote (-, ), the inner product on L?(X; p).

Lemma 2.1 Suppose that M satisfies the assumption (A). Then (7) and (8) hold.

Proof. Put
E(u,u)

[ = (m, )

Alzinf{ :uef}.

£

By using the spectral representation —G = [~ dE) of the generator G of M and (12),

() = w2 a1 -0

= [(R)" =mlf7, < I(R)" = mlf§ < 27"

Since the righthand side tends to zero as n — oo, it follows that A; > 0 and 1+X; > 27 1/74~1
and hence A1 > (1 —~)/v. (7) and (8) follow easily from this. O



Define a potential kernel K by

Z m, f)). (13)

By virtue of (11), K f(x) is well defined for all x and satisfies

> 2
5 oo €2 37" Ifllee = 72 1 (14)

for all f € L>°(X;m). Similarly, by using (??), for all f € L?(X;m),

(F B Py = S (BE = m) Py < 3271713 = 11713 (15)
n=1

n=1

for u € L?(X;m). By using the representation
(RE =m)f,g)y = [ €™ (@uf(t,) Buglt, ), dt

for ®opf(t,x) = (RY —m)f(z) and ®opy1f(t,x) = (R} — m)py/2f (), we have from (15)
(KLKf = 3 (R -m)f. K,
n=1
= Z /OO et ((I)nf(t’ ')’ (I)n(Kf)(t’ ))m dt

= Z [ @) Kef 0.,

< 2 /O T Buf(t, ), Buf(t, ), dt
Y
= (KD, (16)

Similarly to (16), the potential kernel KO f = Kf + f — (m, f) = %% (R} — m) f satisfies

(KORKOF) <= (REO)) . (1)

Next, we shall consider the case that the condition (A) is not necessarily satisfied. We
assume that M is recurrent in the sense of Harris, that is, for any F' C X with m(F) > 0,

/ Ip(Xy)dt =00 as. P, forall x € X.
0

In particular, if M is recurrent and Rj(x,-) is absolutely continuous relative to m for all

x € X, then M is recurrent in the sense of Harris ([2],[8]). In this case, as we stated in §1,



the inequality (3) holds. Now, let us assume that M satisfies Harris recurrence condition to
derive an L2-version of (3).

Define for any positive continuous additive functional A; = [J Ic(Xs)ds, the kernels R
and K¢ by

Rif(z) = Eg ( /0 T emat— A f(Xt)dt>,
Kif(z) = E; </Oooe_a’4ff(Xt)dAt).

In particular, put R4 = R%. Under the present assumption of Harris recurence, for a set
C with m(C) > 0, K¢ is the resolvent of the recurrent time changed process on C by As.
Furthermore, we can choose C satisfying 0 < m(C) < oo and

sup | Kk (z,) = ve ()| < 29

zeC

for some vy < 1, where v = (1/m(C))m|c ([9],[11]). Similarly to (11), it then holds that
(KD (@) —ve ()| < 29", vn>1. (18)

By virtue of Lemma 2.1, for any f € L*(C;vc),

| (3" = ve) Fllm <2"11f = (o, Pl (19)
Put - -
Ka=> ((K)"—ve), K =3 (K" -wvo).
n=1 n=0

From the symmetry,
<V07 RAf) = (K}}L f)m = <m’ f>
Define a kernel K by
Kf =K Raf = KAKY'Raf + Raf — (m, f).
By using the Markov property,
aRKYh = Ru(Ic-K4h) + Kih — Ry (Ich),
aRaRah = Ra(Ic- Rah)+ Rah — Roh.
Since K}J(E‘O)g = Kﬁlo)g — g+ (ve, g), we have
aR K KV R f
= Ro(c KA\KVRAf) + KA\KYRAf — Ru(Ic - KO RAS)
= Ro(lc-KY'Raf —Ic-Raf + Ic - (vo, Raf))
+ KAKORAf — Ro(Ic - KYRAf)
= —Ra(Ic-Raf)+ Ralc - (m, f) + K5KRAf.
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Hence it holds that
(I - aRa) Kf = Raf - RaIC : <’I7’L, f> (20)

and consequently,
K (I —aRa) f = Raf —(vc,Raf). (21)

Moreover, since

/X(Kihy(a:)g(x)dm(x) < /XKith(x)g(:r)dm(a:)

A\
=
b
=y
3

o
>
S
=

S
2
=

applying (17) to K$)|CXC, we get for any bounded non-negative function g € L'(X;m)
satisfying ||Rag||cc < oo that

(KARAf,KaRaf)y = [KAEDRAS|]

L2(g-m)
< ©0)
< [ Ragllo (KA Raf,K{'Raf),

< IRagloor— (RAf K{'Raf),
= |IRaglloo7—— (f,KAKA Raf)
— Raglle i (. KaRaf)r,

Note that R4 is the potential kernel of the transient Dirichlet form €4 = & + (-, ), on
L?(X;m) and Ralc = 1. Thus we have from (2),

[ (Rag = (m. 1)) (@)g(a) dm(z)

= [ (Balf = . ) 1) (@)g(x) dm(a)

< 2||Rag|c€ (RA(f (m, ) 1c), Ra(f — (m, f) - Ic))
< 2||Ragllc€a (RA(f — (m, f) - Ic), Ra(f — (m, f) - Ic))
=2[|[Raglloc (f = (m, f) - Lo, Ra(f — (m, f) - Ic)),,

< 2| Raglloo (f, Ra(f — (m, f) - I0)),n

Therefore

(K, Kf)ym
= (KARAf + RAf - <m7 f>7KARAf + RAf - <m7 f>)gm



2 (KaRaf KaRaf)g +2 [ (Raf(@) = (m, 1)) (@) dm(a)
<Rl {57 G RaRAD) o+ Raf = (),

< T IRaglo £ K )

- 11“7||RA9||ms<Kf, K7). (22)

On the other hand, from (20) and (21),
Kf=RKf+R(f—(mf) Ic)

and
Rif=Kf—KRif+ (vc, Rif).

Thus the images of K and R; coincide except a difference of a constant factor which makes
the integral by v¢o zero. Hence, we have from (22),

[ 1R I @) = (e, Raf) Py(a) dm(a)
=/|Kf R1) (@) Pg(a) dm(x)

< 17”RA9HOO (K(I—R1)f,K(I = R1)f)

= SHRAQHOOE(RL]C’ R f).

Further, approximating v € F by a sequence of functions of the form R f as in the proof of
Lemma 2.1, we get the following result.

Theorem 2.1 If M is recurrent in the sense of Harris, then there exists a set C' such that

4| Ragllo

- E(u,u) (23)

i [ @) = e wPg@) dm(z) <

for any u € F and a bounded non-negative function g € L*(X;m) such that ||[Raglleo < 00.

3 Transience and recurrence of sets relative to certain time
inhomogeneous diffusion processes

In this section, we assume that we are given an irreducible m-symmetric diffusion process
M = (X;, P,) on X which is associated with the Dirichlet form (£, F) given by

Eov) =5 [ dugon (@) (24)

8



We consider that the path space is canonical and X;(w) = w(t). Denote the associated
generator by G. Fix a strictly positive continuous function p(t,z) such that p(t,-) € F
and t — 0Op(t,-)/Ot is a measurable function from [0,00) to L% (X;m). Put u(dr) =
p?(t,z)m(dz) and consider the Dirichlet form (£, F®)) on L?*(X; ) determined by

V(o) = 5 [ P62 dipy (), (25)

Denote by G*) the generator corresponding to (€@, F®). A time inhomogeneous diffusion
process M? = (X, P(”S x)) is said associated with the family of Dirichlet forms (£®), F®)) if
its transition function (s, z) = Efs 2) (p(Xi—s)) satisfies the terminal value problem

Out(s, x)
0s

for s < t. Denote by Rf, the resolvent of MP”, that is

+GWuy(s,2) =0, w(t,x) = p(x), (26)

RCo(s,x) = E(ps 2) (/ e o(Xy) dt> .
’ 0
Then (26) is equivalent to

_ (%,w) +E (Rhp(s,),9) = (9, 9),, 27)
s

for any ¢ € F().
There also exists a diffusion process Mr = (Xs, P( )) which is a dual process of M” in
the sense

[ B 6 (X)) 9@ @) = [ B (0(X1-) () dia() (28)

for any ¢,9 > 0. Note that the measure PP is not necessarily sub-Markov. In fact, Pris
given by the following transformation by a multiplicative functional

1 ~

P(’;y) (A) =E, (exp (Mt[l_ogp} - 2<M[logp}>t_s) o Bi-s . A) 7

for A € o(X;;7 <t—s), where MT[log ?lis the martingale part appearing in the decomposition
log p(t — 7, X,) — log p(t, Xo) = MUosrl 4 Nllog/]

into a martingale additive functional of finite energy and a continuous additive functional of
zero energy relative to P( ty) and

~ s dlogp
B, = t—7 X, )dr.
/0 5t (t—r )dr




Hence, we have

dlogp
ot

By () S e (0ls), )= [

(t—r, )H dr. (29)

[e.9]

Fix a closed set F' of X such that p%(t,-) € L*(D;m) for D = X \ F. By considering
p%(t,x)/Z(t) instead of p?(t,z), we may assume that u(dz) = p?(t,z)m(dz) is a probability
measure on D, where

Z(t) = / (L, 2)dm(z).
D
Let f be a non-negative function on D such that (us, f) = 1 for fixed s > 0. For such f,

define the function u? by

al(ty) = Ef,  (f(Xis) it —s<op), yeD (30)

and put

AP0 = [ @)R(y) dily).

We assume that the number

.. 0 2
Ap(t) = —9521% alogp (t,x)

is finite. For instance, this assumption holds if D is relatively compact. Then we have the
following lemma relative to HP(t).
Lemma 3.1 (i) For any s <t,

N N 1d -~ 1 ~
V@D (t,), TP (t,) < —5 7 HP (1) + JAp() AP (1)

(ii) Iflimy oo HP(t) = 0, then P}, (0p < 00) = 1.

Proof. (i) Since u? satisfies
1 9(p*uy)
p(t.y) Ot

(t,y) = GWal(t,y) (31)
with condition
al(s,y) = f(y), @l(t,y) =0 forye F,

by multiplying @2 (¢,v) and integrating on D by du(y), we have

o(p*ul (t,y)) . _ _
[ 2B 50,y amy) = €0 (3210,1,30(0.) (52)
D t
Since the lefthand side of (32) can be written as
1d
2dt

2
[ @R ) ) + 5 [ @20 5 )

10



we get the result.
(ii) By virtue of the duality relation (28), it holds that

P}'?.#S (t—s<op) = E (f(Xo)Ip(Xt-s):t—s<oF)
= Ej, (f(Xi-s)Ip(Xo) 1 t —s < op)
= / J(ty) dpa(y)
< VHP()
Hence, we have the assertion. O

Assume that F' is a non-exceptional closed set. By virtue of the irreducibility of M, its
part process Mp on D is transient. Hence, applying (2) for Mp, for any bounded positive
function g € L'(X;m) such that ||RPg|ls < oo,

/DUQ(w)g(w)dm(w) < 2|RPgllo €(u,u) (33)

forallu € Fp = {u € F: 4 =0qe. on F}. If m(D) < co and ||[R”1]|c < 00, then (33)
holds for ¢ = 1. As a typical case, this holds if D is compact and the transition function p;
of M is strong Feller. In fact, it then holds that inf,cp pi(x, F) > 0 and

p1() <1=py(2, F) <1 inf pi(a, F) <1
S

for any = € D, where ptD is the transition function of Mp.
Now, we give a general criterion on p for the recurrence of the set F' relative to M”. Put

. infD ,02(t, )
00) = D (2 90))

Since ¢ is bounded, dp(t) < co.

Theorem 3.1 Suppose that there exists a positive function g € L'(D;m) such that

im [ (AD(t) ~ B2 5D(t)) it = —oo. (34)

T—o0 Jg
Then P]’fﬂs (op < o0) =1 for any non-negative function f with (us, f) = 1. In particular, if
the transition density of MP exists, then P{; ) (op <o0)=1 forallz € D.

Proof. Let g > 0 be a function satisfying the stated condition. Then we have from (33)

HP(t) < 2sup(p?(t,2)/g(2)) IRV gl € (a0t ), 00(2,))

zeD

2| RPglloo 05" (1) €D (@02, ), 022, )

IN
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Combining this with the result (i) of Lemma 3.1, we get that

[R2g|| *on(r) B2y <~ S AP(0) + An() A2(0)

that is,

Hence, we have

A(T) < A2(s) exp ( [ (ot~ 2] o) dt) . (35)

Therefore the first assertion follows from Lemma 3.1 (ii). If the transition density p” (s, x;t,y)
of M” exists, then
P(psyx)(t—S<O‘F) = P’

(5.2) (T—s<op,t—T<opobr_g)

= P;,MT(t—T<O'F)—>O, t — o0
for f(y) = p°(s,z;7,y). O

Example 3.1 Suppose that X is a Riemannian manifold with volume element m and
B = (Xi, P,) the Brownian motion on X. Then the associated Dirichlet form (£,F) on
L?(X;m) is given by

Eet) = 5 [ Volo): To(a) dma).

Let U be a smooth locally bounded non-negative function on X and p(t, x) a function defined
by

plt, ) = exp (—;ﬁ(t)U(w)> | (36)

for B(t) = (1/c)log(1l +t),c > 0. We consider the associated time inhomogeneous diffusion
process B” = (X, P(ps 1) for the function (36).

Fix a connected component D of a level set of the form {z : U(x) < b} and let a = infp U.
To make ju;(D) = 1, we consider p?(t,x)/Z(t) instead of p?(t,z), that is we consider as

2 m
’W, 2() = [ p(t.y)dm(y).

pe(dy) =
Since D is compact, it is easy to see that the part process Bp of B on D satisfies (33) for
g = 1. By elementary calculations, since
b d (b—a)

= 57 +£logZ(t), and Op(t) =(1+¢t)" < , (37)

Ap(t)

12



we have

g b, 14T Z(T)
= —1 - 1
/s Ap(t)dt . g i + log 705)
T
/ op(t)dt = _ ((1 + 1) --a)le (1 4 8)1—(b—a)/c)
s Cc — (b — a)

and for any € > 0,

a+e

m{a<U<a+e})(1+t) =

< Z(t) <m(D)(1+1)" <.

Therefore, if b — a < c,
. T D7t
lim ()\D(t) —2 HR 1 5D(t)> dt = —c0

and which implies that the set FF = X \ D is a recurrent set relative to B? by virtue of
Theorem 3.1.

Next, we turn to a general condition on p for the transience of some sets relative to M?.
We assume that the state space X is compact and M is recurrent on it. Before considering
time inhomogeneous process MP, we give an estimation of the type (??) relative to M” for
time independent p.

Fix a positive function p(z) € D(G) such that peg () = difiog p2,10g p2) (T)/dm(z) < 00
and ||Glogpllee < co. Put dp(x) = p?(x)dm(z). Let (£P,FP) be the Dirichlet form on
L?(X; i) determined by

&) = 5 [ PP @) (2

and M = (X/, P?) the associated diffusion process with resolvent R2. Put h(x) = Glog p(z)+
2/«Llogp(m)a Cr= fg h+(Xs)dS and

Re (@) = B ([~ e Cipxar).
0
Then it satisfies
REf(x) = Raf(x) = R&(h - Raf)(2) (38)
(84.6 in [4]). If the density R, (x,y) of Ry (x,dy) relative to m(dy) exists, then (38) implies

that the density of R&(z,-) relative to m also exists. We denote its density by R&(x,y).
For convenience, we will assume sup,cx p(z) = 1 with no loss in generality. Put

H*(z,y) = inf sup (~logp?(n(t)), =,y€ X,
m 0<t<1

where 7(t),0 <t <1is a curve in X connecting x and y. Furthermore, put

m(p) = sup {H(z,y)+logp*(z) +log i*(y)} .
z,yeX
v(p) = 1—e O inf RE(z,w).

13



Lemma 3.2 Suppose that R, (x,dy) has a strictly positive lower semi-continuous density
Ry (z,y) relative to p(dy). Then

_ 2 . 2v(p)
) = .))? dite) < TS0 ) (39)
for any u € FP.

Proof.  For any fixed x € X and € > 0, let {B;} be a covering of X of finite open sets
such that |H?(x, z) — H(z,w)| < € for all z,w € B;. From the definition of H”, the process
(X:)o<r<t hits the set {y : p?(y) < exp(—HP(x, Xt))} PP-a.s.. Thus, for any i, if we take a
point z; € By, then for PP-a.s. w such that X;(w) € By, (X;)o<r<¢ hits
By = {y 92 (y) < exp (—HP(z,2) + 8)} :
Hence if we denote by o, ; the hitting time of M” to B, ;, then from the continuity of 02,
Rl{IBi (.CL‘)

o p(Xg, 1

/ % L(HP(w2)—eHog (@) Hog (X)) L
Oz,i IB(XO'Z,'L)

> B, /OO 6_%(Hﬁ(z,Xt)+logp2($)+log’32(xt));
- p(XUz,z)

x e 0 (X)) I, (Xy) dt

> em0)/2p, ( / *

x,1

= O RL(21p)(2).

e ' PP (Xi)Ip,(X1) dt)

This implies that for any =,y € X,
Ri(z,y) > e ™®)/% Ri(x,y).
Therefore, by putting 'y, = {2 : R{(z,2) — R{(y, 2) > 0}, we have

|Ri@, ) =R, )| = 2(Ri@,TL,) - Riy.TS,))
= 2, (i) - Ri(w.2) di(:)
< 2 (Bi@.2) - inf Bi(w.w)) d(2)
< 2v(p).
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This implies
(B @) = AC)|| < 29(0)"

for all n > 1. Hence the result follows from Lemma 2.1. O

Now we return to the time inhomogeneous case. Put m(t) = m(p(t,-)) and ~(¢t) =
v(p(t,-)). Let aP(¢,z) and Ap(t) are those defined before Lemma 3.1. We omit the superfix
Dif D=X. Put

Va(t) = as(t,-) = (e, s (b)) 20,

Lemma 3.3 Assume the condition of Lemma 3.2. Then, for any s > 0 and a non-negative
function f such that (us, f) =1,

R T T t N dr
VT < - S”’“t)dt{\|f_1u%2<us>+ [ Ayel: s dt},

where

—A(%).

Proof. Note that it can be written as Vi (t) = ||t (¢, -) — 1”%2(;%) = ||us(t, ')”%%Lt) — 1. Then,

Vi(t) satisfies

1d~ ~ 1

£ (@(t,), (1, ) < 5 Tul1) + SMOT:(0) + M0

= 2dt
by virtue of Lemma 3.1. Using (39), a similar argument as the proof of Theorem 3.1 gives
the the assertion of the lemma. O

Theorem 3.2 Suppose that R, (x,dy) has a strictly positive lower semi-continuous density
Ru(z,y) and
lim sup A (®)
t—oo 1 — ’Y(t)
Moreover, assume a bounded non-negative function ¢ satisfies the following conditions ; for
each t > 0, there exists k(t) such that 0 < k(t) <t, k(t) /" 00 ast / oo,

< 1. (40)

|7t g, )t < oo (41)
0

and - -
/ el zaquye”* e 52Dy < oo, (42)
0

Then [5° E]’Z.NO (p(Xy)) dt < oo for any non-negative function f with (uo, f) = 1. In particu-
lar, if the transition density of MP exists, then [;° Ef’o o) (p(Xy))dt < 0.
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Proof. For a function ¢ satisfying the stated conditions and a non-negative function f such
that (o, f) = 1,

B0 ((X0) = [ (in(s.9) = Duals. ) das(y) + (s (5. )

V Vo) Hi(s) + (s ue(s, ), (43)

where u(s, z) = Eé)s,a;)(@(Xt—s)) and Hy(s) = ||u(s, -)H%Q(“S). Since w(s, -) satisfies (26), we

have from (39) that

IN

) = 26l )l )+ [ o, 0) 5 log (s, ) ds(a)
> I (o) = (s, )) = AECS)

Therefore,
Hys) < e Joomamadr

‘e 1= (o)
2 Sy A(T)dT Y A\ 2
el + [ el O L g o, ) o}

By virtue of (28) and (29), it holds that

(s a(s) = |

WP (Xims € X) dpn(y) < ", o). (44)

From (40), we see that there exists a positive constant kg such that

1—~(t)
ey < koSyA(t)

for all ¢. Then, noting that ¢;(0) < #¢(s) for all o > s,

Hys) < e JaSnamdr

t ¢ T 7'1 — o o
{plBaguy + [ el ST o)y g2

— f; Sy (1) dr

IN

ol Z2quye

Fhoe2) (1, )26 [ 5y a(r)dr <ef: Syalr)dr _ 1) .
Hence, by taking s = k(t) for large ¢, we have

it T)dT
Ht(/{(t)) <e 2fk(t) Sya(r)d HSOHLQ(M) + %egt(k(t))<ﬂt;¢>- (45)

Similarly, since

t t T
e~ Jo Sa(m)dr {||f — U320 +/0 A(r)elo Smff)d‘fdf} <f = UZ2 ) + 1
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Vo(k(t)) is bounded relative to ¢ by virtue of Lemma 3.3. Therefore, we sce that the first
term of the righthand side of (43) is integrable relative to ¢ from (41), (42) and (45). The
second term of the righthand side of (43) is also integrable because (44) holds for s = k(t).
The last assertion of the theorem can be proved by the Markov property used in the proof
of Theorem 3.1. O

Note that the result of Theorem 3.2 also holds for any time dependent function (¢, x) if
it satisfies the conditions (41) and (42).

In the next corollary, we assume for any open set G and closed subset K of G, there exists
a function ¢ € D(G) such that ¢ =0 on X \ G, p =1 on K and p,(z) = dpy ) (z)/dm(z)
is bounded.

Corollary 3.1 Assume that the conditions of Theorem 3.2 and the conditions stated above.

Let F' be a closure of a non-empty open set of X such that \/Irpogp,.) V IF satisfies (41)
and (42). Then

0,z

that is, F' is a transient set relative to MP.

lim P’ )(Xt € F for somet>T)=0,
T—o0

Proof. The proof is similar to Lemma 3.2 in Holley et. al. ([6]). Let F} be a closed subset
of the interior of F' and ¢ € D(G) a function such that ¢ =0 on X \ F, ¢ =1 on F; and p,

is bounded. Let pu,(-) be the density of diog p(t,),¢) (+) Telative to dm(-). Then

t
My = p(X0) = [ (G(X0) + (o)) dr
is a P(% »-martingale. By virtue of Theorem 3.2, it holds that

| Bloy (190150 dt < 166l [ Efy) (Tr(Xi)dt) < o0

Moreover, since

el (2) <\l lloo /Tr (@) tiog ey (),

Theorem 3.2 also implies
/0 Ef 4 (6l (X)) dt < oo.

Hence, the martingale convergence theorem implies that M; and hence ¢(X;) converges to
zero a.s. and the assertion of the corollary holds. O

Example 3.2 We consider the function p in Example 3.1 on a compact connected Rie-
mannian manifold X. For simplicity, let Hy(z,y) = inf; supy<, <, U(n(7)) for a curve n(r)
connecting x and y, and assume that infx U = 0. Put

my = sup (H(z,y) —U(x) = U(y)).
z,yeX
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Then m(t) = B(t)my — log Z(t). Note that for any fixed ¢,

0o r +

R&f(z) = E, (/0 o7 Jo (FIBWAU+EB ()| VU?) (X")d"f(XT)dT)
> Riya@f()

for a(t) = ; B(HI|AU e + 58°(1) VU |5 Put

I'(t) = inf Rita (z,w).
Since Z(t) > m({z : U(z) < e1})(1 +t)%1/¢, we have

() 1—e ™02 7201 (1)

< 1 —k(e)(1 + )~ (mu/2ete) Py,

IN

Thus, if
T(t) > ko(1+1)"° (46)

for some constant ky and 6 < 1 — (my/2c), then (40) holds. Moreover, since

U)o 1 Ul oo 1+t
() /0 2¢ 1+t—TT 2¢ Og1+t—s’

by putting k(t) = t/2, we can see that
Ulloo/2
e (k(D) _ (”t) =2 <k
1+t/2
for some constant k. Hence, if F'is a subset of {x : U(z) > b} with b > ¢, then

e}

/0 £ E0) 1, (F) dt < klm(p)/o (1+1)"Y/edt < oc.

On the other hand, under the condition (46), taking ; such that 6; = 1—(my/2c+d+¢e1) > 0,

t 1_77(7-) T c t - —(my /2¢+5+¢1) -
/t/2 A 4T 2 ko 1)/t/2(1+ ) 5t g
01
- e - (5|
]{72(61) (1 — (2/3)61) (1 + t)(sl

for t > 2, where ka(e1) = koki1(e1)/d1. Note that for any €9 > 0, we can find k3(e2) such that
HIFHLQ(M) < k3(e2)(1 + t)_b/QC_SQ. So, we see

v

00 L
/ ”IF”LQ(M)G 2 t/QS'Y,/\(T)det

2
t

[e.9] 1 B e T i
§/2 1Tzl 2 3" (A=) A dr

< ks(e2) /2 (1 + £)~Y/2eme2 = 3k(0) hale) (1= )40 gy o
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Therefore, from Theorem 3.2, we have

E? IF(Xt)dt < 00, (47)
02\ J,
if F C{z:U(x)> b} for b > c. Also, from Corollary 3.1,

Tlim P(p0 o (Xt €F for some t > T) =0 (48)

for such set F.

As a special case, consider the 1-dimensional torus X = R!'/N. In this case, since a(t) <

(/AU |B(t) + (1/8)IVU[12,5%(¢) (see §1.4 in [7]),
kq
aU(t)

for the diameter d = 1/2 and constants k; and ko, where

F(t) Z e—dOéU(t) Z kz(l +t)—dHVU||oc/2c

1 1
o 1) = [ SIVU I + 220 VU .

Hence (46) holds if my + d||VU||e < 2¢. In the case of the present example, the spectral
gap Aj is given in [6]. By using the spectral gap, more optimal condition is given there. In
fact, it is shown that my < ¢ < b is enough to get (47) and (48) for F' C {x : U(z) > b}.
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