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Abstract

For an irreducible symmetric Markov process on a, not necessarily compact, state
space associated with a symmetric Dirichlet form, we give Poincaré type inequalities. As
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general conditions for the transience or recurrence of some sets. As a particular case, the
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1 Introduction

Let X be a locally compact separable metric space and m a positive Radon measure on X

with full support. Consider an irreducible regular Dirichlet form (E ,F) on L2(X; m) and its
associated m-symmetric Markov process M = (Xt, Px) on X. M is called transient if there
exists a strictly positive function g ∈ L1(X; m) such that Rg(x) = Ex (

∫ ∞
0 g(Xt)dt) < ∞ for

a.e. x ∈ X. M is called recurrent if it is not transient or, equivalently, if Px(σF < ∞) = 1
q.e. x ∈ X for any non-exceptional set F in X, where σF is the hitting time of F .

Using the Dirichlet form, transience of M is characterized as follows : M is transient if
and only if there exists a strictly positive function g ∈ L1(X; m) and a constant k1(g) such
that ∫

X
|u(x)|g(x)dm(x) ≤ k1(g)E(u, u)1/2, u ∈ F (1)

([4]). As an L2-version of (1), the following result also holds (see [3],[12]): For any non-
negative bounded m-integrable function g such that ‖Rg‖∞ < ∞,∫

X
u2(x)g(x)dm(x) ≤ 2‖Rg‖∞E(u, u), u ∈ F . (2)
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In particular, if ‖R1‖∞ < ∞, then (2) holds for g = 1 without the factor 2 in the righthand
side. On the other hand, if M is Harris recurrent, it is known that there exists a strictly
positive function g ∈ L1(X; m), a non-null set C of X and a constant k2(g) such that∫

X
|u(x) − 〈νC , u〉|g(x)dm(x) ≤ k2(g)E(u, u)1/2, u ∈ F , (3)

where νC(·) = m(·)/m(C) and 〈νC , u〉 =
∫
X u(x) dνC(x).

For a given set F ⊂ X, we say that F is a recurrent set of M if Px (σF < ∞) = 1 for
a.e. x ∈ X. In this case, limT→∞ Px (σF ◦ θT < ∞) = 1 for a.e. x ∈ X. If this limit vanishes,
then we call F a transient set of M.

In this paper, we consider some inequalities of Poincaré type related to recurrent Markov
processes and apply them to certain time inhomogeneous diffusion process to give general
criteria for the transience and recurrence of some sets.

As a particular case, if we assume that m(X) < ∞ and the generator of M has a spectral
gap λ1 > 0, then for any λ such that 0 < λ ≤ λ1,

‖u − 〈m,u〉‖2
2 ≤ 1

λ
E(u, u), u ∈ F , (4)

where ‖ · ‖p denotes the Lp(X; m)-norm. In this case, the 1-resolvent R1 of M satisfies

‖R1f − 〈m, f〉‖2 ≤ 1
1 + λ

‖f − 〈m, f〉‖2, f ∈ L2(X; m). (5)

Note that the constant 1/(1 + λ) of the righthand side of (5) is less than 1.
In §2, instead of the existence of a positive lower bound of the spectral gap, we start from

the assumption that
sup
x∈X

‖R1(x, ·) − m(·)‖ ≤ 2γ (6)

for some γ < 1, where ‖ν‖ denotes the total variation of the signed measure ν defined by
‖ν‖ = ν(B+) − ν(B−) in terms of the Hahn decomposition X = B+ ∪ B− relative to ν. In
this case, it is easy to see that

‖R1f − 〈m, f〉‖2 ≤ 2γ‖f − 〈m, f〉‖2, f ∈ L2(X; m).

But the constant 2γ in the righthand side can be greater than one. Hence, it is not the
optimal constant in the case of L2(m)-setting. In Lemma 2.1, we show that the constant 2γ

can be replaces by γ in the above inequality, that is,

‖R1f − 〈m, f〉‖2 ≤ γ‖f − 〈m, f〉‖2, f ∈ L2(X;m). (7)

This also shows that (1 − γ)/γ is a lower bound of the spectral gap, that is,∫
X

(u(x) − 〈m,u〉)2 dm(x) ≤ γ

1 − γ
E(u, u), u ∈ F . (8)
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Using this lemma, we shall also show an L2-version of (3) for general Harris recurrent Markov
processes. Although the constant in (7) is sharper than that of (6), to discuss the estimates
for any starting points, we need to use (6).

There are many interesting features concerning the transience or recurrence of some sets
in the time inhomogeneous case because a set can be transient or recurrent depending on
the fluctuation of the generator relative to the time parameter, unlike the time homogeneous
case.

In §3, we consider the time inhomogeneous diffusion process Mρ = (Xt, P
ρ
(s,x)) associated

with the family of energy forms (E(t),F ∩ L2(X;µt)) on L2(X; µt) defined by

E(t)(ϕ,ψ) =
1
2

∫
X

ρ2(t, x) dµ〈ϕ,ψ〉(x) (9)

with a strictly positive time dependent weight function ρ(t, ·) ∈ F , where dµt(x) = ρ2(t, x)dm(x).
As a main result, we give some general criteria on ρ for the transience or recurrence of some
sets relative to Mρ by applying the inequalities (2) and (8). As an example, we apply our
criteria to a Brownian motion B on a compact connnected Riemannian manifold X and a
weight function ρ(t, x) given by

ρ(t, x) = exp
(
−(U(x)/c) log

√
1 + t

)
, c > 0. (10)

Indeed, more profound properties of the diffusion Bρ can be found in the theory of simulated
annealing ([5],[6]).

2 Some inequalities related to transience and recurrence

As is stated in §1, some characterizations of transience and recurrence of symmetric Dirichlet
forms (E ,F) on L2(X; m) are given in Fukushima et.al. ([4]). The transience of (E ,F) is
characterized by (1). Furthermore, in this case, an L2-version (2) holds.

The purpose of this section is, after getting the inequality (8) for the Markov processes
satisfying the inequality (6), to show an L2-version of (3) for general Harris recurrent Markov
processes. To show the inequality (8), we make the following assumptions on M.

(A) M is recurrent and there exists γ < 1 such that (6) holds.

In this case, for any n ≥ 1,

‖Rn
1 (x, ·) − m(·)‖ ≤ 2γn, x ∈ X (11)

([11]). Note that (11) implies that m is a probability measure. The condition (A) is satisfied
if X is compact and R1 is strong Feller, or more generally, if the density of the absolutely
continuous part of R1(x, ·) relative to m is bounded from below by a positive constant ([11]).
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Let X = B(x)+∪B(x)− be a Hahn decomposition relative to the signed measure R(x, ·)−
m(·). Then

sup
‖f‖∞≤1

‖(R1 − m)f‖∞ = sup
x∈X

(
(R1 − m)IB(x)+ − (R1 − m)IB(x)−

)
= sup

x∈X
‖R1(x, ·) − m(·)‖ ≤ 2γ.

Hence, using the same symbol ‖·‖p to represent the operator norm of R1−m in Lp(X;m), we
have ‖R1−m‖∞ ≤ 2γ. For any f ∈ L1(X; m), put f̄ = f−〈m, f〉 and Bf = {x : R1f̄(x) ≥ 0}.
Then, by the symmetry of R1, we see

‖(R1 − m)f̄‖1

=
∫

Bf

R1f̄(x)dm(x) −
∫

X\Bf

R1f̄(x)dm(x)

=
∫

X
f̄(y) {(R1(y,Bf ) − m(Bf )) − (R1(y,X \ Bf ) − m(X \ Bf ))} dm(y)

≤ sup
y∈X

‖R1(y, ·) − m(·)‖ · ‖f̄‖1

≤ 2γ‖f̄‖1

and thus ‖R1 − m‖1 ≤ 2γ. Denote the total variation measure |R1(x, ·) − m(·)| by

|R1(x, ·) − m(·)|(A)

=
(
R1(x,A ∩ B(x)+) − m(A ∩ B(x)+)

)
−

(
R1(x,A ∩ B(x)−) − m(A ∩ B(x)−)

)
.

Then the operator norm on L1(X; m) determined by |R1(x, ·)−m(·)| coincides with ‖R1−m‖1.
By a similar argument using (11) instead of (6), we have

‖Rn
1 − m‖∞ ≤ 2γn. (12)

Let denote (·, ·)µ the inner product on L2(X; µ).

Lemma 2.1 Suppose that M satisfies the assumption (A). Then (7) and (8) hold.

Proof. Put

λ1 = inf
{ E(u, u)
‖u − 〈m,u〉|2m

: u ∈ F
}

.

By using the spectral representation −G =
∫ ∞
0 dEλ of the generator G of M and (12),(

1
1 + λ1

)n

≤ inf
{∫ ∞

λ1

(
1

1 + λ

)n

d(Eλu, u) : ‖u‖m = 1, 〈m,u〉 = 0
}

= ‖(R1)n − m‖2
m ≤ ‖(R1)n − m‖2

0 ≤ 2γn.

Since the righthand side tends to zero as n → ∞, it follows that λ1 > 0 and 1+λ1 ≥ 2−1/nγ−1

and hence λ1 ≥ (1 − γ)/γ. (7) and (8) follow easily from this. 2
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Define a potential kernel K by

Kf(x) =
∞∑

n=1

(Rn
1f(x) − 〈m, f〉) . (13)

By virtue of (11), Kf(x) is well defined for all x and satisfies

‖Kf‖∞ ≤ 2
∞∑

n=1

γn‖f‖∞ =
2γ

1 − γ
‖f‖∞ (14)

for all f ∈ L∞(X; m). Similarly, by using (??), for all f ∈ L2(X; m),

(f,Kf)m =
∞∑

n=1

(f̄ , (Rn
1 − m)f̄)m ≤

∞∑
n=1

γn‖f̄‖2
2 =

γ

1 − γ
‖f̄‖2

2. (15)

for u ∈ L2(X; m). By using the representation

((Rn
1 − m)f, g)m =

∫ ∞

0
e−t (Φnf(t, ·),Φng(t, ·))m dt

for Φ2kf(t, x) = (Rk
1 − m)f(x) and Φ2k+1f(t, x) = (Rk

1 − m)pt/2f(x), we have from (15)

(Kf,Kf)m =
∞∑

n=1

((Rn
1 − m)f,Kf)m

=
∞∑

n=1

∫ ∞

0
e−t (Φnf(t, ·),Φn(Kf)(t, ·))m dt

=
∞∑

n=1

∫ ∞

0
e−t (Φnf(t, ·),KΦnf(t, ·))m dt

≤ γ

1 − γ

∞∑
n=1

∫ ∞

0
e−t (Φnf(t, ·), Φnf(t, ·))m dt

=
γ

1 − γ
(f,Kf)m . (16)

Similarly to (16), the potential kernel K(0)f = Kf + f − 〈m, f〉 =
∑∞

n=0(R
n
1 − m)f satisfies(

K(0)f,K(0)f
)

m
≤ 1

1 − γ

(
f,K(0)f

)
m

. (17)

Next, we shall consider the case that the condition (A) is not necessarily satisfied. We
assume that M is recurrent in the sense of Harris, that is, for any F ⊂ X with m(F ) > 0,∫ ∞

0
IF (Xt)dt = ∞ a.s. Px for all x ∈ X.

In particular, if M is recurrent and R1(x, ·) is absolutely continuous relative to m for all
x ∈ X, then M is recurrent in the sense of Harris ([2],[8]). In this case, as we stated in §1,
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the inequality (3) holds. Now, let us assume that M satisfies Harris recurrence condition to
derive an L2-version of (3).

Define for any positive continuous additive functional At =
∫ t
0 IC(Xs)ds, the kernels Rα

A

and Kα
A by

Rα
Af(x) = Ex

(∫ ∞

0
e−αt−Atf(Xt)dt

)
,

Kα
Af(x) = Ex

(∫ ∞

0
e−αAtf(Xt)dAt

)
.

In particular, put RA = R0
A. Under the present assumption of Harris recurence, for a set

C with m(C) > 0, Kα
A is the resolvent of the recurrent time changed process on C by At.

Furthermore, we can choose C satisfying 0 < m(C) < ∞ and

sup
x∈C

∥∥∥K1
A(x, ·) − νC(·)

∥∥∥ ≤ 2γ

for some γ < 1, where νC = (1/m(C))m|C ([9],[11]). Similarly to (11), it then holds that∥∥∥(K1
A)n(x, ·) − νC(·)

∥∥∥ ≤ 2γn, ∀n ≥ 1. (18)

By virtue of Lemma 2.1, for any f ∈ L2(C; νC),

‖
(
(K1

A)n − νC

)
f‖m ≤ γn‖f − 〈νC , f〉‖2. (19)

Put

KA =
∞∑

n=1

(
(K1

A)n − νC

)
, K

(0)
A =

∞∑
n=0

(
(K1

A)n − νC

)
.

From the symmetry,
〈νC , RAf〉 =

(
K1

A1, f
)

m
= 〈m, f〉.

Define a kernel K by

Kf = K
(0)
A RAf = K1

AK
(0)
A RAf + RAf − 〈m, f〉.

By using the Markov property,

αRαK1
Ah = Rα(IC · K1

Ah) + K1
Ah − Rα(ICh),

αRαRAh = Rα (IC · RAh) + RAh − Rαh.

Since K1
AK

(0)
A g = K

(0)
A g − g + 〈νC , g〉, we have

αRαK1
AK

(0)
A RAf

= Rα(IC · K1
AK

(0)
A RAf) + K1

AK
(0)
A RAf − Rα(IC · K(0)

A RAf)

= Rα(IC · K(0)
A RAf − IC · RAf + IC · 〈νC , RAf〉)

+ K1
AK

(0)
A RAf − Rα(IC · K(0)

A RAf)

= −Rα(IC · RAf) + RαIC · 〈m, f〉 + K1
AK

(0)
A RAf.
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Hence it holds that
(I − αRα) Kf = Rαf − RαIC · 〈m, f〉 (20)

and consequently,
K (I − αRα) f = Rαf − 〈νC , Rαf〉. (21)

Moreover, since ∫
X

(
K1

Ah
)2

(x)g(x) dm(x) ≤
∫

X
K1

Ah2(x)g(x) dm(x)

=
∫

X
RAg(x)h2(x) dνC(x)

≤ ‖RAg‖∞
∫

X
h2(x) dνC(x),

applying (17) to K
(0)
A |C×C , we get for any bounded non-negative function g ∈ L1(X; m)

satisfying ‖RAg‖∞ < ∞ that

(KARAf,KARAf)g·m =
∥∥∥K1

AK
(0)
A RAf

∥∥∥2

L2(g·m)

≤ ‖RAg‖∞
(
K

(0)
A RAf,K

(0)
A RAf

)
νC

≤ ‖RAg‖∞
1

1 − γ

(
RAf,K

(0)
A RAf

)
νC

= ‖RAg‖∞
1

1 − γ

(
f,K1

AK
(0)
A RAf

)
m

= ‖RAg‖∞
1

1 − γ
(f,KARAf)m .

Note that RA is the potential kernel of the transient Dirichlet form EA = E + (·, ·)νC on
L2(X; m) and RAIC = 1. Thus we have from (2),∫

X
(RAf − 〈m, f〉)2 (x)g(x) dm(x)

=
∫

X
(RA(f − 〈m, f〉 · IC))2 (x)g(x) dm(x)

≤ 2‖RAg‖∞E (RA(f − 〈m, f〉 · IC), RA(f − 〈m, f〉 · IC))

≤ 2‖RAg‖∞EA (RA(f − 〈m, f〉 · IC), RA(f − 〈m, f〉 · IC))

= 2‖RAg‖∞ (f − 〈m, f〉 · IC , RA(f − 〈m, f〉 · IC))m

≤ 2‖RAg‖∞ (f,RA(f − 〈m, f〉 · IC))m .

Therefore

(Kf,Kf)g·m

= (KARAf + RAf − 〈m, f〉,KARAf + RAf − 〈m, f〉)g·m
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≤ 2 (KARAf,KARAf)g·m + 2
∫

X
(RAf(x) − 〈m, f〉)2 g(x) dm(x)

≤ 4‖RAg‖∞
{

1
1 − γ

(f,KARAf)m + (f,RAf − 〈m, f〉)m

}
≤ 4

1 − γ
‖RAg‖∞(f,Kf)m

=
4

1 − γ
‖RAg‖∞E(Kf,Kf). (22)

On the other hand, from (20) and (21),

Kf = R1Kf + R1(f − 〈m, f〉 · IC)

and
R1f = Kf − KR1f + 〈νC , R1f〉.

Thus the images of K and R1 coincide except a difference of a constant factor which makes
the integral by νC zero. Hence, we have from (22),∫

X
|R1f(x) − 〈νC , R1f〉|2g(x) dm(x)

=
∫

X
|K(I − R1)f(x)|2g(x) dm(x)

≤ 4
1 − γ

‖RAg‖∞E(K(I − R1)f,K(I − R1)f)

=
4

1 − γ
‖RAg‖∞E(R1f,R1f).

Further, approximating u ∈ F by a sequence of functions of the form R1f as in the proof of
Lemma 2.1, we get the following result.

Theorem 2.1 If M is recurrent in the sense of Harris, then there exists a set C such that

1
m(C)

∫
X
|u(x) − 〈νC , u〉|2g(x) dm(x) ≤ 4‖RAg‖∞

1 − γ
E(u, u) (23)

for any u ∈ F and a bounded non-negative function g ∈ L1(X; m) such that ‖RAg‖∞ < ∞.

3 Transience and recurrence of sets relative to certain time
inhomogeneous diffusion processes

In this section, we assume that we are given an irreducible m-symmetric diffusion process
M = (Xt, Px) on X which is associated with the Dirichlet form (E ,F) given by

E(ϕ, ψ) =
1
2

∫
X

dµ〈ϕ,ψ〉(x). (24)
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We consider that the path space is canonical and Xt(ω) = ω(t). Denote the associated
generator by G. Fix a strictly positive continuous function ρ(t, x) such that ρ(t, ·) ∈ F
and t 7→ ∂ρ(t, ·)/∂t is a measurable function from [0,∞) to L2

loc(X; m). Put µt(dx) =
ρ2(t, x)m(dx) and consider the Dirichlet form (E(t),F (t)) on L2(X; µt) determined by

E(t)(ϕ,ψ) =
1
2

∫
X

ρ2(t, x) dµ〈ϕ,ψ〉(x). (25)

Denote by G(t) the generator corresponding to (E(t),F (t)). A time inhomogeneous diffusion
process Mρ = (Xt, P

ρ
(s,x)) is said associated with the family of Dirichlet forms (E(t),F (t)) if

its transition function ut(s, x) = Eρ
(s,x) (ϕ(Xt−s)) satisfies the terminal value problem

∂ut(s, x)
∂s

+ G(s)ut(s, x) = 0, ut(t, x) = ϕ(x), (26)

for s < t. Denote by Rρ
α the resolvent of Mρ, that is

Rρ
αϕ(s, x) = Eρ

(s,x)

(∫ ∞

0
e−αtϕ(Xt) dt

)
.

Then (26) is equivalent to

−
(

∂Rρ
αϕ(s, ·)
∂s

, ψ

)
µs

+ E(s)
α (Rρ

αϕ(s, ·), ψ) = (ϕ,ψ)µs (27)

for any ϕ ∈ F (s).
There also exists a diffusion process M̂ρ = (Xs, P̂

ρ
(t,y)) which is a dual process of Mρ in

the sense ∫
X

Eρ
(s,x) (ψ (Xt−s))ϕ(x) dµs(x) =

∫
X

Êρ
(t,y) (ϕ(Xt−s))ψ(y) dµt(y) (28)

for any ϕ,ψ ≥ 0. Note that the measure P̂ ρ is not necessarily sub-Markov. In fact, P̂ ρ is
given by the following transformation by a multiplicative functional

P̂ ρ
(t,y)(Λ) = Ey

(
exp

(
M

[log ρ]
t−s − 1

2
〈M [log ρ]〉t−s

)
e−B̂t−s : Λ

)
,

for Λ ∈ σ(Xτ ; τ ≤ t−s), where M
[log ρ]
τ is the martingale part appearing in the decomposition

log ρ(t − τ,Xτ ) − log ρ(t,X0) = M [log ρ]
τ + N [log ρ]

τ

into a martingale additive functional of finite energy and a continuous additive functional of
zero energy relative to P̂ ρ

(t,y), and

B̂s =
∫ s

0

∂ log ρ

∂t
(t − τ,Xτ )dτ.
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Hence, we have

P̂ ρ
(t,y)(X) ≤ exp (`t(s)) , `t(s) =

∫ t−s

0

∥∥∥∥∂ log ρ

∂t
(t − τ, ·)

∥∥∥∥
∞

dτ. (29)

Fix a closed set F of X such that ρ2(t, ·) ∈ L1(D; m) for D = X \ F . By considering
ρ2(t, x)/Z(t) instead of ρ2(t, x), we may assume that µt(dx) = ρ2(t, x)m(dx) is a probability
measure on D, where

Z(t) =
∫

D
ρ2(t, x)dm(x).

Let f be a non-negative function on D such that 〈µs, f〉 = 1 for fixed s ≥ 0. For such f ,
define the function ûD

s by

ûD
s (t, y) = Êρ

(t,y) (f(Xt−s) : t − s < σF ) , y ∈ D (30)

and put

ĤD
s (t) =

∫
D

(ûD
s )2(t, y) dµt(y).

We assume that the number

λD(t) = − inf
x∈D

∂

∂t
log ρ2(t, x)

is finite. For instance, this assumption holds if D is relatively compact. Then we have the
following lemma relative to ĤD

s (t).

Lemma 3.1 (i) For any s < t,

E(t)(ûD
s (t, ·), ûD

s (t, ·)) ≤ −1
2

d

dt
ĤD

s (t) +
1
2
λD(t)ĤD

s (t).

(ii) If limt→∞ ĤD
s (t) = 0, then P ρ

f ·µs
(σF < ∞) = 1.

Proof. (i) Since ûD
s satisfies

1
ρ2(t, y)

∂(ρ2ûD
s )

∂t
(t, y) = Ĝ(t)ûD

s (t, y) (31)

with condition
ûD

s (s, y) = f(y), ûD
s (t, y) = 0 for y ∈ F,

by multiplying ûD
s (t, y) and integrating on D by dµt(y), we have∫

D

∂(ρ2ûD
s (t, y))
∂t

ûD
s (t, y) dm(y) = −E(t)

(
ûD

s (t, ·), ûD
s (t, ·)

)
. (32)

Since the lefthand side of (32) can be written as

1
2

d

dt

∫
D

(ûD
s )2(t, y)ρ2(t, y) dm(y) +

1
2

∫
D

(ûD
s )2(t, y)

∂ρ2(t, y)
∂t

m(dy)
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we get the result.
(ii) By virtue of the duality relation (28), it holds that

P ρ
f ·µs

(t − s < σF ) = Eρ
µs

(f(X0)ID(Xt−s) : t − s < σF )

= Êρ
µt

(f(Xt−s)ID(X0) : t − s < σF )

=
∫

D
ûD

s (t, y) dµt(y)

≤
√

ĤD
s (t).

Hence, we have the assertion. 2

Assume that F is a non-exceptional closed set. By virtue of the irreducibility of M, its
part process MD on D is transient. Hence, applying (2) for MD, for any bounded positive
function g ∈ L1(X; m) such that ‖RDg‖∞ < ∞,∫

D
u2(x)g(x)dm(x) ≤ 2‖RDg‖∞ E(u, u) (33)

for all u ∈ FD = {u ∈ F : ũ = 0 q.e. on F}. If m(D) < ∞ and ‖RD1‖∞ < ∞, then (33)
holds for g = 1. As a typical case, this holds if D is compact and the transition function pt

of M is strong Feller. In fact, it then holds that infx∈D pt(x, F ) > 0 and

pD
t 1(x) ≤ 1 − pt(x, F ) ≤ 1 − inf

x∈D
pt(x, F ) < 1

for any x ∈ D, where pD
t is the transition function of MD.

Now, we give a general criterion on ρ for the recurrence of the set F relative to Mρ. Put

δD(t) =
infD ρ2(t, ·)

supD (ρ2(t, ·)/g(·))
.

Since g is bounded, δD(t) < ∞.

Theorem 3.1 Suppose that there exists a positive function g ∈ L1(D; m) such that

lim
T→∞

∫ T

s

(
λD(t) −

∥∥∥RDg
∥∥∥−1

∞
δD(t)

)
dt = −∞. (34)

Then P ρ
f ·µs

(σF < ∞) = 1 for any non-negative function f with 〈µs, f〉 = 1. In particular, if
the transition density of Mρ exists, then P ρ

(s,x)(σF < ∞) = 1 for all x ∈ D.

Proof. Let g > 0 be a function satisfying the stated condition. Then we have from (33)

ĤD
s (t) ≤ 2 sup

x∈D
(ρ2(t, x)/g(x)) ‖RDg‖∞ E

(
ûD

s (t, ·), ûD
s (t, ·)

)
≤ 2‖RDg‖∞ δ−1

D (t) E(t)
(
ûD

s (t, ·), ûD
s (t, ·)

)
.

11



Combining this with the result (i) of Lemma 3.1, we get that∥∥∥RDg
∥∥∥−1

∞
δD(t) ĤD

s (t) ≤ − d

dt
ĤD

s (t) + λD(t)ĤD
s (t),

that is,
d

dt
log ĤD

s (t) ≤
(

λD(t) −
∥∥∥RDg

∥∥∥−1

∞
δD(t)

)
.

Hence, we have

ĤD
s (T ) ≤ ĤD

s (s) exp

(∫ T

s

(
λD(t) −

∥∥∥RDg
∥∥∥−1

∞
δD(t)

)
dt

)
. (35)

Therefore the first assertion follows from Lemma 3.1 (ii). If the transition density pρ(s, x; t, y)
of Mρ exists, then

P ρ
(s,x) (t − s < σF ) = P ρ

(s,x) (τ − s < σF , t − τ < σF ◦ θτ−s)

= P ρ
f ·µτ

(t − τ < σF ) → 0, t → ∞

for f(y) = pρ(s, x; τ, y). 2

Example 3.1 Suppose that X is a Riemannian manifold with volume element m and
B = (Xt, Px) the Brownian motion on X. Then the associated Dirichlet form (E ,F) on
L2(X; m) is given by

E(ϕ, ψ) =
1
2

∫
X
∇ϕ(x) · ∇ψ(x) dm(x).

Let U be a smooth locally bounded non-negative function on X and ρ(t, x) a function defined
by

ρ(t, x) = exp
(
−1

2
β(t)U(x)

)
. (36)

for β(t) = (1/c) log(1 + t), c > 0. We consider the associated time inhomogeneous diffusion
process Bρ = (Xt, P

ρ
(s,x)) for the function (36).

Fix a connected component D of a level set of the form {x : U(x) ≤ b} and let a = infD U .
To make µt(D) = 1, we consider ρ2(t, x)/Z(t) instead of ρ2(t, x), that is we consider as

µt(dy) =
ρ2(t, y)m(dy)

Z(t)
, Z(t) =

∫
D

ρ2(t, y)dm(y).

Since D is compact, it is easy to see that the part process BD of B on D satisfies (33) for
g = 1. By elementary calculations, since

λD(t) =
b

c(1 + t)
+

d

dt
log Z(t), and δD(t) = (1 + t)−

(b−a)
c , (37)

12



we have ∫ T

s
λD(t)dt =

b

c
log

1 + T

1 + s
+ log

Z(T )
Z(s)∫ T

s
δD(t)dt =

c

c − (b − a)

(
(1 + T )1−(b−a)/c − (1 + s)1−(b−a)/c

)
and for any ε > 0,

m({a < U < a + ε})(1 + t)−
a+ε

c ≤ Z(t) ≤ m(D)(1 + t)−
a
c .

Therefore, if b − a < c,

lim
T→∞

∫ T

s

(
λD(t) − 2

∥∥∥RD1
∥∥∥−1

∞
δD(t)

)
dt = −∞

and which implies that the set F = X \ D is a recurrent set relative to Bρ by virtue of
Theorem 3.1.

Next, we turn to a general condition on ρ for the transience of some sets relative to Mρ.
We assume that the state space X is compact and M is recurrent on it. Before considering
time inhomogeneous process Mρ, we give an estimation of the type (??) relative to Mρ̄ for
time independent ρ̄.

Fix a positive function ρ̄(x) ∈ D(G) such that µlog ρ̄(x) := dµ〈log ρ̄2,log ρ̄2〉(x)/dm(x) < ∞
and ‖G log ρ̄‖∞ < ∞. Put dµ̄(x) = ρ̄2(x)dm(x). Let (E ρ̄,F ρ̄) be the Dirichlet form on
L2(X; µ̄) determined by

E ρ̄(ϕ,ψ) =
1
2

∫
X

ρ̄2(x)dµ〈ϕ,ψ〉(x)

and Mρ̄ = (X ρ̄
t , P ρ̄

x ) the associated diffusion process with resolvent Rρ̄
α. Put h(x) = G log ρ̄(x)+

2µlog ρ̄(x), Ct =
∫ t
0 h+(Xs)ds and

Rα
Cf(x) = Ex

(∫ ∞

0
e−αt−Ctf(Xt)dt

)
.

Then it satisfies
Rα

Cf(x) = Rαf(x) − Rα
C(h · Rαf)(x) (38)

(§4.6 in [4]). If the density Rα(x, y) of Rα(x, dy) relative to m(dy) exists, then (38) implies
that the density of Rα

C(x, ·) relative to m also exists. We denote its density by Rα
C(x, y).

For convenience, we will assume supx∈X ρ̄(x) = 1 with no loss in generality. Put

H ρ̄(x, y) = inf
η

sup
0≤t≤1

(
− log ρ̄2(η(t))

)
, x, y ∈ X,

where η(t), 0 ≤ t ≤ 1 is a curve in X connecting x and y. Furthermore, put

m(ρ̄) = sup
x,y∈X

{
H ρ̄(x, y) + log ρ̄2(x) + log ρ̄2(y)

}
,

γ(ρ̄) = 1 − e−m(ρ̄)/2 inf
z,w

R1
C(z, w).
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Lemma 3.2 Suppose that Rα(x, dy) has a strictly positive lower semi-continuous density
Rα(x, y) relative to µ̄(dy). Then∫

X
(u(x) − 〈µ̄, u〉)2 dµ̄(x) ≤ 2γ(ρ̄)

1 − γ(ρ̄)
E ρ̄(u, u) (39)

for any u ∈ F ρ̄.

Proof. For any fixed x ∈ X and ε > 0, let {Bi} be a covering of X of finite open sets
such that |H ρ̄(x, z) − H ρ̄(x, w)| < ε for all z, w ∈ Bi. From the definition of H ρ̄, the process
(Xτ )0≤τ≤t hits the set {y : ρ2(y) ≤ exp(−H ρ̄(x,Xt))} P ρ̄

x -a.s.. Thus, for any i, if we take a
point zi ∈ Bi, then for P ρ̄

x -a.s. ω such that Xt(ω) ∈ Bi, (Xτ )0≤τ≤t hits

Bx,i =
{
y : ρ̄2(y) < exp

(
−H ρ̄(x, zi) + ε

)}
.

Hence if we denote by σx,i the hitting time of Mρ̄ to Bx,i, then from the continuity of ρ̄2,

Rρ̄
1IBi(x)

= Ex

(∫ ∞

0

ρ̄(Xt)
ρ̄(x)

e−t−CtIBi(Xt) dt

)
≥ Ex

(∫ ∞

σx,i

ρ̄(Xσx,i)
ρ̄(Xt)ρ̄(x)

1
ρ̄(Xσx,i)

e−t−Ct ρ̄2(Xt)IBi(Xt) dt

)

= Ex

(∫ ∞

σx,i

e−
1
2(H ρ̄(x,zi)−ε+log ρ̄2(x)+log ρ̄2(Xt)) 1

ρ̄(Xσx,i)

× e−t−Ct ρ̄2(Xt)IBi(Xt) dt
)

≥ Ex

(∫ ∞

σx,i

e−
1
2(H ρ̄(x,Xt)+log ρ̄2(x)+log ρ̄2(Xt)) 1

ρ̄(Xσx,i)

× e−t−Ct ρ̄2(Xt)IBi(Xt) dt
)

≥ e−m(ρ̄)/2Ex

(∫ ∞

σx,i

e−t−Ct ρ̄2(Xt)IBi(Xt) dt

)
= e−m(ρ̄)/2 R1

C(ρ2IBi)(x).

This implies that for any x, y ∈ X,

Rρ̄
1(x, y) ≥ e−m(ρ̄)/2 R1

C(x, y).

Therefore, by putting Γ+
x,y = {z : Rρ̄

1(x, z) − Rρ̄
1(y, z) > 0}, we have∥∥∥Rρ̄

1(x, ·) − Rρ̄
1(y, ·)

∥∥∥ = 2
(
Rρ̄

1(x, Γ+
x,y) − Rρ̄

1(y, Γ+
x,y)

)
= 2

∫
Γ+

x,y

(
Rρ̄

1(x, z) − Rρ̄
1(y, z)

)
dµ̄(z)

≤ 2
∫

X

(
Rρ̄

1(x, z) − inf
y,w

Rρ̄
1(y, w)

)
dµ̄(z)

≤ 2γ(ρ̄).
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This implies ∥∥∥(Rρ̄
1)

n(x, ·) − µ̄(·)
∥∥∥ ≤ 2γ(ρ̄)n

for all n ≥ 1. Hence the result follows from Lemma 2.1. 2

Now we return to the time inhomogeneous case. Put m(t) = m(ρ(t, ·)) and γ(t) =
γ(ρ(t, ·)). Let ûD

s (t, x) and λD(t) are those defined before Lemma 3.1. We omit the superfix
D if D = X. Put

V̂s(t) = ‖ûs(t, ·) − 〈µt, ûs(t, ·)〉‖2
L2(µt)

.

Lemma 3.3 Assume the condition of Lemma 3.2. Then, for any s ≥ 0 and a non-negative
function f such that 〈µs, f〉 = 1,

V̂s(T ) ≤ e−
∫ T

s
Sγ,λ(t) dt

{
‖f − 1‖2

L2(µs)
+

∫ T

s
λ(t)e

∫ t

s
Sγ,λ(τ) dτdt

}
,

where
Sγ,λ(t) =

1 − γ(t)
γ(t)

− λ(t).

Proof. Note that it can be written as V̂s(t) = ‖ûs(t, ·)−1‖2
L2(µt)

= ‖ûs(t, ·)‖2
L2(µt)

−1. Then,

V̂s(t) satisfies

E(t) (ûs(t, ·), ûs(t, ·)) ≤ −1
2

d

dt
V̂s(t) +

1
2
λ(t)V̂s(t) +

1
2
λ(t)

by virtue of Lemma 3.1. Using (39), a similar argument as the proof of Theorem 3.1 gives
the the assertion of the lemma. 2

Theorem 3.2 Suppose that Rα(x, dy) has a strictly positive lower semi-continuous density
Rα(x, y) and

lim sup
t→∞

λ(t)γ(t)
1 − γ(t)

< 1. (40)

Moreover, assume a bounded non-negative function ϕ satisfies the following conditions ; for
each t > 0, there exists k(t) such that 0 < k(t) < t, k(t) ↗ ∞ as t ↗ ∞,∫ ∞

0
e`t(k(t))〈µt, ϕ〉dt < ∞ (41)

and ∫ ∞

0
‖ϕ‖L2(µt)e

− 1
2

∫ t

k(t)
Sγ,λ(τ) dτ

dt < ∞. (42)

Then
∫ ∞
0 Eρ

f ·µ0
(ϕ(Xt)) dt < ∞ for any non-negative function f with 〈µ0, f〉 = 1. In particu-

lar, if the transition density of Mρ exists, then
∫ ∞
0 Eρ

(0,x) (ϕ(Xt)) dt < ∞.
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Proof. For a function ϕ satisfying the stated conditions and a non-negative function f such
that 〈µ0, f〉 = 1,

Eρ
f ·µ0

(ϕ(Xt)) =
∫

X
(û0(s, y) − 1)ut(s, y) dµs(y) + 〈µs, ut(s, ·)〉

≤
√

V̂0(s)
√

Ht(s) + 〈µs, ut(s, ·)〉, (43)

where ut(s, x) = Eρ
(s,x)(ϕ(Xt−s)) and Ht(s) = ‖ut(s, ·)‖2

L2(µs)
. Since ut(s, ·) satisfies (26), we

have from (39) that

d

ds
Ht(s) = 2E(s)(ut(s, ·), ut(s, ·)) +

∫
X

u2
t (s, x)

∂

∂s
log ρ2(s, x) dµs(x)

≥ 1 − γ(s)
γ(s)

(
Ht(s) − 〈µs, ut(s, ·)〉2

)
− λ(s)Ht(s).

Therefore,

Ht(s) ≤ e−
∫ t

s
Sγ,λ(τ) dτ

×
{
‖ϕ‖2

L2(µt)
+

∫ t

s
e
∫ t

σ
Sγ,λ(τ) dτ 1 − γ(σ)

γ(σ)
〈µσ, ut(σ, ·)〉2dσ

}
.

By virtue of (28) and (29), it holds that

〈µs, ut(s, ·)〉 =
∫

X
ϕ(y)P̂ ρ

(t,y) (Xt−s ∈ X) dµt(y) ≤ e`t(s)〈µt, ϕ〉. (44)

From (40), we see that there exists a positive constant k0 such that

1 − γ(t)
γ(t)

≤ k0Sγ,λ(t)

for all t. Then, noting that `t(σ) ≤ `t(s) for all σ > s,

Ht(s) ≤ e−
∫ t

s
Sγ,λ(τ) dτ

×
{
‖ϕ‖2

L2(µt)
+

∫ t

s
e
∫ t

σ
Sγ,λ(τ) dτ 1 − γ(σ)

γ(σ)
e2`t(σ)〈µt, ϕ〉2dσ

}
≤ ‖ϕ‖2

L2(µt)
e−

∫ t

s
Sγ,λ(τ) dτ

+k0e
2`t(s)〈µt, ϕ〉2e−

∫ t

s
Sγ,λ(τ) dτ

(
e
∫ t

s
Sγ,λ(τ) dτ − 1

)
.

Hence, by taking s = k(t) for large t, we have√
Ht(k(t)) ≤ e

− 1
2

∫ t

k(t)
Sγ,λ(τ) dτ‖ϕ‖L2(µt) +

√
k0e

`t(k(t))〈µt, ϕ〉. (45)

Similarly, since

e−
∫ t

0
Sγ,λ(τ) dτ

{
‖f − 1‖2

L2(µ0) +
∫ t

0
λ(τ)e

∫ τ

0
Sγ,λ(σ) dσdτ

}
≤ ‖f − 1‖2

L2(µ0) + 1,
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V̂0(k(t)) is bounded relative to t by virtue of Lemma 3.3. Therefore, we see that the first
term of the righthand side of (43) is integrable relative to t from (41), (42) and (45). The
second term of the righthand side of (43) is also integrable because (44) holds for s = k(t).
The last assertion of the theorem can be proved by the Markov property used in the proof
of Theorem 3.1. 2

Note that the result of Theorem 3.2 also holds for any time dependent function ϕ(t, x) if
it satisfies the conditions (41) and (42).

In the next corollary, we assume for any open set G and closed subset K of G, there exists
a function ϕ ∈ D(G) such that ϕ = 0 on X \ G, ϕ = 1 on K and µϕ(x) = dµ〈ϕ,ϕ〉(x)/dm(x)
is bounded.

Corollary 3.1 Assume that the conditions of Theorem 3.2 and the conditions stated above.
Let F be a closure of a non-empty open set of X such that

√
IF µlog ρ(t,·) ∨ IF satisfies (41)

and (42). Then
lim

T→∞
P ρ

(0,x) (Xt ∈ F for some t ≥ T ) = 0,

that is, F is a transient set relative to Mρ.

Proof. The proof is similar to Lemma 3.2 in Holley et. al. ([6]). Let F1 be a closed subset
of the interior of F and ϕ ∈ D(G) a function such that ϕ = 0 on X \ F , ϕ = 1 on F1 and µϕ

is bounded. Let µt,ϕ(·) be the density of dµ〈log ρ(t,·),ϕ〉(·) relative to dm(·). Then

Mt = ϕ(Xt) −
∫ t

0
(Gϕ(Xτ ) + µt,ϕ(Xτ )) dτ

is a P ρ
(0,x)-martingale. By virtue of Theorem 3.2, it holds that∫ ∞

0
Eρ

(0,x) (|Gϕ|(Xt)) dt ≤ ‖Gϕ‖∞
∫ ∞

0
Eρ

(0,x) (IF (Xt)dt) < ∞.

Moreover, since
|µt,ϕ|(x) ≤

√
‖µϕ‖∞

√
IF (x)µlog ρ(t,·)(x),

Theorem 3.2 also implies ∫ ∞

0
Eρ

(0,x) (|µt,ϕ|(Xt)) dt < ∞.

Hence, the martingale convergence theorem implies that Mt and hence ϕ(Xt) converges to
zero a.s. and the assertion of the corollary holds. 2

Example 3.2 We consider the function ρ in Example 3.1 on a compact connected Rie-
mannian manifold X. For simplicity, let HU (x, y) = infη sup0≤τ≤1 U(η(τ)) for a curve η(τ)
connecting x and y, and assume that infX U = 0. Put

mU = sup
x,y∈X

(H(x, y) − U(x) − U(y)) .
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Then m(t) = β(t)mU − log Z(t). Note that for any fixed t,

R1
Cf(x) = Ex

(∫ ∞

0
e−τ−

∫ τ

0
(− 1

4
β(t)∆U+ 1

8
β2(t)|∇U |2)+

(Xσ) dσf(Xτ ) dτ

)
≥ R1+α(t)f(x)

for α(t) = 1
4 β(t)‖∆U‖∞ + 1

8β2(t)‖∇U‖2
∞. Put

Γ(t) = inf
z,w

R1+α(t)(z, w).

Since Z(t) ≥ m({x : U(x) < ε1})(1 + t)−ε1/c, we have

γ(t) ≤ 1 − e−m(t)/2Z(t)Γ(t)

≤ 1 − k(ε1)(1 + t)−(mU/2c+ε1) Γ(t).

Thus, if
Γ(t) ≥ k0(1 + t)−δ (46)

for some constant k0 and δ < 1 − (mU/2c), then (40) holds. Moreover, since

`t(s) =
∫ s

0

‖U‖∞
2c

1
1 + t − τ

dτ =
‖U‖∞

2c
log

1 + t

1 + t − s
,

by putting k(t) = t/2, we can see that

e`t(k(t)) =
(

1 + t

1 + t/2

)‖U‖∞/2c

≤ k1

for some constant k1. Hence, if F is a subset of {x : U(x) > b} with b > c, then∫ ∞

0
e`t(k(t))µt(F ) dt ≤ k1m(F )

∫ ∞

0
(1 + t)−b/cdt < ∞.

On the other hand, under the condition (46), taking ε1 such that δ1 ≡ 1−(mU/2c+δ+ε1) > 0,∫ t

t/2

1 − γ(τ)
γ(τ)

dτ ≥ k0k1(ε1)
∫ t

t/2
(1 + τ)−(mU/2c+δ+ε1)dτ

= k2(ε1)(1 + t)δ1

{
1 −

(
1 + t/2
1 + t

)δ1
}

≥ k2(ε1)
(
1 − (2/3)δ1

)
(1 + t)δ1

for t ≥ 2, where k2(ε1) = k0k1(ε1)/δ1. Note that for any ε2 > 0, we can find k3(ε2) such that
‖IF ‖L2(µt) ≤ k3(ε2)(1 + t)−b/2c−ε2 . So, we see∫ ∞

2
‖IF ‖L2(µt)e

− 1
2

∫ t

t/2
Sγ,λ(τ) dτ

dt

≤
∫ ∞

2
‖IF ‖L2(µt)e

− 1
2
k(γ)−1

∫ t

t/2
((1−γ(τ))/γ(τ)) dτ

dt

≤ k3(ε2)
∫ ∞

2
(1 + t)−b/2c−ε2e−

1
2
k(γ)−1k2(ε1)(1−(2/3)δ1)(1+t)δ1

dt < ∞.
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Therefore, from Theorem 3.2, we have

Eρ
(0,x)

(∫ ∞

0
IF (Xt)dt

)
< ∞, (47)

if F ⊂ {x : U(x) > b} for b > c. Also, from Corollary 3.1,

lim
T→∞

P ρ
(0,x) (Xt ∈ F for some t ≥ T ) = 0 (48)

for such set F .
As a special case, consider the 1-dimensional torus X = R1/N . In this case, since α(t) ≤

(1/4)‖∆U‖∞β(t) + (1/8)‖∇U‖2
∞β2(t) (see §1.4 in [7]),

Γ(t) ≥ k1

αU (t)
e−dαU (t) ≥ k2(1 + t)−d‖∇U‖∞/2c

for the diameter d = 1/2 and constants k1 and k2, where

αU (t) =
√

1
2
‖∇U‖∞ +

1
4
β2(t)‖∇U‖2

∞.

Hence (46) holds if mU + d‖∇U‖∞ < 2c. In the case of the present example, the spectral
gap λ1 is given in [6]. By using the spectral gap, more optimal condition is given there. In
fact, it is shown that mU < c < b is enough to get (47) and (48) for F ⊂ {x : U(x) > b}.
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