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Abstract 
Infrared absorption measurements have been made on dry samples of 
poly(dG)-poly(dC) DNA at various relative humidity and temperatures. The water 
content, controlled by the relative humidity, reduces as temperature increases and 
reaches a very low value of ~ 0.1 wpn above 120 oC. This minimum water content is 
maintained when the samples are brought back to room temperature as long as they are 
kept at the relative humidity of ~0 %. The molecular vibrations, which characterize the 
backbone structure as well as the base stacking and pairing, indicate that our samples 
maintain an A-form double helical structure at all the values of water content. The 
disorder in the base stacking is observed as the result of the decrease of the water 
content. Additionally the denaturation appears at high temperatures above 100 oC, 
which reversibly disappears with decreasing temperature.   
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1. Introduction 

The structure of DNA has been studied using various methods such as an X-ray 

diffraction, neutron scattering, and infrared spectroscopy. In the early stages of the 

structural studies, X-ray diffraction had been a unique method available for this purpose, 

while later, other methods have been applied to the analysis of the structure. One of the 

most important points obtained from those studies is the fact that DNA takes various 

conformations, and the conformational transition takes place due to several 

environmental factors1,2).  

Fiberous samples have been used in early X-ray diffraction studies of DNA 

structure1). This method has proved to be powerful for identifying a certain 

conformation, as well as the condition that favour particular conformations and that are 

responsible for introducing transitions between them. However, since the diffraction 

data of the DNA fiber are limitedto a resolution of 2 Å at best, such data hardly gives 

the structural information at an atomic resolution1,3,4). Later, X-ray diffraction 

measurements have been performed also on the single crystals of oligonucleotides. Over 

the past two decades this method has provided the structural information at the atomic 

level, at least as far as atoms except hydrogen are concerned. However, unlike the 

situation within the fibers, the single crystal environment is rarely able to accommodate 

significant conformational transitions3,4).  

As is well known, neutron scattering measurement is unique and powerful for 

studying biological systems. This is because the neutron scattering allow us to “see” the 

hydrogen atoms 5,6). This method, however, requires a sizable single crystal since in 

general its intensity is five orders of magnitude as low as X-ray intensity.  
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Finally to note, the infrared spectroscopy is also a powerful tool for providing 

structural information through the molecular vibrations. In the 500-2000 cm-1 region the 

infrared spectrum of a DNA gives about 40 well-defined absorption bands that appear at 

different positions with different relative intensities and dichroic ratios, depending on 

the conformation of DNA. Each spectral difference reflects the difference in the 

structure. A combination of the infrared spectroscopy with the X-ray diffraction have 

resulted in the sets of infrared marker bands of various conformations7-10). These marker 

bands make infrared spectroscopy very convenient for studying the structural properties 

of DNA. 

The other advantage of infrared spectroscopy from the technical point of view is 

that there is no limitation for the sample size and one can work with native high 

molecular weight DNA, with DNA fragments obtained by an enzymatic or chemical 

cleavage, and with long stranded polynucleotides or short synthetic olygomers. In 

addition, it is a non-destructive technique that requires small amount of samples10). 

Many parameters such as the ionic strength and concentration of the counterion, pH, 

temperature, and hydration, can be easily monitored. Therefore, the infrared 

spectroscopy has been widely used to obtain the structural related properties as well as 

to study the structural change induced by the change in the environmental factors, such 

as relative humidity and temperature. For this reason the infrared spectroscopy has also 

been employed to explore the interaction of counterions with DNA7). 

In general, the conformation is strongly dependent on the relative humidity, and 

hence the water content. At high humidity a DNA fiber or film adopts the B-form at 

room temperature. As it is reduced to a certain threshold, the decrease in hydration leads 

to the transformation of the B-form into other conformations such as A or Z-form1,9). A 
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further decrease introduces a disordered structure. In addition, the denaturation can take 

place when the samples are heated up to ~90 oC. In the disordered structure, the 

hydrogen bonds connecting the bases are partially broken, resulting in a lack of the base 

stacking and pairing. In the denaturated state, on the other hand, most of the hydrogen 

bonds of the bases are broken, and DNA loses its double helical structure. 

The infrared spectroscopy is convenient for studying the properties of water 

hydrated in DNA. Water molecules manifest themselves in the infrared absorption 

spectrum as several absorption bands arise from the OH stretching mode. Among them, 

the most intense band, which arises from the antisymmetric OH stretching mode, 

appears at around 3400 cm-1[Ref. 11,12]. The intensity of this band is strongly 

dependent on the relative humidity as well as the water content. Therefore it has been 

widely used as the convenient measure of water content in DNA. 

All three molecular subgroups in DNA (the heterocyclic bases, sugars, and 

diesterified phosphate groups) provide sites where water molecules can hydrate. The 

frequencies and intensities of the infrared bands associated with the various molecular 

subgroups are sensitive to environmental effects, particularly to the hydrogen bonding. 

The hydrogen bonding of water molecules with any molecular subgroups causes a shift 

in the vibration frequency. This shift, therefore, can be used for determining the 

hydration sites in a certain relative humidity range11). 

Actually, the water content is not the only factor that determines the structure. In 

addition to water content, the structural properties are strongly dependent on the 

types7,13-15) and concentrations of counterions16), base sequence1, 3,17), and temperature18). 

There have been many studies reporting the important roles of these factors. Those 

studies, however, focus mainly on the structural transition from one conformation to 
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another. 

Up to date, the studies on the structural properties of dry DNA at low water 

content are very limited. The most recent work has been performed by Lee et al. on the 

natural DNA with sodium counterions using calorimetric and infrared spectroscopies9). 

They have found that, at room temperature, in the water content of 3.3 - 7.2 water per 

nucleotide (wpn) a structural change involving  a slight disruption of the base stacking 

arises, followed by the denaturation process at higher temperature where the changes in 

the backbone structure occur. In case of natural DNA, the base sequence is random. 

Then, it is worth investigating the structural properties at low water content for 

differently sequenced DNA.  

In this paper work we report on the results from infrared absorption 

measurements on dry poly(dG)-poly(dC) DNA with the regular base sequence at low 

water content. We are particularly interested in the structural stability of DNA at the 

state where the surrounding water is almost absent. Through this study, we intend to 

investigate the conditions to maintain the DNA structure at very low water content. A 

stable DNA structure at low water content might be important for further studies of 

DNA, particularly from the electrical conduction point of views. 

 

2. Experimental 

The samples of poly(dG)-Poly(dC) DNA with the typical molecular length of 

1.7-2.9 µm  was purchased from Amersham Bioscience Co. Ltd. The purification and 

collection were performed by using conventional method for an electroelution, phenol 

extraction, and ethanol precipitation. The processed samples then were diluted with 

deionized water (17.8 MΩ) to a concentration of 25 U (1 U = 50 ng/ml).  The 
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concentration of sodium ions in the solutions was estimated as 1.2 x 103 ppm using an 

inductively coupled plasma spectroscopy. Finally, this solution was dried in a vacuum to 

obtain film-like solid samples.  

A film for infrared absorption measurements was achieved by spreading the solid 

DNA on a BaF4 crystal. The infrared absorption in the spectral range of 700-4000 cm-1 

was measured using a FTIR spectrometer (Jasco FT/IR 410) equipped with a Cassegrain 

microscope. The samples were placed in a temperature-controllable optical cell (Linkam 

Th 6800). All the measurements were performed with a constant flow of dry nitrogen 

gas (500 ml/min.) into the sample chamber to keep the samples at low relative humidity, 

except for the first measurement at 30 oC.  

 

3. Results and Discussion 

Figure 1 shows the absorption spectra in the region of 2000-4000 cm-1 before and 

after the flow of dry nitrogen gas into the sample chamber at 30 oC and at higher 

temperatures. The spectrum is mainly featured by a broad band at 3400 cm-1. Before the 

flow of nitrogen gas, the intensity of the band is quite strong. After 10 minutes of 

exposure to nitrogen gas, it abruptly decreases, and remains almost unchanged after the 

longer exposure to nitrogen gas. As temperature increases, the intensity gradually 

decreases up to 120 oC to become constant at higher temperature at 150 oC. It also 

remains constant as temperature is lowered back to 30 oC. 

The band at 3400 cm-1 is assigned to the OH stretching mode of water molecules. 

This band is known to be strongly dependent on the relative humidity and has been used 

for estimating the water content in DNA11,12). It should be noted that several other 

vibrations such as NH and NH2 stretching modes also appear in this frequency region 
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almost the same with the OH stretching mode18,19). Therefore, a careful identification of 

each vibration is necessary before using this band to estimate the water content. 

To interpret on the spectrum carefully, we have measured the absorption spectrum 

of the guanine and cytosine powder, and the results are shown in Figs. 2 (a) and (b). The 

obtained spectra are in good agreement with previously reported results19,20). Each 

spectrum consists of several sharp peaks arises from NH and NH2 stretching, observed 

below and above 3000 cm-1, respectively. The two peaks of NH2 stretching may 

correspond to the two main peaks in the spectrum of DNA shown in Fig.1. We have also 

measured the absorption of the bases at several temperatures up to 150 oC and observed 

no temperature dependence. The significant temperature dependence of the band at 

3400 cm-1, therefore, is considered as the property of the OH stretching of water 

molecules.  

To separate the absorption band due to water from that of other origins, we 

subtracted each spectrum from the spectrum at 150 oC by assuming that, at this 

temperature, the remaining spectrum consists of the underlying absorption of DNA only, 

so that the subtracted spectrum can be regarded as the absorption spectrum of water. 

The results are shown in Fig. 3, and the intensity of the band as the function of humidity 

and temperature is shown in Fig. 4. The intensity is high at 30 oC before the flow of 

nitrogen (state I). It decreases after the 10 minute-flow, but remains unchanged after the 

longer exposure to nitrogen at the same temperature (state II).  

As the temperature increases, the intensity decreases further, and becomes almost 

zero at 120 oC and higher temperatures (state III). This state remains as the temperature 

is lowered to 30 oC (state IV). It should be noted that the intensity recovers its initial 

value when the samples are exposed to room humidity.  
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Based on the previous reports11), we consider the change of the intensity of the 

OH stretching band with the changing humidity and temperature is due to the change of 

the water content in our samples. In general, the water content of DNA can be measured 

by several methods, such as the so-called Karl Fisher titration and thermogravitometric3). 

However, we did not perform any measurements to check the exact value of the relative 

humidity and the water content of our samples. For a rough quantitative estimation, we 

use the formula given by Falk et al. 21) 

)86.0(52.4 −= Rn .    (1) 

Here R is the absorbance of the band at 3400 cm-1 without being subtracted with the 

spectrum at 150 oC, normalized by the absorbance of the band at 1240 cm-1. Using the 

value of the absorbance plotted in Fig. 4 added by 0.43, which is the value of R at 150 

oC and normalized with the absorbance of the band at 1240 cm-1, we obtaine the water 

content for the sample prior to nitrogen gas exposure is 3-6 wpn.  

After the flow of nitrogen gas, the water content is estimated to be ~1 wpn. 

Heating up the samples causes the remaining water molecules to evaporate. This 

evaporation is indicated by the further decrease in the intensity of the above-mentioned 

band as temperature increases. The water content in the sample after being heated above 

120 oC is estimated to be ~ 0.1 wpn. Lee et al. have mentioned that they have 

completely removed water molecules from their samples by annealing them at 160 oC 

for 30 minutes9). Since the situation is very similar to our experiment, we believe that 

the value of water content of ~0.1 wpn above 120 oC is reliable.   

The behavior of the band at around 1240 cm-1 in Fig. 5, which has been assigned 

to the antisymmetric PO2
- stretching mode, also supports the above estimation on the 

water content. The frequency of this band is known to be strongly dependent on the 
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relative humidity12,15. In natural DNA at relative humidity of 70% and higher, it appears 

at ~1220 cm-1, and almost linearly shifts to higher frequency as the relative humidity 

decreases. At 0 % humidity, it appears at ~1243 cm-1. The exact frequency for each 

value of humidity varies depending on many factors such as the base sequence and 

counterion. Nevertheless, the relation between the humidity and frequency shift shows a 

similar trend for each kind of DNA. 

Figure 5 shows the spectra in the region of 750-1800 cm-1. At 30 oC before the 

flow of nitrogen in Fig. 5(a), we observe the antisymmetric PO2
- stretching mode at 

1240 cm-1, which shifts to 1247 cm-1 after the flow of nitrogen (Fig.5(b)) and remains 

unchanged when the sample is brought to higher temperature. The frequency before the 

flow of nitrogen is very close to that of the sample at low hydration11,12), and the shift to 

higher frequency indicates that the water content of the samples decreases. This shift 

also indicates that the water molecules hydrate the phosphate backbone before being 

released. 

It is now our concern to explore the structure of the present DNA sample at the 

state where water is almost absent. As described in Section I, the structural properties of 

DNA in the infrared spectrum is represented by several marker bands, which appear 

only for a certain conformation. In addition, the frequency of certain vibrations also 

shows the characteristics of a certain structure, such as the antisymmetric PO2
- 

stretching, and the in-plane C=C or C=N stretching of the bases. Those bands, therefore, 

have been used as the indicator of the structural transformation as well as the structural 

disruption due to the change in the environment. The structural changes in our samples 

are easier to understand if we use each marked states in Fig. 4 as the guideline. 

 Figure 5(a) shows the spectrum measured at 30 oC prior to the exposure of the 
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samples to the nitrogen gas. This state of the samples corresponds to the state I in Fig. 4. 

The spectrum exhibits the characteristic of A-form with marker bands are observed at 

806, 899, and 1182 cm-1(Ref. 7). The absorption bands due to the symmetric and 

anti-symmetric stretching of the PO2
- are observed at 1086, and 1240 cm-1, respectively. 

The double bond (C=O and C=N) stretching mode of the bases, is observed at 1710 

cm-1 which also reflect the characteristic of A-form 7,9,10).  

As mentioned above, the water content of the samples significantly decreases after 

the exposure to nitrogen for 60 minutes, which corresponds to the state II in Fig. 4. 

However, this does not result in a significant change in the overall spectrum, 

particularly in the structural point of view. As shown in the spectrum of Fig. 5(b), the 

peak position and the shape of characteristic bands remain almost unchanged. Most of 

the bands are slightly enhanced, except the marker bands, which slightly diminish but 

remain clearly observable. The symmetric PO2
- stretching mode at 1086 cm-1 also 

slightly diminishes and is broadened.  

As the temperature increases (Fig. 5(c) and (d)), the intensity of each bands 

gradually decreases. These states correspond to the states II and III in Fig. 4. In 

particular, at 150 oC shown in Fig. 5(d), the A-form marker bands become barely 

observable, and the band at 1086 cm-1 representing the backbone structure is 

significantly reduced and broadened. The characteristic band of base stacking and 

pairing at 1710 cm-1 remains observable.  

Figure 5(e) shows the spectrum measured at 30oC after the sample is heated up to 

150oC. This state corresponds to the state IV in Fig. 4. The spectrum is very similar to 

that measured at the same temperature prior to the exposure to nitrogen gas, despite the 

difference in water content. In particular, the band at 1086 cm-1 becomes quite intense 
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and almost comparable to the intensity observed in the samples after the flow of 

nitrogen gas. The A-form marker bands, on the other hand, are very weak but remain 

observable.  

As explained above, at 30 oC before the exposure to nitrogen gas (state I of Fig. 

4) our samples take the A-form. After the exposure to nitrogen gas (state II), the 

samples maintain the A-form despite the decrease of their water content. A disorder, 

however, takes place, which is indicated by the diminishing of the marker bands. Lee et 

al. have observed that, in natural NaDNA at water content of 1 wpn, corresponding to 

the state II in the present work, the mode representing the base stacking and pairing at 

1710 cm-1 disappears, while the symmetric PO2
- stretching mode at 1086 cm-1 is 

broadened9). In contrast, both modes remain almost unchanged in our spectrum. This 

fact suggests that the degree of the disorder in our samples is much lower than that 

observed by Lee et al. 

Our samples experience further disorder at high temperature (state II-III), which 

is indicated by the barely observable marker bands and the lowering intensity of the 

in-plane double band stretching of the bases. In addition, as shown in Fig. 6., the 

symmetric PO2
- stretching mode is reduced and broadened with increasing temperature. 

This mode has been reported to be sensitive to the denaturation9). These facts indicate 

that, in addition to the slight disorder in base stacking and pairing, the denaturation also 

takes place at high temperatures above 100 oC. 

In Fig. 7 we plot the intensity of the mode at 1086 cm-1 normalized at 1240 cm-1 

as a function of temperature at different relative humidity together with the previously 

published data by Lee et al. The temperature dependence of the intensity of this band is 

very similar to the data of Lee et al. for the sample with 1 wpn. The change of the 
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intensity in this sample is small compared to the change of the intensity in the sample 

with 12 wpn,. Lee et al. have argued that this small change indicates that the samples 

are already in the denaturated state at room temperature because of the low water 

content. In contrast, as previously explained, our samples do not show any indication of 

denaturated state at room temperature. 

Semenov et al. have identified that the intensity of the band at 1086 cm-1 is also 

strongly dependent on the water content22). Our data plotted in Fig. 7 is similar to their 

results. The intensity of this band decreases due to the flow of nitrogen at room 

temperature. The sharp change in the intensity of the same band in the sample with 12 

wpn observed by Lee et al. could be attributed to the decrease of water content. They 

have mentioned that the samples are sealed during the whole measurement, but there 

may be no guarantee that water is not evaporated from the sample, particularly during 

the heating process. 

In Fig. 5(e) the spectrum measured at 30 oC after the samples are heated to 150 oC 

reveals that the samples recover its A-form structure. This is indicated by the complete 

features for A-form, such as the marker bands, and the characteristic bands for the 

backbone and base pairs. It should be noted that this spectrum is measured at the state 

IV of Fig. 4, where the water content of the samples is ~0.1 wpn. It means that the 

denaturation at high temperature is mainly caused by the thermal energy, not by the 

lowering of the water content. On the other hand, a slight disorder observed at 30 oC 

after the samples are heated is attributed to the low water content. 

The structural stability at very low water content observed in the present work is 

in contrast to the stating that a lack of water will result in a structural disruption of DNA. 

Our finding is similar to the previous observation on poly(dA)-poly(dT) DNA which 
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remain structurally stable at humidity of ~0%23).  

The counterion concentration is considered as the important factor for the structural 

stability of DNA. Water molecules and counterions have the same site where they have 

the highest affinity, i.e., the phosphate backbone. The water and counterion play the 

same role against the phosphate group; they screen the Coulomb repulsion between the 

negatively charged phosphate oxygens. At high hydration, this screening is mainly 

performed by water molecules. When the hydration is lowered, which corresponds to 

the lowering of water content, the counterions play the role of water molecules. In this 

case a high concentration of counterion, like the case of our samples, is required. 

The structural stability of DNA at low hydration is very important for further 

exploration of electrical conductivity in DNA, a topic of controversy. Several theoretical 

calculations have predicted that water and counterions surrounding DNA influence not 

only its conformation, but also its electronic structure24). A particular configuration of 

DNA environment might induce a large shift in the location of Fermi level, which is 

relevant for the DC transport properties. Kino et al. have proposed that carriers can be 

doped to DNA by controlling the counterions25). Moreover, the doping states depend on 

whether counterions are hydrated or unhydrous. Particularly, a small amount of 

unhydrous Mg cations among the hydrated ones might act as impurities in 

poly(dG)-poly(dC) DNA. It is noteworthy that this doping state seems to be 

independent of the condition whether the DNA is in A- or B-form. The realization 

above mentioned theoretical proposal experimentally requires DNA with stable 

structure at any degree of hydration. In this context, our findings that the 

poly(dG)-poly(dC) DNA has a stable structure at very low hydration might be an 

important key toward it. 
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4. Conclusions 

We have studied the properties of hydrated water and the effects of hydration on 

the structural properties in poly (dG)-poly (dC) DNA using the infrared spectroscopy. 

The water content of our samples at 30 oC and humidity of ~60 % is estimated to be 3-6 

wpn. As humidity is lowered to 0 %, the water content decreases to 1 wpn. The water 

content reduces further to 0.1 wpn as temperature increases up to 120 oC, and that value 

remains at higher temperature. This state is maintained when the temperature is lowered 

to 30 oC while keeping the humidity at 0 %. Our samples maintain the A-form structure 

at all values of water content. The disorder in the base pairing is observed as the water 

content decreases. The high concentration of couterions is suggested as the origin of the 

stable structure despite its low water content. At high temperature, the disorder is 

accompanied by the denaturation, where the changes in the backbone occur. The 

denaturation is reversible against the temperature.  
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Figure captions.  
 
Figure 1. Absorption spectra in the region of 2000-4000 cm-1 at various humidity and 
temperatures.  
 
Figure 2. Absorption spectrum of guanine (a) and cytosine (b) in the region of 
2000-4000 cm-1 at 30 oC.  
 
Figure 3. Absorption spectra in the region of 2000-4000 cm-1 at various humidity and 
temperatures after being subtracted by the spectrum at 150 oC. 
 
Figure 4. Intensity of the absorption band due to the OH stretching mode as the function 
of exposure time to nitrogen gas and temperature. The states I and II are measured at 30 
oC without and with the flow of nitrogen gas, respectively, the III is measured at 150 oC, 
and the state IV is measured at at 30 oC after the temperature is lowered from 150 oC.   
 
Figure 5. Infrared absorption spectra in the region of 750-1800 cm-1 at 30 oC before (a) 
and after (b) the flow of nitrogen, we measure the high temperature spectra at 100 oC(c), 
150 oC (d), and after the temperature is lowered back to 30 oC (e). 
 
Figure 6. The symmetric PO2

- stretching mode at various humidity and temperatures.  
 
Figure 7. Hydration and temperature dependence of the intensity of the symmetric PO2

- 
stretching mode.  
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Figure 1. 
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Figure 2. 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6. 
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Figure 7.  
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