
 

 1

DYNAMICS OF PHOTOGENERATED NONEQUILIBRIUM 
ELECTRONIC STATES IN A DISORDERED ONE-DIMENSIONAL 

LATTICE  

YOSHINORI TABATA  
Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181,  

Japan  
E-mail: y-tabata@hokuriku-u.ac.jp 

NORITAKA KURODA  
Department of Mechanical Engineering and Materials Science, 

Faculty of Engineering, Kumamoto University, Kumamoto 860-8555, 
 Japan 

E-mail: kuroda@msre.kumamoto-u.ac.jp  

The dynamics of photogeneration and pair annihilation of nonequilibrium quasi-particles 
(photon A+B 0) in a disordered one-dimensional lattice is examined by numerical 
simulation. To investigate the nature of the nonequilibrium kinetics of polarons in linear chain 
materials, the calculation is carried out assuming that every lattice point of randomly 
disordered lattice can accommodate arbitrary number of particles of the same species. We 
discuss the time evolution of self-formation of domains during optical pumping and of their 
decay after discontinuation of pumping. 
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Nonequilibrium quasi particle states can be photogenerated in a variety of low-
dimensional materials. 1-5) In the present study we examine numerically the 
influence of the lattice disorder on the photogeneration and decay process of 
polarons, especially on the self-formation process of domains (aggregates).  

In the numerical calculation, we treat a long ring of chain lattice whose sites 
are divided by the energy barriers of mean height 0.40 eV. We assume that each 
lattice point can accommodate arbitrary number of particles of the same species, 
which are electron- or hole-polarons. Presuming also that the electron and hole 
pairs are photocreated in the randomly selected consecutive sites at the rate of C 
and that only one particle on a lattice point can jump to either of the adjacent points 
at every hopping. The disorder of the lattice is introduced by a random distribution 
of the barrier height that complies with the Gaussian distribution of width σ. 

Figure 1(a) shows the time evolution of the average particle number N on a 
lattice point for the case of the completely ordered lattice of σ = 0 eV. After 
sufficient pumping, the system reaches a steady state Ns which depends on C/W, 
where W is the intersite hopping probability. Ns increases monotonously with 
increasing C/W. In the case of disordered lattice, the hopping probability is assumed 
to obey the Arrhenius law and W is redefined as the probability for the barrier of 
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Fig.1(a) Average particle numbers N on 
a lattice point in photogeneration in 
an ordered lattice(σ = 0 eV). 

mean height. As σ increases the rise of N becomes slower and slower. At the same 
time Ns for a given C/W increases. The decay after discontinuation of pumping 
depends strongly on Ns for both cases of σ=0 and σ>0. Fig.1(b) shows the result for 
σ=0 eV as an example. Using a dimensionless time ζ=Ns

2Wt, the decay for σ=0 eV 
is represented well by (1+ζ/τ)-α, where τ and α are constants. However as 
σ increases, the decay curve runs off the power law and becomes to obey the 
Kohlrausch law of exp[(-ζ/τ′ )β], where τ′ and β are constants. 

We observed the formation of aggregates in both processes of the photo-
generation and decay. The aggregate here means a lump of the consecutive lattice 
points occupied by particles of the same species, whereas the aggregate size is 
measured by the number of particles included in the lump. Figure 2 shows the 
growth of aggregates with the fluence 2Ct of photogeneration in the disordered 
lattice of σ=1.0 eV, where the pumping rate is chosen as C/W=6.0. As the fluence 
increases, the dominant size of the aggregate increases one after another. If the 

pumping is intensified or the lattice disorder is 
enhanced, the rate of the larger-size 
aggregates increases. However, the maximum 
number of the aggregate having a given size is 
suppressed by the lattice disorder when the 
pumping is strong. By weak pumping in an 
ordered lattice, hardly large-size aggregate 
grows and the small-size ones monotonously 
reach a steady state. As far as the growth of 
aggregate is concerned, no essential difference 
is seen between the ordered and disordered 
lattice. 

The time evolution of the aggregates after 
discontinuation of pumping is shown in Fig.3. 
In the strongly disordered lattice[Fig.3(a)], the 

Fig.1(b) Decay of particles after the 
discontinuation of pumping in an 
ordered lattice(σ = 0 eV). 
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Fig.2 Aggregate growth 
(C/W=6.0, σ=0.10eV). 
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small-size aggregates such as size-one or -two remain stable or rather grow for a 
long period. These stability or growth is supported by the supplying particles to 
small-size aggregates from the larger-size ones that loose particles and reduce 
themselves with time. The number of vacancies increases in this period.  

In the weakly disordered lattice and in an ordered lattice, the density of particles 
at the discontinuation of pumping is low compared with the disordered lattice. In 
these cases, the number of aggregates decreases rapidly in the early stage of step and 
decays slowly after this stage[Fig.3(b)]. The rapid decay may be the reflection of 
disappearance of the aggregates which are composed of few sites hold a lot of 
particles and the slow decay may be that of the aggregates consist of many sites with 
few particles.  
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Fig.3(a) Decay of aggregates in the 
disordered lattice of σ=0.10eV after 
discontinuation of pumping of C/W
=6.0.  

Fig.3(b) Decay of aggregates in the 
weakly disordered lattice of σ= 
0.010eV after discontinuation of 
pumping of C/W=2.0.  
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