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Thermal diffusivity and conductivity of supercooled liquid
in Zr 41 Ti1,Cu4,Ni;oBe,; metallic glass
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We measured the thermal diffusivity of amorphous solid and supercooled liquid in a
Zr 41 Ti14CuyNi oBey; bulk metallic glas§BMG) and its crystalline counterpart alloy at temperatures
ranging from room temperature to 700 K, using a laser flash method. The thermal diffusivity and
conductivity of the amorphous solid were weakly temperature dependent and increased with
increasing temperature up to the glass transition temperature. The thermal diffusivity of the
supercooled liquid was approximately 380 ¢ m?s ! and quite constant with temperature. The
amorphous solid and supercooled liquid of,i,Cu,Ni;(Bes BMG showed lower thermal
diffusivity and conductivity than the crystalline counterpart in the range from room temperature to
crystallization temperature. @004 American Institute of Physic§DOI: 10.1063/1.1759768

New families of bulk metallic glasse@8BMGs) with  typical Zr;Ti1sCu;oNijgBe,s (at. %9 BMG and its polycrys-
high glass-forming ability have been discovered, such talline counterpart alloy. This letter presents the first mea-
as Pd-Cu-Ni-P, La-Al-Ni-Cu-Co? Mg-Cu-Y;}  surement of thermal conductivity of the supercooled liquid in
Cu-Zr-Ti?  Ti-Zr-Cu-Ni®  Zr-Ni-Al-Cu’  and BMGs.

Zr-Ti—-Cu—Ni-Be® The BMGs are characterized by the A master alloy ingot with the nominal composi-
high thermal stability of their supercooled liquid, which per- tion Zr,,Ti,;,CuNi;jBe,; (at.% was prepared by arc
mits study of the thermophysical properties of the supermelting a mixture of pure zirconium, titanium, copper,
cooled liquid in addition to the amorphous metallic solid. nickel and beryllium in a Ti-gettered argon atmosphere.
The thermophysical properties of metallic supercooled liquidzy, Ti, ,Cu,,Ni;JBe,; BMG sheet was prepared from master
rouse our interest not only for fundamental studies but alsgoy by rapid-quench copper mold casting method in which
for studies of potential practical applications. In fundamentakpe cqoling rate reaches more than 100 K/s. BMG disks with
studies, the thermophysical properties are required to clarify ihickness of 1.2 mm and a diameter of 10 mm were
the lglass fo][ma;tion meche;nism aﬂd to estilmatﬁ the Cr(;ti%a["immed off the cast BMG sheet. The glass transition tem-
cooling rate for formation of amorphous single phase and t ot .
criticalgheating rat for heating a?norphousg aIIFc))ys without %er?ture,Tg ,Rcrys]:talrlllzaztlor_}- te(;n pel\zgtuBreTxé'\z;llgd Cm"sc;?l,
devitrification. Recent application studies of BMGs include 00N rateRs, of the ZhaT11aCUNI1gBes are

. > K, 672 K, and 1 K/s, respectivel.
many attempts to make connections to BMES™ Many The thermal diffusivity of BMG has been measured be-

successful welding methods can make connections to BMG?\’Neen 300 and 700 K with a ULVAC-RIKO TC-7000 Stan-

H H e 13-15 6 i ~An10
It?ggrjg,lnagnJr:aclg?:'?rbn-begﬁsaefgigrr?g?ibli);zlizlfrght,IZ?(E:O- dard Laser Flash Thermal Constants An_alyzer. Prior to the
sion, laser-beam, and electron-beam weldings are liquif€asurement, the surface of the BMG disks was blackened
phase methods. To determine the optimum conditions foPY IMmmersion in the 0.5% aqueous HF solution for 0.5 min
welding BMGs without crystallization with the several liquid N order to improve the absorption of the laser beam. The
phase methods, it is necessary to investigate the thermal higdmple was clamped on an alumina sample holder. The
tory during welding. In order to clarify the thermal history, Whole assembly was enclosed in a chamber evacuated to
the thermal properties such as specific heat capacity, therm@glow 10 Pa. The temperature was raised from room tem-
diffusivity and thermal conductivity are required. Previous Perature to each test temperature with a heating rate of 20
reports have supplied thermodynamic and kinetic data foK/min and then kept at each temperature for more than 10
BMGs, including specific heat capacff}; viscosity’*=2®  min. Thereafter, the thermal diffusivity measurement was
and heats of transformation of their amorphous stlif. carried out under isothermal conditions. A laser pulse with a
However, there has been no report of the thermal diffusivitpwavelength of 694 nm and a diameter of 10 mm was pro-
and thermal conductivity of their supercooled liquid. Thevided by a normal oscillation-type ruby laser with a fre-
aim of this study is to clarify the thermal conductivity and quency multiplier. The maximum temperature of the rear sur-
diffusivity of amorphous solid and supercooled liquid in aface of the sample was measured by thermocouple and
infrared temperature sensor.

Aauthor to whom correspondence should be addressed; electronic mail: Thergr(‘)al diffusivity was calculated by the ty) _
yamasaki@gpo.kumamoto-u.ac.jp method” > The temperature of the rear surface of the speci-
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men changes according to the following equatfon L L S I L B
‘_ [ Crystallization ]
e t “/) [ __
T(t)=Ty[1+2> (-1)"expg —n%—||, (1) g 6r ]
n=1 to - [ @ .I ]
> [ © ]
where Ty, =Q/pC,¢, the maximum temperature rise of the % 5[ Crystalline solid & ]
rear surface of the specimen with no heat I@3ss the pulse 5 i ©
of radiant energy in Jcn¥; Cp, the heat capacity of the = a4 - of ITg sz .
specimen, anty=¢?/(m?a), the characteristic time of ther- -2 | - oo
mal diffusion; ¢, the thickness of the specimen, andthe = sk - * l ' ]
iffusivity in e s 1 a C -~ ]
thermal dl'f'fUSIVIt'y incnfs . ' & P Supercooled ]
Two dimensionless parameteks,and o, can be defined % - ” liquid ]
S 2 o Amorphous solid
V() =T(t)/Ty 2 '
PRI N TR SR TR T N1 P " P I T
w=m’atl€?. 3 ' 500 400 500 600 700
Tw denotes the maximum temperature at the rear surface. Temperature, T/K
The combination of Eqg1), (2) and(3) yields FIG. 1. Change in the thermal diffusivities of ZFi.Cuy,Ni;Bey; BMG
- (solid circles and crystalline alloy(open circleg as a function of tempera-

ture. T4 and T, denote glass-transition temperature and onset of crystalli-

V=1+ ZnZl (—1)"exp(—nw). (4) zation temperature, respectively.

WhenV is 0.5 andw is 1.37, thermal diffusivitya, is rep-

resented by the following equation: thermal conductivity, as well as the thermal diffusivity, were

weakly temperature dependent, with small positive tempera-

2 ture coefficients. The thermal conductivity rose dramatically

a=1.37 2 (®  to 15 Wnmi 1K ! at the glass transition temperatufg,. In
T2

The half rise timet,,, is defined by the interval required for

the rear surface temperature to reach one half of the maxi- Y —
mum temperature. [ (a) Crystallization ]

The thermal conductivitk was calculated from the dif- & i T )
fusivity, a, from the relation T 20f . R

. ]

k=pCpa. (6) E _ C|@@ o o ]

The specific heatC,, of samples was given by £ 1% Crystalline solid C e ]

Q é [ © F )

Co=—rr- () § 00 Lo ]

pt iy o © - & Eu&)igrcooled i

The pulse of radiant energ@, was calculated from the % sk -~ ”~ q ]

known specific heat of sapphire plate and Thg measured = Lo Amorphous solid 1
for sapphire.

Figure 1 shows the change in the thermal diffusivity, 0 b+
of Zry;Ti14CuuNijBes BMG and its crystalline alloy as a  _ E (b) Crystallization
function of temperature. The thermal diffusivity of the amor- X 098¢ L g
phous solid was weakly dependent on temperature and in- 2 08 E ng ]
creased with increasing temperature up to the glass transition~ " [ ® ]
temperature. The thermal diffusivity of the supercooled lig- OQ 07 F \g ]
uid was approximately 310 ¢ m?s~! and quite constant £ C ]
with temperature. The Z{Ti;,Cu;,Ni;;Be,; BMG showed a g 06r ]
lower thermal diffusivity than its crystalline counterpart in 05 C ' Py L
the range from room temperature to crystallization tempera- § T Amorphous S‘id ]
ture. These phenomena were explained by the obvious factg o4 - o - Su ercooled_:
that the BMGs are considered to be highly alloyed solid § | ,iqfid ]
solutions and their densities are smaller than their crystalline @ 03
counterparts. Crystallization causes an increase in thermal 022, R T
diffusivity to 5.5x10°% m?s . The amorphous solid is ' 300 400 500 600 700
characterized by small positive temperature coefficients of Temperature, T /K

diffusivity, as is its crystalline counterpart. o e th | conductivig and fic heath) of
: ; i, FIG. 2. Change in the thermal conductivitg) and specific heatb) o
Figure 28) shows the change in the thermal conductiv Zr4qTi14,CupNiyBe,s BMG (solid circleg and crystalline alloy (open

ity, , for Zr41Ti14CU12NiloBeZS BMG and crystalline alloy as circles as a function of temperatur@., and T, denote glass-transition

a function of temperature. In the amorphous solid state, themperature and onset of crystallization temperature, respectively.
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TABLE |. Electrical conductivity and thermal conductivity of Zr- and Pd-based metallic glasses 3-5,
cited from Ref. 27

] . Thermal conductivityx (Wm~1 K1), at 300 K
Electric conductivity

Metallic glass (e Qm)~t Total, x  Electronic, kgectron  PhONON,Kphonon  Kphonor! K
Zr41Ti14CuyNijgBeys 0.438 4.59 3.22 1.37 0.30
Pd,oNisgPsg 0.826 7.03 6.07 0.96 0.14
Pd;oNiooClogPag 0.699 6.25 5.14 111 0.18
PdygNi;oClsoPsg 0.541 5.11 3.97 1.13 0.22

clined slightly with increasing temperature. Crystallization Zr,;Ti;4CuyoNijgBeys BMG and the crystalline counterpart
brought about an increase in thermal conductivity. It is natusolid. The thermal diffusivity and conductivity of the amor-
ral that the thermal conductivity of fully crystallized BMG phous solid were weakly temperature dependent, with small
was in a good agreement with that of the crystalline counterpositive temperature coefficients. Furthermore, the amor-
part alloy. phous solid showed lower thermal diffusivity and conductiv-

As shown in Fig. #), The specific heat of the ity than the crystalline counterpart alloy. The thermal diffu-
Zr44Ti1,CupNiBess BMG showed discontinuous changes sivity of the supercooled liquid was quite constant with
with temperature at its glass-transition and crystallizationtemperature. At room temperature, the thermal conductivity
temperatures. The specific heat of the supercooled state wa$ Zr,,Ti;,Cu;-Ni;Be,; BMG was lower than that of Pd-
higher than that of the amorphous solid. based BMGs.
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