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The material trends in various silver ion conducting glasses have been studied recently by focusing on the 
relationship between the first sharp diffraction peak (FSDP) wave number ,Q  and the fitting parameters of the 
ac conductivity, precisely the ratio ,/)(log nA  where A  and n  represent the pre-exponential factor and the 
power law exponent of Jonscher's law, respectively. In the present paper, a model for the FSDP wave number 
dependence of the ratio nA /)(log  has been proposed and a good agreement has been found with experiments. 
By using the concept of bond fluctuation in superionic conductors, the results have been successfully explained, 
leading to the conclusion that the universal aspect of the power law reflects the universal pattern of the potential 
barrier at intermediate length scales. The result reconfirms that the ion transport in glasses is intimately related 
with the FSDP wave number. 

 

Introduction 

 
Amorphous solid electrolytes form a class of materials currently under intensive 

investigations for their possible applications in a variety of devices including batteries, fuel 
cells, sensors, electrochromic displays, etc. [1]. The conductivity of best ionic conducting 
glasses may reach up to 210−  S/cm at room temperature. Although the details depend on 
the glass in consideration, most glasses exhibit several advantages over crystalline 
electrolytes such as physical isotropy, absence of grain boundaries, continuously variable 
composition, and good workability [2]. Materials such as ceramics, ionic or electronic 
conducting polymers, ionic conducting glasses, amorphous semiconductors, metal cluster 
compounds, transition metal oxides, etc. share a common frequency dependent conductivity 
which is characterized by a low frequency region of constant conductivity known as dc 
conductivity, followed by a gradual transition at higher frequencies to a frequency 
dependent conductivity [1-9]. A large number of studies have been done to better 
understand this universality, but to date, no theory has yet received a non-controversial 
acceptance [10]. Recently, Papathanassiou [11] reported that for the glassy system 
[(Li2O)x(Na2O)1-x]0.3(B2O3)0.7, the ratio nA /)(log  with 1>n , is composition independent 
up to the THz frequencies, where A  and n  represent the pre-exponential factor and the 
exponent of the power law. This behavior is related to the mixed alkali effect of A  and n  
reported by Cramer et al. [12]. That is, the minimum in Alog  is accompanied with a 
maximum in ,n  which implies that the ratio nA /)(log  does not depend on the 
composition. Motivated by this finding, the composition dependence of the ratio 

nA /)(log  has been investigated for some AgI and Ag2S based superionic glasses. The 
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results have ascertained that the ratio varies with respect to the nature of the glass and on 
the composition as shown in Fig. 1. Therefore, the constancy of nA /)(log  reported in 
[11] is not observed for the glassy systems considered here. Data of pre-exponential factor 

,A   power law exponent n , and composition x  have been taken from references 
[13-17] for the glassy systems (AgI)x(AgPO3)1-x, (AgI)x(0.5Ag2O-0.5MoO3)1-x, 
(Ag2O)x(MoO3)1-x, (Ag2S)x(AgPO3)1-x, and (Ag2S)x(Ag4Te3O8)1-x, respectively.   

 
 

 

 
 
 

Recently, based on the previous works [10], further investigations have been made to 
better understand the subject by studying the relationship between the FSDP wave number 
and the ratio nA /)(log  for the glassy systems (AgI)x(AgPO3)1-x, (Ag2O)x(B2O3)1-x, 
(AgI)x(Ag2O-2B2O3)1-x, (Ag2S)x(AgPO3)1-x, and (AgI)x((Ag2O)0.6-(V2O5)0.4)1-x. It has been 
found that the ratio nA /)(log  is intimately related to the FSDP wave number [18]. In the 
present paper, the study is extended to other systems and a model for the FSDP wave 
number dependence of the ratio nA /)(log  is proposed. It will be shown that the 
prediction of the model shows a good agreement with the experimental results. 

 
The ac electrical response of disordered materials 

 
Concerning the electrical ac response, there is abundant experimental evidence showing 

almost identical characteristics irrespective of the conductor material type. In addition, a 
variety of other phenomena such as dipolar dielectric relaxation, hopping electron ac 
conductivity, viscoelasticity, mechanical relaxation, NMR relaxation associated with 
hopping ions, etc. exhibit similar and seemingly related characteristics. Jonscher [4] has 
suggested that there is a “universal relaxation law” based on the indisputable common 
property of all condensed matter: the many body interactions between their constituent 
parts. A large number of theoretical models such as random potential energy model [19], 
jump relaxation model [20], vacancy model [21], symmetric hopping model [5], etc. have 

Fig. 1  The composition dependence of the ratio nA /)(log  for 
different systems of superionic glasses  
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been proposed in order to explain this “universality”, but to date no consensus has been 
obtained. These models can be classified into three groups: network models, Debye 
relaxation models with distributions of relaxation times (DRT), and models employing 
fundamentally modified atomic level relaxation processes [22].  

The ac conductivity )(ωσ  in glasses is described as [4]  
 
                           ,)0()( nAωσωσ +=                            (1) 
 
where )0(σ  is the dc conductivity (low frequency) corresponding to the frequency 
independent part of ),(ωσ  n  is the power law exponent varying roughly between 0.6 and 
0.7 at room and higher temperatures but is found universally to rise to 1.0 at low 
temperatures [22], and A  is a constant given by 
 

 ),0(.σω n
cA −=                              (2) 

 
where cω  represents the onset frequency of the dispersive behavior. 

Nowick et al. [23] have shown that in the region between constant loss regime ( 1=n ) 
and Jonscher regime ( 6.0≈n ), it is possible to treat the data as a superposition of both 
regimes. In other words, 
 
                         .)0()( ωωσωσ BA n ++=                         (3) 
 
The exponent value of 0.6 in Jonscher regime is considered to arise by the ion-ion 
interactions. During the process of the hopping of the ions, even separate hopping events 
may have a broad distribution of relaxation times, and this effect can manifest as stretching 
of the relaxation times. Thus, the term nAω  exhibits activated temperature dependence in 
contrary to the term ωB  which exhibits only weak temperature dependence. The exact 
origin of the last term is unclear. However, some authors believe that it may be the result of 
low energy distortions occurring in the network [24]. In the Jonscher regime, the estimated 
value of nA /)(log  can be deduced from (2) as  
 
                    .log/))((log/)(log cnnA ωσ −0=                     (4) 

 
Medium range structure and ion dynamics in superionic glasses 

 
The structural correlations that exist in glasses on a length scale typically of the order of 

1 nm (larger than atomic bond lengths, typically 0.1-0.3 nm but smaller than the scale of 
inhomogeneities when they exist, normally ≥  5 nm) are referred to as “intermediate range 
order” [25]. Their existence is demonstrated through characteristic signatures in various 
properties, such as neutron and X-ray diffraction patterns and Raman spectra, and they are 
unquestionably related to the peculiar dynamics of glasses and to ionic transport through 
the network. Intermediate range order exists in different forms in molecular glasses, pure 
and modified network glasses, and fast ion conducting glasses [25]. The most general and 
persistent evidence of intermediate range order is the first sharp diffraction peak (FSDP), 
the feature observed at low wave vector in the structure factor )(QS  of many systems, 
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including oxides and complex liquids [26]. The distance that characterizes the medium 
range structure, ,d  is related to the FSDP wave number Q  by 
 

                               ./2 Qd π=                             (5) 
 
The role of intermediate range structure on the ion transport properties has been studied by 
one of the authors [27]. There, the concept of bond fluctuation model of superionic 
conductors has been used to interpret the results. The bond fluctuation model suggests that 
in superionic conductors, the change of bonding that occurs locally and fluctuates in time is 
playing an important role. The local fluctuation of the bonding creates a field of forces to 
move the ions, which in turn, triggers new bond fluctuations. According to this model, 
materials become superionic when the number of bond fluctuating sites increase to a certain 
extent [28]. 

 
Modelisation of the ionic conductivity, the activation energy, and the power law 
exponent 

 
In order to extract information about the influence of the glassy structure on the ionic 

transport, the relationship between the ionic conductivity and the wave number where the 
first sharp diffraction peak is observed has been studied [29]. As shown in Fig. 2, it is 
observed that the ionic conductivity )0(σ  increases as the FSDP wave number Q  
decreases. Figure 2 indicates that the trend can be approximated as 

 
 

,)0(log βασ += Q                          (6) 
 
where α  and β  are constants. Data of ionic conductivity and FSDP wave number have 
been taken from references [30-34] and [30, 33, 35-37], respectively. 
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It has also been observed that the activation energy of the ionic conductivity depends 
strongly on the FSDP wave number [27]. This is a strange result because the activation 
energy is expected to be determined mainly by short-range interatomic interactions. Such a 
behavior has been explained by using the energy barrier profile suggested by the bond 
fluctuation model. The model predicts that the activation energy for ion transport initially 
decreases by doping salt, reaches a minimum at certain concentration, and increases by 
further doping, whereas in this course the FSDP wave number decreases monotonically 
[27]. In the range of FSDP wave number shown in Fig. 3, the relationship between the 
activation energy and the FSDP wave number can be approximated as 
 
                               ,δγ += QEa                              (7) 

 
where γ  and δ  are constants. Data of activation energy of ion transport and FSDP wave 
number have been taken from references [30-34] and [30, 33, 35-37], respectively. 

The onset frequency of the dispersive behavior cω  can be approximated as  
 
                           ],/exp[0 TkE Bac −= ωω                         (8) 
 
where the symbols have the usual meanings. For the value of 0ω  we have adopted a 
typical value of atomic vibration in solids, ./1012 srad=ω  By substituting (7) into (8), we 
have 
 
                          ]./)(exp[1012 TkQ Bc δγω +−=                     (9) 

 

Fig. 2 Relationship between the ionic conductivity 
of glasses at room temperature and the FSDP 
wave number. The full line is given by (6) with 

142.7−=α  and 984.2=β . Broken lines 
indicate the scatter regions of the data 
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The relationship between the FSDP wave number and the power law exponent n  of the 
ac conductivity dispersion has been studied for many glasses. It has been observed that the 
FSDP wave number decreases and the power law exponent increases with the increase in 
the concentration of the salt [10]. From such a relationship it has been suggested that the 
universality of the power law reflects the universal pattern of the energy barrier profile at 
intermediate length scales. The relationship between the FSDP wave number and the power 
law exponent of the ac conductivity shown in Fig. 4 can be approximated as 
 
                                ,μλ += Qn                             (10) 
 
where λ  and μ  are constants. Data of power law exponent and FSDP wave number 
have been taken from references [1, 14, 38] and [30, 36, 39], respectively. 
 
 

Fig. 3 Relationship between the activation 
energy of the ionic conductivity of glasses at 
room temperature and the FSDP wave number. 
The full line is given by (7) with 388.0=γ  and 

026.0=δ . Broken lines indicate the scatter 
regions of the data 
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Application of the model and discussion 

 
Based on the interrelations between the FSDP wave number and the ion transport 

properties given above, the FSDP dependence of the ratio nA /)(log  can be predicted. 
From (4), we obtain 
 

            ]}./)(exp[10log{/)(log 12 TkQ
Q
QnA Bδγ

μλ
βα

+−−
+
+

=                (11) 

 
Despite experimental data to verify directly the above expression is very scarce, the 
workability of the model has been checked. The result is shown in Fig. 5. Data of 
pre-exponential factor ,A  power law exponent n , and FSDP wave number Q  have 
been taken from the references [1, 14, 30, 36, 38, 39, 40, 41] for the glassy systems 
(AgI)x(AgPO3)1-x, (Ag2O)x(TeO2)1-x, (AgI)0.75(Ag2MoO4)0.25, and 
(AgI)0.2((Ag2O)0.6-(V2O5)0.4)0.8, respectively. 
 
 

Fig. 4  Relationship between the power law exponent of the ac conductivity 
of glasses at room temperature and the FSDP wave number. The full line is 
given by (10) with 131.0−=λ  and .755.0=μ  Broken lines indicate the 
scatter regions of the data 
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The model shows a good agreement with the experimental data. Figure 5 reconfirms that 
the ion transport in glasses is intimately related to the FSDP wave number. The agreement 
supports the view that the universal aspect of the power law reflects the universal pattern of 
the potential barrier at intermediate length scales [10].  

 

                                        
 

 
 
 
 
The relationship between the FSDP wave number and the ion transport properties in 

superionic conductors shown in Figs. 2, 3, and 4, can be explained by using the concept of 
the bond fluctuation model of superionic conductors proposed by one of the authors [28]. 
Glasses are prepared by rapidly cooling the melt, before the system reaches its thermal 
equilibrium. Therefore, at the microscopic level, inhomogeneities of the local structure and 
local chemical composition remain. From the chemical bond point of view, if we focus on 
(AgI)x(AgPO3)1-x glasses for instance, we can distinguish at least three types of Ag+ ions. 

Fig. 5  Comparison between the calculated and the measured values of the ratio nA /)(log  
at room temperature for some glasses. The full line is calculated by (11) with the constants 
given in the previous figures. Broken lines indicate the scatter regions of the data 

Fig. 6  A schematic representation of the energy barrier profile. E1 and E2 are the average values of the activation 
energies in the network and in the doped salt, respectively. E3 is the activation energy in the highly conducting sites 
whose existence is predicted by the bond fluctuation model

E1     

E2     
E3     

d   
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The Ag+ ions in the doped salt which are bonded with I-, the Ag+ ions in the network which 
are bonded with O2-, and the Ag+ ions located in the boundary between network and doped 
salt which are bonded with I- and O2-. According to the bond fluctuation model, the third 
type of Ag+ ions are more mobile than others, because the Ag+ ions surrounded by different 
atoms feels an asymmetric field of forces which results in the anharmonic atomic vibration 
and large atomic migration. In the schematic representation of the energy barrier profile 
shown in Fig. 6, such processes occur mainly in the highly conducting sites which have 
small average activation energy, denoted as E3 [10]. From this figure it is easy to 
understand the increase of the characteristic distance d  and the decrease of the FSDP 
wave number Q  by the increase in the composition of AgI. 

It is worth to note here that the various models of ionic and electronic ac conductivity 
that have been proposed in the past [2, 5-9] share in part the notions gained in the present 
study. In most of these models, random distributions of potential barriers or energy levels 
that reflect the structure of the material are assumed. In the case of ionic conduction, the 
quantities that characterize the transport phenomena A  and n  will depend on the 
hopping probability of the ions across the random potential barriers. In the case of 
electronic conduction, A  and n  will depend on the magnitude of the tunneling or 
hopping of the electrons between the random distribution of energy levels.  

 
Conclusion 

 
  The ratio nA /)(log  has been estimated for many superionic glasses and it has been 
found that there is a good agreement with experiments. The composition dependence of the 
FSDP wave number has been used to predict the composition dependence of the ratio, 
independently on the nature of the glass. The concept of bond fluctuation has been 
successfully used to explain the results which suggest that the universal aspect of the power 
law reflects the universal pattern of the potential barrier at intermediate length scales. 
Further experimental studies are needed to verify the prediction of the model. 
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