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Open sets satisfying the strong meromorphic

approximation property

Makoto Abe

Abstract. By giving counterexamples we prove that a rationally

convex open set D of Cr\ where n > 2, does not satisfy in general the

strong meromorphic approximation property in Cn. We also prove

that every open set D of a reduced Stein space X of dimension 1

satisfies the strong meromorphic approximation property in X.

1. Introduction

We say that an open set D of a reduced complex space X satisfies the

strong meromorphic approximation property in X if for every holomorphic

function <p G &{D), for every compact set K of D and for every e > 0 there

exist holomorphic functions /, g € &(X) such that g ^ 0 on any irreducible

component of X, g =fi 0 on D and \\tp — (//<?)||j<- < e.

By the theorem of Behnke-Stein [5, Satz 13], which generalizes the ra

tional approximation theorem of Runge [25], every open set D of an open

Riemann surface X satisfies the strong meromorphic approximation prop

erty in X. More generally every open set D of a reduced Stein space X of

dimension 1 satisfies the strong meromorphic approximation property in X

(see Corollary 5.3).

On the other hand a Stein open set D of a reduced Stein space X is

meromorphically ^(X)-convex if and only if for every holomorphic function
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<p G @(D), for every compact set K of D and for every e > 0 there exist

holomorphic functions f.g G &{X) such that 5 ^ 0 on any irreducible

component of X, g ^ 0 on /f and \\(p - [ffg)\\K < e (see Lemma 2.1).

An open set D of Cn is meromorphically £?(Cn)-convex if and only if D

is rationally convex. By giving counterexamples we prove that a rationally

convex open set D of C", where n > 2, does not satisfy in general the

strong meromorphic approximation property in Cn (see Propositions 4.1

and 4.2). We classify Stein open sets in Cn from the point of view of the

approximation property (see Theorem 3.2).

2. Preliminaries

Throughout this paper all complex spaces are supposed to be reduced

and second countable. Let X be a complex space. We denote by Ac the

sheaf on X of germs of active holomorphic functions (see Grauert-Remmert

[10, p. 97]). Then Ac(X) is the set of all / G &{X) such that / ^ 0 on any

irreducible component of X. Let

2X(D) := {(fig) \D \ f G 0(X), g G Ac(X), 5^0onD}

for every open set D of X. If X is a locally irreducible complex space

in which every strong Poincare problem is solvable (see Kaup-Kaup [15,

p. 249]), then we have that ^x(D) = Jt(X) n 6{U) for every open set D

ofX.

Let X be a complex space and let & C 0(X). Then X is said to be

&- convex if for every compact set K of X the holomorphically convex hull

*> := {x G X I |/(x)| < \\f\\K for every / G

of K with respect to & is compact.

On the other hand a complex space X is said to be meromorphically

&-convex if for every compact set K of X the meromorphically convex

hull

K* := {x G X I f{x) G f{K) for every / G &}

of K with respect to & is compact. The set K\ = h^x '= K&{X) ls

said to be the meromorphically convex hull of K in X (cf. Hirschowitz [14,

p. 49], Lupacciolu [16], Colt;oiu [6], Abe-Furushima [4] and Abe [1, 2, 3]).
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An open set D of a complex space X is said to be meromorphicaUy &-

convex if D is meromorphicaUy j^l^-convex, that is, for every compact set

K of D the set K^DD is compact. We have the following characterizations

of meromorphicaUy ^(X)-convex open sets in a Stein space X.

Lemma 2.1 (Abe [1, Theorem 12]) Let X be a Stein space and D an

open set of X. Then the following four conditions are equivalent.

(1) D is meromorphicaUy 0(X)-convex.

(2) For every compact set K C D we have that K\ C D.

(3) For every compact set K C D we have that K\ =

(4) For every compact set K of D the set Ku is compact and for every

holomorphic function if G @{D), for every compact set K of D and

for every e > 0 there exist holomorphic functions f G 0(X) and

g G Ac(X) such that g ^ 0 on K and \\(p — (f/g)\\x < s.

Let X be a complex space. Let f\, /2,..., fm G @{X) and £i. p2, • • •, <7m £

fKc(X). Let A := {<?i<?2 • • • <?m = 0}- Let G be an open set of X \ A. Let

hfi '•= fn/9n for /a = 1,2,.... m. Let Z\} Z2,..., Zm be open sets of C. Let

W :=GC]{xeX\A\ hpix) € ZM for every \i = 1,2,..., m}

and assume that W <g G. Then the open set W is said to be a meromorphic

polyhedron of X (see Abe [1, p. 266]). We use this notation for W in the

following lemma.

Lemma 2.2. Let X be a Stein space and W a meromorphic polyhedron of

X with Z\ = Z2 - ■ ■ ■ = Zm = A, where A := {t G C | \t\ < 1}. Then for

every compact set K of W and for every tp G ^(W) there exist u G &(X)

and a monic monomial v of g\,g2-,.. • ,pm such that \\ip — (ujv)^K < e.

Proof. There exist n G N and 0i,62,...,0n G 0(X) such that the re

striction ipw,AmxCn ' W —> Am x Cn is a closed holomorphic embedding,

where

1> := (hi, h2,...,/im,0i,92,... ,0n) : X \ A -> Cm+n
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(see Abe [1, Lemma 8]). Since if)(W) is an analytic set of a Stein manifold

Am x Cn and the function <p o (ipwiV(w))~ : tp{W) -» C is holomor-

phic, there exists a G £?(Am x Cn) such that a = tp o (^tv(^(VV)) on

V>(W). By considering the Taylor expansion of a at the origin there ex

ists a polynomial function 0 on Cm+n such that \\a — /^||^>(/v) < £- Since

ft o ip is a polynomial of h\, /12, • • •, hm, 9\, 62, ■ ■ ■ ,0n, there exist a polyno

mial u of f\, /2,..., fm, g\, g-2- • • •, <?n; #i, @2, • • • ? ^n and a monic monomial

i> of #i,<72i • • • ,5m such that 0 o ip = u/?; on X \ A. Then we have that

For every open set D of a complex space X the topology of uniform

convergence on compact sets gives the linear space &{D) the structure of

Frechet space (see Kaup-Kaup [15, E. 55j]). We say that an open set D of a

complex space X satisfies the strong meromorphic approximation property

in X if the set £lx{D) is dense in &(D), that is, for every holomorphic

function <p G &{D)y for every compact set K of D and for every e > 0 there

exist holomorphic functions / G &(X) and g G Ac(A") such that g ^ 0 on

Dand\\<p-{f/g)\\K<e.

Lemma 2.3. Lei X be a Stein space and D an open set of X. Then the

following two conditions are equivalent.

(1) D is J&x{D)-convex.

(2) D is Stein and J2\{D) is dense in &{D).

Proof. (1) =J> (2). Since BX{D) C 0{D), we have that KD C KjSx{D)

for every compact set K of D, where Kp := K#(D)- Since by assumption

Ki2x(D) is compact, the set /?d is also compact. It follows that D is

Stein. Take an arbitrary </? G &{D). Let K be a compact set of D and let

e > 0. Since Kcj>x(d) ls compact, there exists an open set E of X such that

Ki2x(D) C E <§ D. Take an arbitrary point p G dE. Since p ^ ^.2>y(£>)'

there exist /(p) G ^(X) and gM G Ac(X) such that #(p) ^ 0 on D and

|/>(P)(P)| > \\h{p)\\K> where ^(p) := f{p)/9{p)- Replacing /<"> by /<p)/c,

where |/i(p)(p)| > c > ||/i(p)||K, we have that |/i(p)(p)| > 1 > ||/i(p)||A^

Then Vp := {x £ D \ \h^(x)\ > l} is an open neighborhood of p. Since
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dE is compact, there exist finitely many points pi,P2, • • • ,Pm € 9E such

that OE C 11™= i V Let /„ := /<*•>, ^ := ff(p^) and fcM := f^/g^ for

// = 1,2,... ,?n. Let A := {g\g2 • • • <7m = 0}. Then the set

W := EH{xe X\A\ \h^{x)\ < 1 for every /i = 1,2, ...,m}

is a meromorphic polyhedron of X with Zi = Z<i = • • • = Zm = A and

we have that K C W € £. By Lemma 2.2 there exist u € &(X) and

a monic monomial v of gi,g2, ■ • ■ ><?m such that ||v? — (u/v)||tf < er. Since

u/v € £x{D)> the proof of the denseness of e^x(^) m &{D) completes.

(2) => (1). Since £?x(D) is dense in O{D). we have that K^x^d) = Kd

for every compact set K of £). Since D is Stein, the set Kd is compact. It

follows that D is «^v(^)-convex. □

Proposition 2.4. Lei X be a complex space and D an open set of X. If

D is £?x{D)-convex, then D is meromorphically 6{X)-convex.

Proof. Take an arbitrary compact set K of D. Let p € D\K^x^y There

exist u e &{X) and v e Ac(X) such that v ^ 0 on D and \m(p)\ > ||m||^-,

where m := u/v. Let h := m(p)v - u. Then h G ^(X) and h(p) = 0.

Assume that there exists a point y G K such that /i(y) = 0. Then we have

that \m(p)\ = \m(y)\ < \\m\\K, which is a contradiction. It follows that

0 £ h{K) and thus we have that p £ Kx. Therefore KX^D <Z Kgx(D).

Since Kgx(D) is compact, the closed set Kx H D of D is also compact.

Thus we proved that D is meromorphically ^(X)-convex. □

The converse of Proposition 2.4 is not true in general. We have the

following example.

Example 2.1. Let P1 = C U {oc} be the Riemann sphere. Let

which is an analytic set of C x Pl and is neither Stein nor irreducible. Let

£>:={2GC|0< \z\ < l}x {0},

which is an analytic polyhedron of X. Let K := {z G C | \z\ = 1/2} x {0}.

If g e Ac(X) and g ^ 0 on D, then g ^ 0 on {z G C | \z\ < 1} x {0}.
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We have that {z G C | 0 < \z\ < 1/2} x {0} C K$X(D) by the maximum

modulus principle and Kgx(D) 1S not compact. It follows that D is not

«^x(^-convex. However the open set D is meromorphically ^"(X)-convex

(see Abe [1, Proposition 4]).

Even if X is an irreducible Stein space, the converse of Proposition 2.4

is not true in general (see Theorem 3.2 in Sect. 3 and Propositions 4.1 and

4.2 in Sect. 4). On the other hand an open set D of a Stein space X is

meromorphically «^(X)-convex if and only if D is the union of an increasing

sequence {Dl/}(^Ll of open sets of X such that Dv is J2x{Dv)-convex for

every i/GN (see Abe [2, Theorem 4.1]).

3. Classification of Stein open sets of Cn

Let z\, 22, • ■ •, Zn be the standard coordinates of Cn. As usual we denote

by C[zi, 22,. • •, zn] and by C{z\, zi,..., zn) the set of polynomial functions

on C" and the set of rational functions on C" respectively. We let

for every open set D of Cn.

For every compact set K of Cn the set ^c[zi,z2,...,znj 1S sa^ ^° be the

rationally convex hull of K (cf. Stolzenberg [28, p. 262] and Gamelin [9,

p. 69]).

An open set D of Cn is said to be rationally convex in Cn if D is mero

morphically C[21,22,... ,2n]-convex. Since Kc\z\,z2i...izn\ = ^Cn f°r every

compact set K of Cn, an open set D of Cn is rationally convex if and only

if D is meromorphically ^(Cn)-convex (see Abe [1, p. 265]).

We have the following lemma, the proof of which is not difficult and is

omitted.

Lemma 3.1. Let ni,n<i 6 N and let n := n\ +712. Let Dv be an open set of

Cn" for each v = 1,2 and let D := D\ x D2 C Cn. Then D is polynomially

convex (resp. &(D)-convex, £?cn(D)-convex or rationally convex) if and

only if Du is polynomially convex (resp. &(DU)-convex, ^c»u(Dlf)-convex

or rationally convex) for each v = 1,2.
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We have the following theorem classifying Stein open sets of Cn from the

point of view of the approximation property.

Theorem 3.2. Let D be an open set of C". We have the following four

inclusions.

(a) If D is polynomially convex, then D is &(D)-convex.

(b) If D is &(D)-convex, then D is J2cn(D)-convex.

(c) If D is J2cn{D)-convex, then D is rationally convex.

(d) // D is rationally convex, then D is Stein.

If n > 2, then none of the converses of the four inclusions (a), (b), (c)

and (d) is true.

Proof. Since Kgcn(D) C Ktf(D) C ^c[2i,22,...,2n] f°r every compact set K

of D. we have the inclusions (a) and (b). By Proposition 2.4 we have

the inclusion (c). The inclusion (d) is well-known (see Abe [1, Corollary

13] in more general situation). Let D2 C C2 be one of the Examples 4.1,

4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 in Sect. 4. Then by Lemma 3.1 the open set

D := D2 x Cn~2 of C", n > 2, gives an example which shows that the

converse of the inclusion (a), (b), (c) or (d) is not true. □

4. Examples

In this section we always denote by z and w the coordinates of C2.

Example 4.1. The Hartogs triangle

D:= {{z,w) €<C2 \w\

is an open set of C2 which is ^(D)-convex but not polynomially convex.

This example D is not simply connected.

Example 4.2. The Nishino domain

D := {{z,w) e C2 | 1< \z\ < A/, \w\ < 1} \ 5,

whereS:= \J {{z,w) G C2 | (1 - t) z2 - 2tz + w = 0} and M > 1,
0
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is «^(Z))-convex. Nishino [19, 21] proved that if M is sufficiently large, then

D is simply connected and is not polynomially convex.

Example 4.3. Let 5 be an irreducible transcendental hypersurface of C2

and let D := C2 \ S. Then D is ^C" {£>)-convex and is not ^(D)-convex

(cf. Nishino [20, p. 99]). This example D is not simply connected.

Problem 4.1. Does there exist a simply connected open set D of Cn such

that D is &cn{D)-convex but not <^(D)-convex?

Example 4.4. Let

D := (C* x C) \ 5, where S := {(z,w) 6 C* x C | w - el/z = o} .

Then we have the following proposition.

Proposition 4.1. The open set D = (C* xC)\5 above is rationally con

vex in C2 and is not ^£2 (D)-convex.

Proof. First we prove that D is rationally convex. Take an arbitrary com

pact set K of D. Let K\ be the image of K by the projection C2 —> C,

(z,w) *-> z. Then £ := min^u,)^ \w — e}fz\ > 0 and S := min^/fj |^| >

0. Let Fn(z) := J%Z£zn-k/k\ € C[z] and fn{z,w) := znw - Fn(z) 6

C[^,iy] for every n € N. Since the sequence of functions Fn(z)/zn =

Yl^o (I/-2) /fc-, ^ € N, tends to the function e1/2 on any compact set

of €*, there exists JVieN such that \Fn{z)jzn -e1^] < e/2 for every

z E K\ and n> N\. Take an arbitrary ^GC*. We have that

1/6 Fn(0

<
i

i

oo

oo

t=n

(n

1

1

+ /c)

/ ]

■! \\l

\ n+fc
e1

n!

oo .

/ ^ /^1 _1_ J^\l

fe=0

/iei

! \KI7

It follows that l/n^.e1^)! = |$V^ - Fn(^)| < eim/n\ for every n € N.

Since lim^oo (l/(5)n /n! = 0, there exists N2 6 N such that (l/<5)n jn\ <
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ee-1/141 /2 for every n > N2. If (z,w) G K and n > N := max{Ni,N2},

then

Therefore |/iv(^,e1/^)| < min(Zitu)€/f |/w(z,«;)| and we have that (£

ATC2. Thus we proved that ^C2 D S = 0. On the other hand it is clear that

KC2 n({O}xC) = 0. It follows that KC2 C D and the proof of the rational

convexity of D completes (see Lemma 2.1). Next we prove that D is not

i?C2 (D)-convex. Since the function z t-t elfz has an essential singularity at

the origin z = 0, we have that S = S U ({0} x C), where S is the closure of

5 in C2. Assume that S is an analytic set of C2. Then S is an irreducible

curve in C2 since S is connected and non-singular. On the other hand we

have that {0} x C £ 5. It contradicts the identity theorem for analytic sets

(see Grauert-Remmert [10, p. 167]). It follows that S is not an analytic

set of C2. Take a point f G C*. Then L := {£} x {w € C | \w - e1^ = l}

is a compact set of D. Take an arbitrary h = f/g E ^C2(£>), where

f,g G ^(C2) and j^ 0 on D. Assume that {g = 0} n (C* x C) ^ 0.

Since S is irreducible and {g = 0} n (C* x C) C S, we have that {g = 0} D

(C* x C) = 5 by the identity theorem for analytic sets. Then we obtain

that S = {g = 0}. Since S is not an analytic set of C2, it is a contradiction.

It follows that g ^ 0 on C* x C and the function h is holomorphic on

C* x C By the maximum modulus principle we have that |/i(£,iu)| <

if \w - el^\ < 1. Therefore {£} x {w € C | 0 < \w - e1^] < 1} c

Since (^e1^) 0 D, the set L^c2(d) is not compact. Thus we proved that

D is not ^c2(D)-convex. □

Example 4.5. Let Di := A x C* and D2 := (C \ A) x C, where A denotes

the unit disk in C. Although the open set Dv is J?c2 (D^)-convex for each

v = 1,2, the disjoint union D := D\ U D2 is not «SC2 (D)-convex by the

following proposition.

Proposition 4.2. The open set D = D\ U D2 above is rationally convex

in <C2 and is not £<£2(D)-convex.
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Proof. First we prove that D is rationally convex. Take an arbitrary com

pact set K of D. There exist numbers a G (0,1), 6 > 0, c > 1 and

d > 0 such that K\ := K D Dx C {(z,w) G C2 | \z\ < a, \w\ > 6} and

K2 := K n D2 C {(2, w) G C2 | |z| > c, |w| < d}. Take N\ G N such that

a^1 < 6/2 and c'Vl > 6/2 + d. Let fn{z,w) := w - zn e C[z,w] for every

nGN. If n> ATi, then |/n(*,w)| > \w\ - \z\n > 6 - an > b - 6/2 = 6/2 for

every (z,w) £ Kx and |/n(*,ti;)| > \z\n - \w\ >cn-d> (6/2 + d) -d = 6/2

for every (2,11;) € #2- It follows that min(2u,)€^ |/n(2,w;)| > 6/2 if n > N\.

Let ^ € A and take N > Nx such that |/n(C,0)| = \£\N < 6/2. Then

|//v(£,0)| < m\n{z%w)eK \fN{z,w)\. Therefore (£,0) 0 KCi for every £ € A

and thus £C2 D (A x {0}) = 0. Let (£, 77) € dA x C and f(z, w) := z - £ G

C[*,u/]. Since /(C,^) = 0 ^ /(/iT), we have that (£,77) £ JTC2. Therefore

KC2 fl (5A x C) = 0. Since C2 \ D = (A x {0}) U (dA x C), we have that

K£2 C D. It follows that Z) is rationally convex (see Lemma 2.1). Next we

prove that D is not ^c2(D)-convex. The set L := {0} x {w G C | |ty| = 1}

is compact and is contained in D. Take an arbitrary h = f/g G £}ci{D),

where f,g G ^(C2) and 0 ^ 0 on £>. Since g ^ 0 on (C \ A) x {0}, the

number of the zero points of the function z *-* g(z. 0) is finite and there

exists r G (0,1) such that g{z,0) ^ 0 for r < \z\ < 1. On the other hand

the function z h-> g(z, w) has no zero points in A if w ^ 0. Therefore by

the Hurwitz theorem the function z >-> g(z, 0) has no zero points in the disk

{2G<C||2|<r}. It follows that g ^ 0 on A x C and h is holomorphic on

A x C. By the maximum modulus principle we have that |/i(0,it;)| < ||/i||^

if \w\ < 1. Therefore {0} x {w G C | 0 < |iu| < 1} C Lg 2(D). Since

(0,0) ^ D, the set Lg 2^ is not compact. Thus we proved that D is

not &£2(D)-convex. □

Problem 4.2. Does there exist a simply connected open set D of Cn such

that D is rationally convex but not

Example 4.6. Stein [26, p. 757] gave the following example. Let

D := (C*)2 \ A, where A := [{z,w) G (C*)2 \ z = w1}.

Then D is a Stein open set of C2. Let r and R be numbers such that
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e"77 < r < 1 < R < en. Let

a! := jei<? | 0 < 9 < tt} , a2 := {ej* | -tt < 0 < o} ,

/?i := {w € C | M = r} , ^2 := {^ € C | |tu| = R} ,

F := {w € C | r < \w\ < R} , and

if := (qi x ^) U (a2 x fa) U ({-1} x T).

Then K is a, compact set of D and we have that {1} x F C K& (see

Proposition 4.3 below). Since (1,1) e Afl({l} x T), we have that K& tf. D.

It follows that D is not rationally convex in C2 (see Lemma 2.1). This

example D is not simply connected. Oka [23] also gave a similar example

(see Nishino [20, p. 99]).

Proposition 4.3. For the sets F and K above we have that (ljxfc KC2.

Proof. Take an arbitrary / G 6{C2) such that / ^ 0 on K. Since the

function

Nu{z) := —r / — dw

is continuous and with discrete values on the connected set au, it must be

constant on au for each v — 1,2. On the other hand we have that

N2(-l) - N.i-l) = ± f ?ftl^ldw = 0
2iriJ32_i3l f(-hw)

because /( —l,u;) ^ 0 for every w 6 F. It follows that

Ni(l) = Nxi-1) = N2{-1) = N2(l)

and thus we have that

Therefore by the argument principle the function /(l,iu) of w has no zero

points in F. Thus we proved that / ^ 0 on {1} x F for every / 6

such that / ^ 0 on K. This means that {1} x F C A'c2-
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Example 4.7. Let A denote the unit disk. Wermer [29] gave an example

of an open set of C3 which is biholomorphic to A3 and is not rationally

convex in C3 (see Stolzenberg [27]). Wermer [30] also gave a similar example

biholomorphic to A2, which is as follows. Let

K := {(z,w) GC2|w = 2, |Re(z)| < 1, |Im(z)| < l} and

ij; : C2 -> C2, ip(z,w):= (z,{l + \)w-izw2 - z2ws) .

By Wermer [30] there exists an open neighborhood U of K such that U is

biholomorphic to A2, the set D := ij)(U) is open in C2, the restriction map

ipu,D ■ U ->■ D is biholomorphic and (1/2,0) £ D whereas dAx {0} C rl>(K)

(see also Fornaess-Stensones [8, pp. 212-213] and Ohsawa [22, p. 81]). Then

the open set D is not rationally convex in C2 because D is simply connected

and Dfl(Cx {0}) is not simply connected (see Nishino [20, Remark 3.6]

and Abe [3, Corollary 6]). Especially D is not polynomially convex, which

is the original assertion of Wermer [30].

5. Stein space of dimension 1

A complex space X of dimension 1 is Stein if and only if X has no

compact irreducible component of dimension 1 by Narasimhan [18].

Lemma 5.1. Let X be a Stein space of dimension 1. Then for every p G X

there exists g 6 &{X) such that {g = 0} = {p}.

Proof. If p is an isolated point of X. then the assertion is clear. We

consider the case when p is not an isolated point of X. Let {^KeA ^e

the set of irreducible components of X. Take a point q\ G X\ \ {p} for

every A € A. Then the set {q\ \ A G A} U {p} is discrete in X. Since X is

Stein, there exists r G &{X) such that r = 1 on {q\ | A G A} and r(p) = 0.

Since r ^ 0 on X\ for every A G A, we have that dimp N(t) = 0 by the

active lemma (see Grauert-Remmert [10, p. 100]). It follows that there

exists a neighborhood U of p such that U D {t = 0} = {p}. We have that

Hl(X,&*) S H2{X,Z) = 0 because X has the homotopy type of a CW-

complex of dimension < 1 (see Hamm [11, 12] and Hamm-Mihalache [13]).

It follows that there exist go G 0*(U) and gi G &*(X \ {p}) such that
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t = <7i/<?o on U \ {p}. We define g G &{X) by the equalities g = rgo on U

and g = gi on X \ {p}. Then we have that {g = 0} = {p}. □

Theorem 5.2. Let X be a Stein space of dimension 1. T/ien every open

set D of X is £1'x(D)-convex.

Proof. Let K be a compact set of X. Take an arbitrary sequence {pt/}^L\

of points of K<2X{D). Since Ar^Y(£>) C Kx^D and Kx is compact, we may

assume without loss of generality that {pv}^L\ converges to a point p G D.

Assume that p G dD. Then p is not an isolated point of X. By Lemma

5.1 there exists g G @{X) such that {^ = 0} = {p}. Let 8 := min^tf |<7(x)|

and let ft := $/$. We then have 6 > 0, ft <E «^x(£>) and ||ft||^ < 1.

If x e U := {\g\ < 6}, then \h(x)\ > 1 > llft^ and thus x £ Kgx(D)-

Therefore K<gx(D) H t/ = 0. It contradicts the fact that p is an adherent

point of K<2X{D) in A". It follows that p (E D. Since K^^^ is a closed

set of D, we obtain that p G Kgx(D)- Thus we proved that Kgx{D) ls

compact. □

By the rational approximation theorem of Runge [25] (see Rudin [24,

Theorem 13.9]) every holomorphic function / on an open set D of C can be

uniformly approximated on every compact set K of D by rational functions

which are holomorphic on D. If moreover D is simply connected, then

every holomorphic function f on D can be uniformly approximated on

every compact set K of D by polynomial functions.

As usual a non-compact connected complex manifold of dimension 1 is

said to be an open Riemann surface. By Behnke-Stein [5, Satz 6] an open

set D of an open Riemann surface X is ^(A)-convex if and only if no

connected component of X \ D is compact. Mihalache [17] generalized

this result to Stein spaces of pure dimension 1. Col^oiu-Silva [7] obtained

a generalization to complex spaces of pure dimension n with no compact

irreducible components.

Behnke-Stein [5, Satz 13] also proved that every holomorphic function

on an open set D of an open Riemann surface X can be uniformly ap

proximated on every compact set K of D by meromorphic functions on

X which are holomorphic on D and have at most finitely many poles on
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dD. As a corollary to Theorem 5.2 we have the following meromorphic

approximation theorem in a Stein space of dimension 1.

Corollary 5.3. Let X be a Stein space of dimension 1. Then every open

set D of X satisfies the strong meromorphic approximation property in X,

that is, for every (p G &{D), for every compact set K of D and for every

e > 0 there exist m € M{X) D @{D) such that ||</p — m\\K < e.

Proof. The assertion is a direct consequence of both Theorem 5.2 and

Lemma 2.3. D

We also have the following weak version of the meromorphic approxima

tion theorem (cf. Rudin [24, Theorem 13.6]).

Corollary 5.4. Let X be a Stein space of dimension 1 and K a compact

set of X. Then for every if € &(K) and for every e > 0 there exist

m G Jt{X) H 6{K) such that \\(p - m\\K < e.

Proof. Take an open set D of X such that K C D and tp 6 &{D). Then

we have the assertion by Corollary 5.3 or by Lemma 2.1. D
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