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Abstract 

The ion flow caused by a temperature gradient originates the ionic thermopower which is 

quantified by the heat of transport. Experimentally, it is known that in superionic conductors, 

the heat of transport Q  is nearly equal to the activation energy for ion transport aE . In the 

present paper, a model for the heat of transport in ionic conductors has been proposed based 

on a lattice dynamical theory of diffusion. We have shown that the relationship between Q  

and aE  is determined by the participation degree of different phonon modes, in particular the 

short wavelength phonons to the atomic jump processes. The implication of this finding to the 

transport properties of superionic conductors has been discussed, and it is suggested that the 

degree of the collective motion in ionic conductors increases with the increase in aEQ / . The 

model predicts that good ionic conductors will show large value of aEQ / . The importance of 

the acoustic phonons in the ion transport processes has been also pointed out. 
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1. Introduction 

The thermoelectric effects provide a means by which thermal energy can be converted 

into electricity and by which electricity can be used for heat pumping or refrigeration. 

Thermoelectric materials have been studied extensively in the late 1950s and 1960s after Ioffe 

first proposed the investigation of semiconductor materials for utilization in thermoelectric 

applications. Recently, there has been a resurgence of interest in thermoelectrics, and over the 

past few years many new classes of materials have been investigated. Much of the recent 

interest was motivated by the need for new alternative energy materials. Many new concepts 

of materials, including bulk and thin films with complex structures and geometry, new 

materials synthesis, theories, and characterizations have been advanced during the last few 

years [1-4]. However, this situation is mainly for electronic conductors in which the charge is 

carried by electrons or holes. Concerning the thermoelectric effect in ionic conductors, the 

situation is very different. Although the ionic thermopower has been studied over the decades 

[5-18], its understanding from the fundamental point of view remains still obscure. For 

instance, it is known that in superionic conductors, the heat of transport which is determined 

from the thermopower measurement is nearly equal to the activation energy determined from 

ionic conductivity [9,10]. Why must be so? Its exact origin is not known. In the past, some 

challenges have been done to explain this behavior [5-8]. Among these, the free ion model 

catches in a simple way the basic phenomenology of the ionic thermopower [5]. However, the 

assumption used in this model is questionable. More elaborated model for ionic thermopower 

dealing with the relationship between heat of transport and activation energy of ion transport 

have been also proposed [6-8]. In the present paper, a model for the heat of transport in ionic 

conductors is presented. The model is based on a lattice dynamical theory of diffusion [19-21]. 

Our model indicates that the relationship between the heat of transport and the activation 
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energy of ion conduction is determined by the participation degree of the short wavelength 

phonons in the atomic jump processes. 

 

 

2. Model 

In this paper we consider an ionic conductor, in which the charge transport is due to the 

displacement of ions. According to the laws of irreversible thermodynamics, when gradients 

of temperature T and ion concentration n exist in the system, the ion flow density j
r

 is written 

as [22] 

⎟
⎠
⎞

⎜
⎝
⎛ +−= T

Tk
QnnDj gradgrad 2
B

r
 ,                                              (1) 

where D is the diffusion coefficient, Q  is the heat of transport of the ions and kB is the 

Boltzmann constant. The diffusion coefficient is written as 

[ ]TkEfaD a B0 exp2 −=  ,                                                     (2) 

where a0 is the interatomic distance, f  is the mean vibrational frequency and aE  is the 

activation energy. 

The thermopower, S  is defined as 

TSgradgrad =φ ,                                                           (3) 

where φ  is the electrochemical potential induced by the applied temperature gradient. The 

heat of transport is related with the thermopower as 

H
eT
QS +−= ,                                                               (4) 

where e  is the charge of the mobile ion species and H  is a term due to the electrode contact 

potential [9,10]. 
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In the following, we consider a linear chain of atoms which are oscillating around their 

equilibrium sites. The chain may contain vacancies that permit the adjacent atom to jump into 

these vacancies as illustrated in Fig. 1. In the lattice dynamical theory of diffusion, the atomic 

jump is accomplished by the in-phase superposition of lattice modes. That is, whole group of 

atoms contribute to the activation process. When an ion jumps, the vibration amplitude of the 

jumping ion should be sufficiently large. As illustrated in Fig. 2, here it is assumed that the 

ion jumps when its amplitude of vibration exceeds a critical value 0q . Although the physical 

phenomena are not the same, the model contains similar idea with the Lindemann’s theory of 

melting, which assumes that the melting occurs when the amplitude of atomic vibration reach 

a certain fraction of interatomic separation [23]. 

In terms of the superposition of lattice modes, the displacement of an ion from the 

equilibrium lattice sites is written as 

∑∑ ==
i

iii
i

ii tMq ωεαα cos2
1

.                                               (5) 

Here ε i is the energy of the mode Mi and α i is the weight factor of the mode that has 

frequency iω . In terms of the quantities q and 0q , the jump rate Γ  can be expressed as 
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0exp
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where the mean frequency f  is defined as 
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i
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where 

π
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if =  .         (8) 
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From the condition of occurrence of ion jump, 0qq > , we obtain the minimum energy 

required for the jump [19], 

1
22

0

−
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i
ia qE α .                                                       (9) 

Consider two ions adjacent to the vacancy as shown in Fig. 1. In thermal equilibrium, the 

phonon distribution is symmetric around the vacancy. Therefore, both ions will jump with 

equal probability into the vacancy. In a temperature gradient, however, phonons in one 

direction will dominate those in the opposite direction. In this case, the jump probability of 

the two ions will be different, and a net flow of ions parallel to the temperature gradient will 

set up. Denoting by −Γ and +Γ  the ion jump rate from left-to-right and right-to-left sides, 

respectively, the ion flow j  is written as 

( )+− Γ−Γ= 0naj .                                                         (10) 

 

The energy of the mode ε i in a temperature gradient, is obtained by solving the Boltzmann 

transport equation [19] and it is written as  

TvkTk iii gradBB τε −= ,      (11) 

where the first term is the equilibrium value at temperature T , and the second term is its 

departure which represents the non-equilibrium part. Here, 

dk
dv i

i
ω

=                                                            (12) 

is the group velocity of the mode and iτ is the relaxation time which takes into account 

effectively all the interactions that contribute to the phonon damping processes. 

 By using Eqs. (5) and (11), Eq. (6) becomes 

⎭
⎬
⎫

⎩
⎨
⎧
−⎥

⎦

⎤
⎢
⎣

⎡
−=Γ T

Tk
lE

Tk
Ef aa grad1exp 2

BB

,                                      (13) 



 

 

6

where 

∑
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 .                                                       (14) 

Note that the quantity l  has the dimension of length and that it is weighted by the coefficient 

2
iα  used in the expansion of the displacement given in Eq. (5).  

We have derived the above equations in one dimension for mathematical simplicity. The 

expression for the ion flow density is obtained by applying Eq. (13) into Eq. (10), and in three 

dimensions it is written as 

T
Tk

lE
Tk

Efnaj aa grad2exp 20
BB ⎭
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⎫
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⎡−=

r
.     (15) 

Comparing this expression with the phenomenological relation given by Eq. (1), we obtain 

the following relationship between the heat of transport and the activation energy, 

aE
a

lQ
0

2
= .                                                          (16) 

In the derivation of Eq. (16) we have assumed that there is no gradient in the concentrations 

of ions in the system. That is, we have assumed that grad 0=n . The result shown in Eq. (16) 

indicates that the ratio aEQ /  is determined by the quantity l  defined in Eq. (14), because the 

interatomic distance 0a is a material constant. 

 

 

3. Discussion 

   As mentioned in the introduction, experimentally, it is known that in superionic conductors, 

the heat of transport is nearly equal to the activation energy. According to our model, this fact 
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indicates that 2/0al ≈ . At a glance, this result seems strange, because l  is smaller than the 

interatomic distance. However, it is not the case as will be shown below. Before entering into 

this subject, it will be convenient to compare the result obtained with the results of previous 

studies. The free ion model [5] predicts that aEQ = . On the other hand, according to the 

polaron lattice gas model [6], the result is aEQ < , and in a calculation using the Fokker-

Planck equation [7], the result is aEQ > . On the experimental side, according to the data 

collected for Ag ion conducting materials, all the three cases are available [10]. More 

specifically, the data are dispersed in the range of 1.1/7.0 << aEQ . For the case of Cu ion 

conducting materials [13], the data indicate that aEQ < . For the case of mixed AgIxBr1-x 

system, it is reported that aEQ >  [15]. It is gratifying to note that our result given by Eq. (16) 

can account for all these cases found experimentally. However, it must be reminded that the 

experimental values of Q  and aE  contains errors. Therefore, the numerical values given 

above for the Ag ion conducting materials have only a qualitative meaning. 

   Concerning the subject of relative magnitude of l compared with 0a , the following physical 

argument may be given. It is not hard to accept that the phonon modes that contribute 

effectively to the ion jump processes are vibrations that create elongated space around the 

vacancy site that we are focusing. The vibration mode could be of both types, acoustic and 

optical modes. The situation is illustrated schematically in Fig. 3 (A). To avoid confusion, it 

must be reminded that we are representing the physical idea by using a linear chain. In a real 

system, the jump could also occur into an interstitial position. The important thing lies in to 

recognize that short wavelength phonons are involved in the ion jump processes. As is well 

known, these short wavelength phonons are located near the zone boundary in the phonon 

dispersion relation as illustrated by area (a) in Fig. 4. If the contribution of these short 



 

 

8

wavelength phonons is dominant in the expansion of the displacement given by Eq. (5), the 

quantity l  will take a small value, because the group velocity iv of these phonons is very 

small. Therefore, the result found above, 2/0al ≈  is not an unphysical result. Another 

interesting point that should be noted is that the model suggests the importance of the acoustic 

modes in the ion transport processes. This observation arises from the positive value of l .  

   The above discussion leads also to an interesting picture concerning the ion transport 

mechanism in superionic conductors. It has been recognized that an important characteristic 

of the superionic conductors is that many ions move collectively [24,25]. The origin of this 

collective motion has been studied by different models [25] and more recently, from the point 

of view of the chemical bond of the materials [26]. The collective nature of the ionic motion 

suggests that the in-phase motions of the ions are involved. In terms of the concepts gained in 

the present work, phonons with longer wavelength compared with those involved in the 

individual ion jump become important. Schematically speaking, these phonons belong to the 

area (b) shown in Fig. 4. Fig. 3 (B) illustrates the collective nature of the ion dynamics. These 

observations suggest that in superionic conductors, the energy barrier determined by the 

chemical bonding is low [26] and that the ions overcome collectively the barrier with the help 

of phonons.  

It is interesting to note at this point, that superionic conducting materials exhibit a 

relatively flat phonon dispersion curve as compared with other non-superionic materials [27]. 

This property has been recognized as the low energy excitations in the field of superionic 

conductors [28-31]. The flat phonon band implies that many phonon modes have almost the 

same energy. It is quite probable that this characteristic is reflected in the participation degree 

of the different phonon modes in the collective ion dynamics of superionic conductors. 

Concerning this point, further study is required. 
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The above discussions and the result of the present model shown in Eq. (16) suggest that 

the degree of the collective motion in ionic conductors increases with the increase in aEQ / . 

That is, the model predicts that good ionic conductors will have large value of aEQ / . 

According to the data reported, at K 555=T , the conductivity of AgI is 8.1≈σ Scm-1, 

and 3.1/ ≈aEQ [15], whereas for AgCl, 3101.1 −×≈σ Scm-1, and 3.0/ ≈aEQ [32,33]. This 

result is in accordance with the prediction of the model. However, since the number of data 

on Q  is limited and there are discrepancies between the data reported by different groups, 

systematic experimental studies are recommended. 

 

 

4. Conclusions 

   The heat of transport which is determined from the measurement of the ionic thermopower 

provides important information to understand the fundamental properties of ion transport in 

solids. However, its understanding from the microscopic point of view is insufficient. In the 

present paper, a model for the heat of transport in ionic conductors has been proposed based 

on a lattice dynamical theory of diffusion. We have focused in to understand what will be the 

physical background which is behind the empirical observation that in superionic conductors, 

the heat of transport is nearly equal to the activation energy. We have shown that the 

relationship between the heat of transport and the activation energy of ion conduction is 

determined by the participation degree of different phonon modes, in particular the short 

wavelength phonons to the atomic jump processes. We have also suggested that in superionic 

conductors, the collective motion of the ions arise with the help of phonons which have 

longer wavelength compared with those involved in the individual ion jump processes. The 
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model predicts that good ionic conductors will have large value of aEQ / . The importance of 

the acoustic phonons in the ion transport processes has been also pointed out. 
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Fig.1. Illustration of a linear chain of atoms in a temperature gradient. The atoms can jump to 

a neighbor site separated by 0a  with different probabilities −Γ  and +Γ . 
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Fig.2. Schematic views of ion migration. The ion overcome the energy barrier aE  when the 

amplitude of vibration q  exceed the critical value 0q . 
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Fig. 3. (A) The ions can jump to a vacant site helped by short wavelength phonons. In this 

case, the jumping process is isolated.  

 

 

 

 

 

 

 

 

Fig. 3. (B) The occurrence of collective motion of ions is helped by long wavelength phonons.
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Fig. 4. A schematic representation of the phonon dispersion relation for a diatomic linear 

chain model.  For the meaning of areas (a) and (b) see the text. 
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