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Abstract

In this paper, we introduce group participation support
into decentralized peer-to-peer(P2P) web caching systems.
The support allows P2P web caching systems to have
more participators, and as a result, realizes highly scalable
caching systems. An implementation design of systems is
described in this paper. Some experimental results show that
every node in our system can get better performance by the
introduction of group participation support.

1. Introduction

P2P networks have been applied to such areas as file
sharing, instant messaging, audio and video streaming, and
web caching. Because P2P networks do not need centralized
servers, P2P systems are resilient to failure. A peer can par-
ticipate in a P2P system autonomously, and is to contribute
to as well as to be served from the system.

In particular, web caching systems can benefit from P2P
networks. Similar to proxy-based web caching systems, a
P2P web caching system can reduce access latency. The
storage of a P2P web caching system consists of a set of
storages provided by each peer. Thus, the more the number
of participating peers grows, the larger the whole capacity
of the caching system becomes. In other words, a P2P web
caching system can have scalable storage capacity, dissimilar
to proxy-based systems.

However, conventional techniques about P2P web caching
systems may prevent many computers from participating in
the systems, because they did not take account of variations
of participation. For example, imagine that there are several
idle computers and you would like to participate in a P2P
web caching system with the computers. Each computer
becomes a peer in a conventional P2P web caching system,
and the merit of participating in the system is very limited
even though you provide several computers to the system.
You may quit participating in the system with the computers,
or participate in the system with a single computer. As a
result, the number of peers in the system would be made
low.

In this paper, we discuss group participation support for
developing decentralized P2P web caching systems that
allow peers to build a group in the network. Our proposal
divides a storage provided by a peer into two fields: one is
for the whole P2P network and the other is for the group
that the peer belongs to. That is, a peer that belongs to a
group contributes to both the whole system and the group.
Not to mention, a peer that does not belong to any group can
also participate in our system. We discuss how to handle the
two kinds of storages in order to realize group participation
in a P2P web caching system. Our proposal can keep the hit
rate of our system be almost equal to or even outperform
that of a conventional system, which cannot support group
participation, with the same number of peers. Note that the
conventional system may essentially not be able to have
the same number of peers because of the lack of group
participation support. Note also that in our system the benefit
of a node from the P2P caching system would depend on
whether the node belongs to a group or not; the introduction
of group participation into a P2P caching system results in
the fact that the hit rate of nodes in groups outperforms that
of nodes that do not belong to any group. We think the fact
can meet reasonable situation in the real world.

Also, we report some experimental results. There are
generally some skews in web accesses and such skews are
often modeled with Zipfian distribution. In the experiments,
we modeled that web accesses by all peers in a P2P network
were Zipfian distributed and those by peers in a group were
also Zipfian distributed, but the Zipfian distribution of web
accesses by a group was different from that by another
group. This is because we assumed that interests of a peer
in a group is somehow similar to that of another peer in the
same group but interests of a group are different from those
of another group.

The remainder of this paper is organized as follows.
Section 2 mentions related work and compares with our
proposal. Section 3 proposes group participation support
for P2P web caching systems. Section 4 reports some
experimental results for evaluating our proposal, and Section
5 concludes this paper.
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2. Related work

There have been studies on web caching systems based
on P2P technologies. For example, Xiao, Zhang, and Xu [1]
proposed a web document sharing technique. Kim and
Park [2] studied a P2P proxy cache system. The two systems
exploit a P2P network as backup storage for a centralized
proxy server. Xu, Hu, and Bhuyan [3] proposed a system
consisting of many clients’ local caches and the topology of
the system is somehow similar to our proposal. However, in
the system clients are managed in layers, and some powerful
clients manage other clients. On the other hand, our proposal
is based on decentralized P2P web caching systems and does
not need a centralized server or superclients.

Squirrel [4] is also a decentralized P2P web cache system.
The system used Pastry [5] to store and locate web objects
and realized a large scalable cache storage consisting of
many desktop machines. Sheng and Bastani [6] proposed
another decentralized P2P web cache system. However, they
did not allow nodes to participate in the system as a group,
and we think that they may make some nodes hesitate to
participate in the system.

Similar to our proposal, peers with similar interests can
be organized into a group in IntraCache [7]. The way of
group participation in the system is that a peer in a group
participates in the P2P network and the other nodes in
the group just dangle to the peer. Similar architecture to
IntraCache can be found in some literatures including [8],
which supports locality of peers in a wireless mobile P2P
network. In their architecture, the representative node in a
group is distinguished from the other nodes in the group,
and thus we do not think the architecture can realize a really
scalable P2P web caching system. On the other hand, any
peer in our proposal can contribute to the P2P web caching
system and thus our proposal can be really scalable.

3. Proposal

3.1. Topology

To make the discussion in this paper concrete, we use
Chord [9] as the base P2P network topology; we think our
proposal can be applied to other structured P2P network
topologies including Pastry [5], Tapestry [10], CAN [11],
and BATON [12]. For simplicity, the number of groups that
a node can belong to is limited to one in this paper.

We adapt a multi-ring structure [13] for constructing
and managing groups in a P2P network, because it can
be managed with ease. Fig. 1 shows an example of our
proposal’s topology where there are ten nodes in the P2P
network, which is drawn by a solid line, and two groups,
which are drawn by dotted lines. The finger table of a
node that will belong to a group is extended to hold the
information of neighbor nodes for managing the ring for
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Figure 1. Our proposal’s topology.

the group. Needless to say, if another P2P network than
Chord is adapted, then the way of holding the information
needs to be changed accordingly. When a node joins a group,
the node contacts a node in a group and gets the necessary
information, and the ring is updated.

We borrow the hash function used in the base P2P
network, Chord, for identifying objects and nodes. Xue et
al. [14] proposed a new hashing scheme for constructing
two layer topology-aware structured overlay network. In our
proposal, however, we decided not to adopt the mechanism
because we would like to make our system simple and to
avoid reducing our proposal’s applicability to other P2P
networks.

3.2. Storage policy

If a node belongs to a group, the storage that the node
provides to the system is divided into two fields: one is for
the whole P2P network and the other is for the group that
the node belongs to. We call them outer storage and inner
storage, respectively, in this paper. Fig. 2 depicts a storage
situation of nodes appearing in Fig. 1.

Let o and i be the sizes of the outer storage and inner
storage, respectively, we must set o À i. Note that the
storage is used for the system, that is, the storage is used
as the outer storage, through the time when the node does
not belong to a group. Moreover, if there are empties in one
field, then they are used for the other field, if necessary, for
space performance.

When a node that does not belong to a group requests a
web object and it has not been cached in the system, then the
object is retrieved and obtained from the web and is stored
in the outer storage of the peer that has the responsibility
to manage it in the P2P network. For example, when a peer
that does not belong to a group requests objects K38 and
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Figure 2. Storage assignment.
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Figure 3. Object locations.

K54 and they are missed and obtained from the web in the
case shown in Fig. 3, they are stored in the outer storages of
nodes N38 and N56, respectively. On the other hand, when
a node that belongs to a group requests a web object and
the system misses it, then the object is also retrieved and
obtained from the web and is stored in the inner storage of
the peer that has the responsibility to manage it as the inner
ring were the Chord ring. In Fig. 3, K38 and K54 are stored
in N48 and N1, respectively, in this case.

According to this storage policy and lookup policy, which
will be described later, a web object can exist twofold in
the network if it is cached in inner storage before being
cached in outer storage. For example, K38 can be stored in
outer storage of N38 and in inner storage of N48 in Fig. 3.
However, a web object cannot exist twofold in a node, i.e.,
in the outer and inner storage of a node in our system. In the
case shown in Fig. 3, the nodes that have the responsibility
to manage objects K10, K24, and K30 in the P2P network
are N14, N32, and N32, respectively, and the nodes also

have the responsibility to manage the objects in the inner
ring. In this case, if K24, for example, has been cached in
inner storage of N32 and a node that does not belong to the
group requests the object, then the cached K24 is returned
to the node and moves from inner storage to outer storage
of N32.

3.3. Replacement policy

Cached objects in the outer and inner storage of a peer
are managed in LRU manner independently. If replacement
occurs in one field of the storage and some room in the field
is used for the other field, then the room is used for the field
in the replacement.

3.4. Lookup policy

When a node that does not belong to a group but partici-
pates in the network accesses a web object, it checks whether
it is stored or not by traversing the outer ring of the system.
If the cached object is found incidentally in outer storage
of the node during traversing the outer ring, then the object
is used and the node updates the LRU information of the
outer storage. If the cached object is found in inner storage
of the node, then the object is used, the object moves from
the inner storage to the outer storage, and the node updates
the LRU information of the both storages. If the object is
not found, then the node that issued the request retrieves and
obtains the object from the web, and also makes the object
be cached in the outer storage as mentioned in Section 3.2.

On the other hand, when a node that belongs to a group
accesses a web object, the node first checks the existence
of the object in inner storages of the peers in the group by
traversing its inner ring. If it is found in inner storages, then
the cached object is returned and the node updates the LRU
information of the inner storage. If not, the node then checks
the existence in the outer ring of the system and follows the
way described above. Similar to the case described above,
if the object is not found, then the object is retrieved and
obtained from the web, and the node that issued the request
makes the object be cached in the inner storage as mentioned
in Section 3.2.

3.5. Discussions

There are several problems to be discussed in our proposal
described so far. Here we discuss a couple of them. One is
how to implement inner rings. Because we assumed that
the number of nodes constructing a group is not so large,
a node in an inner ring has just the successor location in
the current implementation of our system; if the number
grows larger than what we expected, then we should have
to implement inner rings more sophisticated for reducing the
cost of traversing them and access latency. However, note
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that let n and g be the number of nodes in the network and
a group, respectively, we can naturally assume that n À g
and thus simple implementation must be enough.

Another is how to implement the policies described in
this section. For example, as shown in Fig. 3, there can be
a web object cached twofold in our system. If there are
a lot of such objects in our system, the performance must
be bad since a larger part of spaces are wasted than those
without group participation support. We think, however, such
situations would not occur so much; in our system, the most
popular web objects accessed by nodes in the network and
by nodes in a group are cached in outer storages and inner
storages, respectively, because of the characteristics of our
storage and replacement policies. For example, if there is
a web object existing twofold in the network, it has been
stored in inner storage and outer storage in this order. Note
that the object can be a popular object accessed by nodes
in a group and those in the network. Note also that the
cached object in inner storage would be naturally replaced
in a while because o À i. As a result, web objects that are
very popular among nodes in a group but not among nodes
in the network tend to be cached only in inner storage in
the group and those that are very popular among nodes in
a group and also among nodes in the network tend to be
cached only in outer storage in the network.

Another is how to construct groups. In the discussion of
this paper, it is supposed that a node of a group knows that it
is a member of the group in advance. By introducing group
participation into P2P web caching systems, we can take
autonomous group creations in the network into account.
Anglade, Tiemann and Vignoli [15] presented an approach
to automatically create groups with similar preferences of
music in P2P networks. We think the approach will become
a good tip for considering how to construct groups in our
proposal. More details are out of the scope of this paper and
will be included in our future work.

4. Simulation

We evaluated our proposal by running simulation de-
veloped with Overlay Weaver[16]. In the simulation we
compared our proposal with a simple Chord-based P2P web
caching technique. The most significant difference between
our proposal and the Chord-based P2P web caching tech-
nique is whether group participation is supported or not; the
Chord-based P2P web caching technique is a decentralized
system and the whole storage provided by a peer in the
network is dedicated to the caching system.

4.1. Simulation configuration

According to the results shown in [17], we assumed
that object accesses were issued by Zipfian method as

f(k, α,N) = k−α∑N

n=1
n−α

where we set N and α to 2,500,000

and 1.0, respectively. The total number of object accesses
was set to 700,000.

According to the results of [18], there should be some
skews of object access patterns among groups while assum-
ing the above to the total object access pattern. We set the
object access pattern as follows. In the simulation, there were
two types of peers: one was to participate in the network and
the other was to participate in both the network and a group.
Let us assume that there are 100 nodes and two groups,
each of which consists of 5 nodes out of them. In order
to model the access skews among groups, we numbered
each group and set that i-th group accesses j-th popular
objects where i ≡ j(modb 100

5 c) in the Zipfian distribution.
For example, the two groups access 1st, 21st, 41st, 61st,
81st, 101st, · · ·, and 2nd, 22nd, 42nd, 62nd, 82nd, 102nd,
· · · popular objects, respectively. According to the results of
[18] again, some popular objects in a group are generally
accessed by nodes not belonging to the group. In order to
simulate such situation, we set that a popular object in a
group was accessed by a node in the group and by a node
randomly chosen from the whole nodes in a contiguous two
accesses to the object.

For simplicity, we created groups in advance and we
assumed that no node left from the network or a group
during the simulation, i.e., the numbers of nodes in a group
and in the network did not change through the simulation,
and the sizes of groups were the same in the simulation; we
set the size of a group 5 nodes in the simulation. In addition,
each node provided the same size of cache storage which
was counted as the number of objects; studies with taking
account of object sizes will be included in our future work.

In the following, let Ca be the size of cache storage of a
node, Cg be the size of inner storage out of Ca of a node
belonging to a group, Gr be the ratio of the number of nodes
belonging to a group to the numbers of nodes in the network,
Hc be the hit rate of the conventional environment where the
number of nodes is equal to that of our proposal while every
node participated in the network as a single peer, Ha be the
hit rate of our proposal, Hg be the hit rate of the nodes
belonging to groups in our proposal, and Hn be the hit rate
of the nodes each of which participated in the network as a
single peer in our proposal.

We measured hit rates with varying the numbers of nodes
in networks, Gr, Ca, and Cg in the simulation. The first
100,000 out of 700,000 accesses were used for constructing
the initial situations where web objects were cached in the
system, and the following values were obtained using the
rest 600,000 accesses.

4.2. Group participation ratios

For showing the effectiveness of introducing group par-
ticipation support into P2P caching systems, we measured
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Figure 4. The number of nodes was 100, Ca= 50, and
Cg= 5.

hit rates with varying Gr. Figs. 4, 5, and 6 show hit rates
measured in cases where we set Ca= 50 and Cg= 5,
and varied the number of nodes and Gr. As shown in the
figures, Ha is slightly better than Hc in all cases except for
Gr= 100%, i.e., group participation can slightly improve
the hit rate of the system when the number of groups is
moderate in the network. Also, Hg outperforms Hc and Ha,
in particular when the number of groups is low. In contrast,
Hn is worse than Hc. Note that the number of nodes in the
environment where we measured Hc was the same as that
in the environment where we measured Ha. As we wrote in
Introduction, we may not be able to have the same number
of peers in the system if the system could not support group
participation.

To compare Hn with the hit rate of the conventional
system more fairly, we created networks of nodes, which
consisted of nodes that did not belong to a group plus nodes
each of which chosen from each group in the networks
used for measuring Ha. Thus, the number of nodes in the
networks is the number of nodes of single participators plus
the number of groups in the corresponding networks used
for measuring Ha. We set the web object access patterns of
a peer in the two networks identical and measured hit rates,
which are shown by Hcc in Figs. 4, 5, and 6. As shown in
the figures, Hn outperforms Hcc in all cases, and according
to the results we can say that every node in our system can
get benefit from supporting group participation.

4.3. Cache capacity

We measured hit rates with varying Ca for examining
the influence of the size of cache storage upon the system

Figure 5. The number of nodes was 300, Ca= 50, and
Cg= 5.

Figure 6. The number of nodes was 500, Ca= 50, and
Cg= 5.

performance. Figs. 7, 8, and 9 show hit rates measured
in cases where we set Cg= 5 and Gr= 25%, and varied
the number of nodes and Ca. As shown in the figures, the
more the value of Ca is, the better the hit rates are. On
the other hand, the relations among the hit rates shown in
the figures look similar in all the three cases. Because the
total cache capacities of two cases where Ca= 150 in Fig. 7
and Ca= 50 in Fig. 8 are the same, the Ha’s and Hc’s are
almost the same. However, because the total size of storage
used as inner storage are different in the two cases, Hg in
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Figure 7. The number of nodes was 100, Cg= 5, and
Gr= 25%.

Figure 8. The number of nodes was 300, Cg= 5, and
Gr= 25%.

Fig. 7 and Hn in Fig. 8 are slightly larger than the respective
corresponding hit rates.

4.4. Storage size for groups

Lastly, we measured hit rates with varying Cg for ob-
serving the influence of the storage size upon the system
performance. Fig. 10 shows hit rates measured in cases
where we set the number of nodes to 100, Ca= 50, and
Gr= 25%, and varied Cg as 5, 10, and 15. As the storage

Figure 9. The number of nodes was 500, Cg= 5, and tt
Gr= 25%.

Figure 10. The number of nodes was 100, Ca= 50, and
Gr= 25%.

size for groups grows, Hg increases and Hn decreases very
slightly, and as a result Ha decreases very slightly. The
changes among them are very small by comparing with
the differences of the values of Cg. In order to predict the
appropriate storage size for groups, we intend to develop
some cost model in future.
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5. Conclusion

In this paper we proposed group participation support for
decentralized P2P web caching systems where groups can be
built with nodes. The support allows us with several nodes to
participate in the caching system as a group, and to get better
performance by means of group participation. The system
thus can have more peers in the network. Some simulation
results show that, no matter a node belongs a group or not,
our system can give the node advantages in terms of the hit
rate.

As we wrote before, we need to analyze and optimize
the hit rate in terms of factors including the number of
peers, the size of cache storage, group participation ratios,
and the cache size for groups. We also need to consider
other distributions of web object popularities like [19]. Also,
we intend to develop a real P2P web caching system and
evaluate it in the real world. In it, we will consider the size
of web objects, similar to [20], and access latency occurred
in the real system.
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