損傷した石橋等の耐力診断と保存・防災のための新技術開発

1. はじめに

熊本県下には 300 橋以上もの石橋が現存しており、 文化財として保存活用されている事例もある。その中 にはアーチ石の抜け落ち、横ずれ、ひび割れなど損傷 が激しいものも存在し、損傷の度合いも様々である。 その一例を写真1に示す。しかし、これらの石橋の補 修・補強方法についての検討は、予算の問題や適切な 補強方法や補修方法がなく、十分に行われていないの が現状である。本研究では、このような損傷した石橋 の補修・補強方策の開発を目的として、まず、耐力診 断が可能な解析プログラムの開発を目指し、次に、ア ーチ石材の損傷の有無による石橋の挙動や耐力の相違 を確認するために、石橋アーチの模型を用いて載荷試 験を行った。一列の石材アーチと三列の石材アーチを 用い、集中荷重及び等分布荷重を与える載荷試験を行 い、アーチ各部材のひずみや変位を測定した。特に、 実際のアーチ構成に近い三列アーチ石橋模型では損傷 を有する石橋を再現し、挙動の変化を調べた。また、 別途実際に損傷を有する実石橋の調査を行い、施工方 法について検討を行った。

(a)ずれの発生 (b)抜け落ち

写真1 石橋損傷の事例

写真2 圧縮試験

図1応カーひずみ曲線

社会環境工学科 山尾 敏孝

2. 石材の圧縮試験

2つの石橋模型ⅠとⅡに用いた石材 IとⅡの圧縮強度やヤング係数を求め るために圧縮試験(写真2)を行った。 得られた材料特性を表1に、応力--

ひずみ曲線を図1に示した。石材は非常に強い圧縮強 度を有することが判明した。

4. </lis

模型 I は写真 3 に示すようにスパン 1,690 mm、ライズ 400mm、橋幅 200mm の一列ア ーチで、11 個の石材 I を使用している。アー チ基部に固定のための鋼材枠を用い、実験で は、各石材の上下左右の 4 面にひずみゲージ を接着して各石材のひずみを測定し、アーチ 中央部に変位計を設置し、それぞれの変位を 調べた。図2は集中載荷試験の様子である。

模型Ⅱは、石材Ⅱを三列×17用いて組まれ

|変位計

表1 圧縮試験結果

	ヤング係数 (×104)	圧縮強度 (N/mm ²)	破壊ひずみ (µ)	せん断弾性係数 (N/mm ²)	ポアソン比
石材I	1.10	41.9	3682	0.47	0.18
石材Ⅱ	3.14	89.3	2823	1.35	0.16

130

た模型でスパン 580mm、ライズ 250mm、橋幅 270mm である。アーチ部材中央など計9部材の上下面軸方向 にひずみゲージを接着した。また、図3のように、抜 け落ち、割れ石、ずれの損傷状態を想定したモデルも 用いた。荷重は集中載荷と等分布載荷の2通りで行い、 荷重の大きさはロードセルで測定した。また、鉛直変 位は変位計により測定した。

実験結果および考察

500

N/mm²

두 -500 년

-1000

中及び等分布載荷による10t時の各部材上下部の応力 分布図である。集中荷重載荷では、部材L3-L4、R3-R4 の部分にて、上下に加わる圧縮と引張の応力が入 れ替わっている。一方、等分布荷重載荷では、全ての 部材上部に圧縮力がかかっている。これは、等分布荷 重載荷により1/4径間部であるL3やR3付近のアーチ

の膨らみも抑えられ、各部材の上部同士で力が伝わっ ていることがわかる。

一列アーチの模型 I が集中荷重を受けた場合の部材 応力分布について、実験値と解析値とで比較した結果 が図6である。解析モデルは骨組み解析法を用い、石 材を2節点1要素で部材を剛結モデル化して解析を行 った。15 ton 時の状況で実験値は部材中央部、理論値 は部材同士の節点部の値を表す。両者の値には多少差 があるものの全体挙動はよく対応していることがわか る。弾性挙動でればこの手法でも解析できることが示 された。

三列アーチの模型Ⅱでは、アーチ形状が膨らまない ように基部からスパン 1/4 までを拘束した。図7は、 アーチクラウンの鉛直方向の荷重-変位曲線を示した。 今回図3の損傷を想定し、損傷なしの健全なアーチの 挙動や耐力比較したが図でも示すように有意な差は見 られなかった。これが直ちに現実の石橋に対応するも のではないが、今後更に詳細検討が必要である。

5. まとめ

今回の研究では実石橋と同じ形状を有する模型実験 を行え、かつ損傷の有無による挙動を把握できたこと が一番の成果である。今後は耐力診断プログラムの開 発も含め、更に補修・補強に向けた様々な損傷ケース による実験や地震動による影響など、今後更に実験的、 解析的に検討が必要である。