強震をうける重層骨組の損傷分布に関する基礎的考察

DAMAGE DISTRIBUTION LAW OF MULTI-STORY FRAMES UNDER STRONG GROUND MOTIONS

小川厚治*, 黑羽啓明**, 上遠野明夫*** Koji OGAWA, Yoshiaki KUROBANE and Akio KADONO

This paper first discusses the general features of distributions of damages in multi-story frames under strong ground motions based on numerical response analyses of shear-type lumped mass models. A basic law that governs distributions of damages is then determined by using seismic load distributions expressed in terms of the second joint moments of story shear forces. The results of response analyses show that , as the strength of a story in a multi-story frame decreases, the damage in that weak story increases sharply while the damages in the other stories close to the weak story decrease suddenly. The proposed damage distribution law captures well these tendencies.

Keywords: multi-story frame, shear-type model, aseismic design, damage distribution, damage concentration 重層骨組, せん断型モデル, 耐震設計, 損傷分布, 損傷集中

1. 序

地震外乱によって構造物に入力されるエネルギー量は 構造物の強度や復元力特性などの影響をほとんど受けな い安定した量であることが知られている^{1,2)}。地震外乱に よる入力エネルギーは弾性振動エネルギー(運動エネル ギー E_i と弾性歪エネルギー E_e の和)または塑性歪エネ ルギー E_p (以下,損傷と呼ぶ。)として構造物に吸収 されるが,構造物各部の損傷分布はその強度分布の影響 を強く受ける。すなわち,構造物の一部が他の部分に比 べて相対的に弱ければ,損傷はその弱い部分に集中し, 他の部分はエネルギーを吸収する能力を発揮することな く構造物は崩壊する。したがって,損傷分布を適切に予 測することは合理的な耐震設計を行うために不可欠な課 題である。

既に、秋山らは、構造物各部の強度の適正値からのず れが損傷分布に及ぼす影響をせん断型多質点系モデルを 用いて定量化しており^{3,4},このせん断型多質点系の損傷 分布則では予測できない各種の構造物^{5,6,7}についても地 震応答解析結果に基づいた損傷分布の定量化を行ってい る。この秋山らの研究成果は鋼構造骨組の耐震設計を考 える貴重な礎になっているものではあるが,あくまで 個々の構造物毎に数値的に損傷分布,特に損傷集中特性 を定量化したものであり,必ずしも構造物各部への損傷 分配の一般的法則性を明確にするものではない。構造物 の損傷分布を支配する普遍的法則が見い出せれば,それ は構造物の耐震安全性を評価する手段として利用できる ばかりではなく,新しい損傷分布制御システムを工夫し 考え出すための有力な道具にもなりえるであろう。

この研究は,複数要素への損傷分配が生じる最も単純 な振動系であるせん断型多質点系を考察対象として,損 傷分布の基本的な法則性を明らかにしようとするもので ある。問題を極力単純化して,損傷分布の基本的な法則 を見い出すことがここでの目的であるので,各層の復元 力特性は完全弾塑性とし,Pム効果は無視しており,変

本論文の一部は日本建築学会大会学術講演梗概集,1993.9に発表している。 * 熊本大学工学部建築学科 助教授・工博 Associate Prof., Dept. * * 熊本大学工学部建築学科 教授・工博 Prof., Dept. of Archite * * 新日本製鐵鋼構造研究開発センター Steel Structure Develo

Associate Prof., Dept. of Architecture, Faculty of Engineering, Kumamoto Univ., Dr. Eng. Prof., Dept. of Architecture, Faculty of Engineering, Kumamoto Univ., Dr. Eng. Steel Structure Development Center, Nippon Steel Corporation 形によって骨組の強度特性が変化しないことを前提とし ている。

2. 地震荷重分布の基礎仮定と応答解析パラメータ

筆者の1人は既に、重層骨組に作用する動的地震荷重 分布を各層層せん断力の2乗平均値と相乗平均値(2次 モーメント)を使って表すことを提案し、一様せん断棒 のモーダルアナリシスによる解析結果を基に定量化して いる8。また、このような地震荷重分布を用いれば、強 い地震外乱下で重層骨組に生じる主たる崩壊機構も概ね 予測可能であることを報告している⁹⁾。本研究において も、地震外乱下で重層骨組に生じる動的荷重分布は次式 で表されるものと仮定する。

$$\mathbb{E}\left[Q_i Q_j\right] = \sigma_o^2 \sum_{k=1}^i M_k \qquad \text{tttl}, \ i \le j \qquad (1)$$

ここで, E[] は時間的平均値を表し, Q_i は上からi 番 目の層の層せん断力, M_i は上からi 番目の層の質量で あり、 σ_o は定数である。なお、本論では、上記のよう に、層番号は常に上から順に数えている。誤解を招き易 い表現ではあるが、数式表現は単純になる。上からi番 目の層に作用する動的水平力をH_iとすると、(1)式は次 のようにも表現できる¹⁰⁾。

$$E[H_i^2] = M_i \sigma_o^2$$

$$E[H_i H_j] = 0 \quad \text{trtl}, \ i \neq j \qquad (2)$$

本論では、対象を単純化するために、図1に示すよう に各層の質量M, 階高h が一定のせん断型N 質点系を 考察対象とする。各層の質量は一定値であるので、(1)、 (2)式の動的地震荷重分布は次式で表される。

$\mathbf{E}\left[Q_{i}Q_{j}\right] = i\sigma^{2}$	ここで, i≤j	
$\mathrm{E}\left[H_{i}^{2}\right] = \sigma^{2}$		(3)
$E[H_{i}H_{j}]=0$	ここで, <i>i≠j</i>	

次節以降では、強度・剛性を変化させた種々のせん断 型多質点系の地震応答解析例を示しているが、ほとんど の構造パラメータは共通であり、ごく一部のパラメータ を変化させているに過ぎない。その元になる骨組を基準

図1考察対象モデル

骨組と呼ぶことにする。基準骨組の*i*層の強度_sQ_{vi} は、(3)式の地震荷重の下で各層の降伏の可能性が一様 化するように次式とし、これを基準強度分布と呼ぶ。

$${}_{S}Q_{yi} = \sqrt{\frac{i}{N}} {}_{S}Q_{yN} \tag{4}$$

基準骨組の最下層の強度_sQ_{vN}は,全層に 0.02の塑性 層間変形角が生じたときに吸収できるエネルギー量が, 速度スペクトルS,=150 kine として求めた入力エネル ギーに等しくなるという条件から次式で求めた。

$$0.02 h \sum_{i=1}^{N} {}_{S}Q_{yi} = 0.02 h C_{B} N M g \sum_{i=1}^{N} \sqrt{\frac{i}{N}} = \frac{1}{2} N M S_{v}^{2}$$
(5)

ここで、 C_B はベースシャ係数であり、g は重力加速度 である。

次節以降では、強度分布を変化させた骨組の地震応答 解析を行っているが、これらの骨組のi層の強度 Q_{vi} は (4),(5)式で表される基準強度を基に次式で与えている。

$$Q_{yi} = p_{i} S Q_{yi} \tag{6}$$

ただし,特に説明しない限りp;は1である。

基準骨組の弾性剛性は、全層の弾性限層間変形角が 0.01となるように求めた。ただし、強度を変化させた骨 組については、弾性剛性は基準骨組と同じとしているの で、弾性限層間変形角は強度に比例して変化している。

解析例として示した骨組の層数N は5,10,15 の3種で, 階高h はすべて350 cm としている。基準骨組のベース シャ係数C_Rと基本固有周期T₁を表1に示しておく。粘 性減衰は、1次および2次の減衰定数が 0.01 のRayleigh 型 とした。

応答解析例に用いた入力地震外乱は表2に示す12種であ る。基準骨組のベースシャ係数を上記のように算定した ことに対応させて,弾性振動エネルギーE,+E,と塑性歪 エネルギー E_n の和の最大応答値が $S_v = 150$ kine として 求めた次式の値となるように表2に示した実記録の加速 度の値を増幅している。

$$(E_i + E_e + E_p)_{\text{max}} = \frac{1}{2} N M S_v^2$$
 (7)

表2	応答	解析	用ス	カ	地震ダ	小刮
	"L" 🗖	7771	/11/		н <u>ы</u> ре/	ГH

	最大加速度	継続時間	マーク
El centro, 1940, N-S	341.7gal	53.73sec.	•
El centro, 1940, E-W	210.1gal	53.47sec.	0
Taft, 1952, N-S	152.7gal	54.36sec.	
Taft, 1952, E-W	175.9gal	54.38sec.	Δ.
Hachinohe, 1968, N-S	225.0gal	35.99sec.	
Hachinohe, 1968, E-W	182.9gal	35.99sec.	
Sendai, 1962, N-S	57.5gal	13.98sec.	▼
Sendai, 1962, E-W	47.5gal	14.18sec.	∇
Tohoku Univ., 1978, N-S	258.2gal	40.94sec.	•
Tohoku Univ., 1978, E-W	202.6gal	40.94sec.	\diamond
Tokyo, 1956, N-S	74.0gal	11.38sec.	Ħ
Osaka, 1963, E-W	25.0gal	14.98sec.	⊕

表1 解析用基本骨組 C_B

5 0.4375

10 0.2308

15 0.1570

 T_1 (秒

0.977

1.833

2.689

本論では、これら12種の地震外乱に対する応答解析結果 を元に考察を進めているが、特に必要がない限り個々の 応答値がどの地震外乱によるものかは説明していない。 入力外乱は表2に示したマークで区別している。

3. 損傷分配則に関する基礎的考察

骨組全体の損傷に対するi層の損傷 E_{pi} の比率をi層の損傷分配率 γ_{pi} と定義して、この量の定量化を試みる。ここでは、秋山らがせん断型多質点系の損傷分配率の定量化に用いたもの3.4)と類似の次式から検討を始める。

$$\gamma_{pi} = \frac{E_{pi}}{\sum_{k=1}^{N} E_{pk}} = \frac{r_i f\left(\lambda_i\right)}{\sum_{k=1}^{N} r_k f\left(\lambda_k\right)}$$
(8)

ここで、 λ_i は後述するi 層の荷重係数であり、 $f(\lambda_i)$ は 荷重係数の小さな機構に損傷が集中することを表す損傷 集中関数、 r_i はi 層の損傷分配の基準値であり骨組の強 度分布に依存しない量である。

3.1 基本荷重係数: _αλ_i

(3)式で表した動的地震荷重分布に関する基礎仮定か ら, *i* 層のせん断力*Q*; の2乗平均値は次式で表される。

 $E\left[Q_i^2\right] = i\,\sigma^2\tag{9}$

一方, i 層が降伏する条件は, i 層の強度 Q_{vi} を用いて

次式で表される。

 $Q_i = Q_{yi} \tag{10}$

i 層の層せん断力がそのRMSの $_{o}\lambda_{i}$ 倍とすると(10)式が 成立するとき, $_{o}\lambda_{i}$ をi 層の基本荷重係数と定義する。

$${}_{o}\lambda_{i} = \frac{Q_{yi}}{\sqrt{i}\sigma}$$
(11)

ここでは,まず,この基本荷重係数 $_{o}\lambda_{i}$ がi層の荷重係数であると考えて考察を進める。

3.2 損傷分配の基準値:r_i

2節で示した基準強度分布をもつ骨組については,(11) 式の基準荷重係数を求めると、すべての層で一定となる ので,(8)式は $f(\lambda_i)$ に無関係な次式となる。

$$\gamma_{p\,i} = \frac{E_{p\,i}}{\sum_{k=1}^{N} E_{p\,k}} = \frac{r_i}{\sum_{k=1}^{N} r_k}$$
(12)

すなわち, r_i は基準強度分布をもつ骨組の損傷分配率 γ_{p_i} に比例する。

さて,基準強度分布をもつ骨組の損傷分配率について 考える。各層の荷重係数 λ_i が一定のとき,骨組の各層の 損傷は一様化すると考えるのが適当であろう。しかし, 「各層の損傷が一様化する」という現象には,およそ2 通りの解釈が考えられる。すなわち,各層の塑性変形が 一定になる場合と,各層の塑性変形倍率(塑性変形/弾

性限変形)が一定になる場合である。前者であると考え れば r_i は強度に比例する量となり,後者であると考え れば r_i は弾性限歪エネルギーに比例する量となる。す なわち,

塑性変形一定 →
$$r_i = {}_{S}Q_{yi}$$
 (13.a)

塑性変形倍率一定→ $r_i = E_{yi} = {}_{S}Q_{yi} \theta_{yi} h/2$ (13.b) ただし, E_{yi} は基準骨組のi 層の弾性限歪エネルギーで あり, θ_{yi} はi 層の弾性限層間変形角である。

2節で述べたように基準骨組は各層の弾性限変形角 θ_{yi} が一定であり、各層の弾性限歪エネルギーと強度は比例する。ここでは、各層の弾性限変形角 θ_{yi} が異なる骨組の応答解析結果を基に r_i は(13)式のいずれが適当かを検討する。

解析骨組の各層の弾性限変形角 θ_{yi} は次のように設定 する。最上層の弾性限変形角 θ_{y1} は基準骨組と同様に常 に 1/100とし、最下層の弾性限変形角 θ_{yN} は1/50から 1/ 500の範囲で変化させた。中間層の弾性限変形角 θ_{yi} は、最上層と最下層の値を直線補間した値とする。

$$\theta_{yi} = 0.01 + \frac{t-1}{N-1} \left(\theta_{yN} - 0.01 \right)$$
(14)

図2には、最下層の弾性限変形角 θ_{yN} と、最上および 最下の層の損傷分配率との関係を示す。図中、各応答解 析結果は表2のマークで示しており、12種の地震外乱に関 する平均値を+印で示している。また、鎖線は r_i として (13.a)式を用いた予測値、実線は(13.b)式を用いた予測値 である。図2によると、応答値は非常にばらついてお り、いずれの予測値が応答値を近似しているかを論じる ことは甚だ困難であるが、少なくとも12種の外乱に関す る平均値は θ_{yN} が小さくなり最下層が相対的に剛くなる と、最下層の損傷は減少し、最上層の損傷は増大する傾 向が認められる。この傾向は、実線で示した弾性限歪エ ネルギーを r_i として用いた場合の予測結果と対応してい る。したがって、 r_i としては、(13.b)式に示すように弾 性限歪エネルギーを採用することにする。

3.3 損傷集中関数: $f(\lambda)$

損傷集中関数は、その定義からも明らかなように、 $\lambda \rightarrow 0$ または $\lambda \rightarrow \infty$ の極限では次の値を取るものでなけ ればならない。

$$\lim_{n \to 0} f(\lambda) = \infty \tag{15.a}$$

$$\lim_{\lambda \to \infty} f(\lambda) = 0 \tag{15.b}$$

また,荷重係数 λ は, (11)式からも分かるように,各層 の降伏のしやすさを表す相対的尺度であり,その絶対的 な大きさには特に物理的な意味を与えていないことを考 えれば, $f(\lambda)$ は任意の正の実数a,b,c について次の条 件を満たす関数でなければならない。

$$\frac{f(a b)}{f(a c)} = \frac{f(b)}{f(c)}$$

すなわち,

$$f(a b) = Const. f(a) f(b)$$
(16)

本研究では,(15),(16)式の条件を満たす関数として,秋 山らと同様の次式を採用する。

$$f\left(\lambda\right) = \lambda^{-n} \tag{17}$$

ただし,(15)式の条件から指数部は負,nは正であり, また,(16)式の条件からnは定数でなければならない。 ここまでの結果を整理すると、次式となる。

$$\nu_{pi} = \frac{E_{pi}}{\sum_{k=1}^{N} E_{pk}} = \frac{E_{yi} \lambda_i^{-n}}{\sum_{k=1}^{N} E_{yk} \lambda_k^{-n}}$$
(18)

上式は, n を定数と考えていることを除き^{4,0}, 秋山らの 提案式と同じものである。

3.4 条件付き荷重係数: "λ,

(11)式の荷重係数を用い(18)式にしたがって損傷が各層 に分配されると考えたのでは説明できない現象が,地震 応答解析結果には認められる。図3は、それぞれ5,10,15 層骨組のElcentro, N-S入力時の地震応答解析例であり、
□印はいずれも基準骨組の損傷分配率を示している。
印は、(a)図では5層骨組の第4層の強度を基準強度の0.9 倍に低減した骨組の応答であり、(b)図では10層骨組の 第7層,(c)図では15層骨組の第10層を0.9倍に低減し た骨組の応答である。図3は単なる例に過ぎないが、地 震応答解析結果においては常に、ある層を弱くするとそ の弱い層には損傷が集中すると共に、その弱い層のごく 周辺の層の損傷は急激に減少するという傾向が認められ る。また、この弱い層から離れた層の損傷分配率はほと

んど変化していない。すなわち,弱い層の損傷分配率が 単純に大きくなって損傷集中が起こると考えるより,弱 い層は周辺層から横取りするように損傷を集めることが 損傷集中の原因と考えた方が適当である。

一方,(18)式に示した損傷分配則によれば,(11)式から 求められる弱い層の荷重係数は低下し,その弱い層の損 傷分配率が急増することは予測できるとしても,他の層 の荷重係数は一定のままであり,弱い層に損傷が集中す る分だけ他の層は一様に損傷分配率が減少するという結 果になる。したがって,弱い層に隣接する層の損傷は急 減するといった現象は予測できない。

応答解析において相対的に弱い層の周辺の層の損傷が 減少する原因は次のように説明できる。例えば,図3(a) の例のように第4層の強度Q_{y4}が基準強度より相対的に 小さい5層骨組を考える。第5層が降伏する条件は次式で 表される。

$$Q_5 = Q_{y,5} \tag{19}$$

一方,第5層のせん断力 Q_5 は第4層のせん断力 Q_4 と第5層の水平力 H_5 の和である。

$$Q_5 = Q_4 + H_5 \tag{20}$$

また,第4層のせん断力 Q_4 は常にその強度 Q_{y4} 以下でなければならない。

 $Q_4 \le Q_{\gamma 4} \tag{21}$

したがって,第5層が降伏するための必要条件は次式と なる。

$$Q_{v4} + H_5 \ge Q_{v5} \tag{22}$$

上式は、第4層の弾性限強度 Q_{y4} が小さければ、動的水 平力 H_5 が余程大きくならない限り第5層は降伏しないこ とを表す。すなわち、第5層の降伏の起こり易さは第5層 の強度だけではなく第4層の強度の影響を受ける。この ような現象の結果として、弱い層の周辺層の損傷が減少 するものと考えた。

さて、上記の現象を一般化して定量化するために、m 層のせん断力 Q_m が既定値 $\overline{Q_m}$ であるという条件の下 で、i層の荷重係数を考える。動的水平力 H_i が Gauss 分布する確率量であると仮定すれば、(3)式の地震荷重 分布からi層のせん断力の平均値 $E[Q_i|Q_m = \overline{Q_m}]$,お よび分散 $Var(Q_i|Q_m = \overline{Q_m})$ は次式で表される^{11,12)}。

$$E\left[Q_{i} \mid Q_{m} = \overline{Q_{m}}\right] = \frac{E\left[Q_{i} \mid Q_{m}\right]}{E\left[Q_{m}^{2}\right]} \overline{Q_{m}} = \frac{\min\left(i, m\right)}{m} \overline{Q_{m}}$$
(23)

$$\operatorname{Var}\left(\mathcal{Q}_{i} \mid \mathcal{Q}_{m} = \overline{\mathcal{Q}_{m}}\right)$$

= E [$\mathcal{Q}_{i}^{2} \mid \mathcal{Q}_{m} = \overline{\mathcal{Q}_{m}}$] - $\left(\operatorname{E}\left[\mathcal{Q}_{i} \mid \mathcal{Q}_{m} = \overline{\mathcal{Q}_{m}}\right]\right)^{2}$
= E [\mathcal{Q}_{i}^{2}] - $\frac{\left(\operatorname{E}\left[\mathcal{Q}_{i} \mathcal{Q}_{m}\right]\right)^{2}}{\operatorname{E}\left[\mathcal{Q}_{m}^{2}\right]} = \left\{i - \frac{\min\left(i, m\right)^{2}}{m}\right\}\sigma^{2}$
(24)

(23)式の平均値は定数であるので、次式において条件付きの荷重係数 元 を定義する。

$$\left(\mathbb{E} \left[Q_i \mid Q_m = \overline{Q_m} \right] \right)^2 + \overline{M_i}^2 \operatorname{Var} \left(Q_i \mid Q_m = \overline{Q_m} \right) = Q_{yi}^2$$
(25)

すなわち,

$$\overline{m\lambda_i} = \frac{1}{\overline{\sigma}} \sqrt{\frac{m^2 Q_{yi}^2 - \min(i, m)^2 \overline{Q_m}^2}{i m^2 - m \min(i, m)^2}}$$
(26)

 $\overline{Q_m}$ は次の範囲でなければならない。

$$\overline{Q_m} \le Q_{ym} \tag{27}$$

上式によるm層の層せん断力の上限値を考慮すると $\overline{n\lambda_i}$ は最小値 $n\lambda_i$ となるので、 λ_i は次のように表される。

$$\lambda_{i} \geq_{m} \lambda_{i} = \frac{1}{\sigma} \sqrt{\frac{m^{2} Q_{yi}^{2} - \min(i, m)^{2} Q_{ym}^{2}}{i m^{2} - m \min(i, m)^{2}}}$$
(28)

したがって, *i* 層の荷重係数 λ_i は, (11)式による基準 荷重係数 $_{o}\lambda_i$ 及び*i* 層以外の層のせん断力の上限値を考 慮して求めた $_{m}\lambda_i$, 合計N 個の荷重係数の最大値として 定義する。

$$\lambda_i = \max\left({}_o\lambda_i, {}_m\lambda_i\right) \tag{29}$$

また,以下では、上式の最大値 $i_m \lambda_i$ である時, m 層の降伏がi層の降伏を制限するという意味で, m 層をi層の制約機構と呼ぶことにする。

なお, $_{o\lambda_{i}}$ は,最上層より上部(第0層)でのせん断力 の上限値が零であるという条件の下で(28)式から求めた 荷重係数であると考えることもできる。また,証明は省 略するが,これらの荷重係数 $_{o\lambda_{i}}$ と $_{m\lambda_{i}}$ の間には次の関 係がある。

したがって, $_{o}\lambda_{m} \geq_{o}\lambda_{i}$ のときには, m 層はi 層の制約 機構とはなりえない。

4. 損傷分配の基本則

以上の考察結果に基づいて,本研究で提案するせん断 型多質点系の損傷分配則を纏めると次のようになる。

 全損傷E_pは、まず基準荷重係数_oλ_iに応じて各層に分 配される。すなわち、i層に流入しようとする損傷 E_{pi}は次式で表される。

$$E_{p\,i}' = \frac{E_{y\,i\ o}\lambda_i^{-n}}{\sum_{k=1}^{N} E_{y\,k\ o}\lambda_k^{-n}} E_p$$
(31)

2) 上記の E_{p_i} のうち実際にi層で吸収される損傷は荷重係数 λ_i に応じた分 $E_{p_i,i}$ のみである。

$$E_{p\,i\,,\,i} = \frac{\lambda_i^{-n}}{_o\lambda_i^{-n}}E_{p\,i}'$$
(32)

3)残りの損傷は*i* 層の制約機構となる*j* 層に分配される が, *j* 層もまた荷重係数 λ_j 以下で生じる損傷は吸収で きない。したがって, *i* 層から*j* 層に再分配され*j* 層 で吸収される損傷 $E_{p_{i,i}}$ は次式となる。

$$\lambda_{j} \leq {}_{o}\lambda_{i} \quad \mathcal{O} \succeq \stackrel{*}{\approx}, \qquad E_{p\,j,\,i} = \frac{{}_{o}\lambda_{i}^{-n} - \lambda_{i}^{-n}}{{}_{o}\lambda_{i}^{-n}} E_{p\,i} \quad (33)$$

$$_{o}\lambda_{i} \leq \lambda_{j} \leq \lambda_{i} \quad \mathcal{O} \succeq \stackrel{*}{\geq}, \quad E_{p\,j,\,i} = \frac{\lambda_{j}^{-n} - \lambda_{i}^{-n}}{_{o}\lambda_{i}^{-n}} E_{p\,i}' \quad (34)$$

$$\lambda_i \leq \lambda_j$$
 のとき, $E_{pj,i} = 0$ (35)

- 4) i 層の制約機構である j 層で吸収されない残りの損傷 は、更に j 層の制約機構に分配され、3)項と同様の分 配則にしたがって再分配が繰り返される。
- 5) 以上の分配の結果として、最終的にi層に分配される 損傷 E_{pi} は、(32)式による損傷 $E_{pi,i}$ と他層から再分配 される損傷 $E_{pi,i}$ の和として表される。

$$E_{p\,i} = E_{p\,i\,,\,i} + \sum_{i \neq j} E_{p\,i\,,\,j} \tag{36}$$

(11)式の基準荷重係数や(28)式の条件付き荷重係数はい ずれも特定の層が降伏するのに必要な動的水平力の下限 値を示すものであり、特定の層が降伏した後はその層の せん断力は一定となるが、他の層のせん断力は更に大き くなり得る。したがって、特定の層の損傷は、その荷重 係数以上の各荷重段階で分配される損傷の積分値、図4 における面積によって表している。例えば、*i*層につい て太線で示した部分の横幅を荷重係数 $_{o}\lambda_{i}$ から∞の範囲 で積分した値が、基準荷重係数に応じて*i*層に流入しよ うとする損傷 E_{pi} となる。

i 層は他の層の降伏さえ先行しなければ、荷重係数 $<math>_{o\lambda_{i}}$ に応じた太線で囲んだ部分の面積 $E_{p_{i}}$ の損傷分配を 受ける。ところが、i 層の降伏には通常 j 層の降伏が先

図4 損傷分配の例

行し, j 層に損傷が集中することによってi 層のせん断 力の上昇は抑制され,荷重係数が $\lambda_i(=_j\lambda_i)$ 以上になっ て始めてi 層は降伏し損傷を吸収し始める。したがっ て,太線で囲んだ面積のうち荷重係数 λ_i 以上の部分の損 傷はi 層が吸収するが, λ_i 以下の部分の損傷はi 層のせ ん断力の増大を抑制するためにj 層で吸収されると考え た。

更に,図4に示した例では, j層の荷重係数はk層に よって制約されており, j層の荷重係数 λ_j は比較的大き くなっている。i層からj層に再配分される損傷のう ち、荷重係数 λ_j 以上で生じる損傷についてはj層で吸収 されるが、 λ_j 以下で生じる損傷についてはj層は吸収で きず、更にj層の制約機構であるk層に再配分されると 考えている。

図4の例では、最終的にi層に分配される損傷 E_{pi} は 灰色で示した部分の面積によって表され、j層の損傷 E_{pj} は斜めハッチを施した部分の面積によって、k層の 損傷 E_{pk} は白い部分の面積によって表される。

5. 地震応答解析結果との比較

ここではまず, *i* 層の強度だけを基準強度の*p_i* 倍した 骨組の地震応答解析結果と前節で提案した損傷分配則に よる予測結果とを比較して,損傷集中関数に用いられて いる指数*n* (以下,損傷集中指数と呼ぶ。)の値を決定 する。

図5~7は、損傷集中指数を決めるのに用いた応答解析 結果であり、それぞれ5層、10層、15層骨組について、 最上層、中間層、最下層の強度のみを変化させたときの その層の損傷分配率の応答値を示している。このデータ の内、損傷が集中する特性を重視して $p_i < 1$ の範囲のみ を用い、また、個々の骨組について12種の地震外乱につ いての応答値は非常にばらついているので損傷分配率の 大きい8つのデータのみを用いて、前節の損傷分配則に よる予測値と応答値の差の2乗和が最小になるように損 傷集中指数を算定した。結果を表3に示す。なお、*i*層の みの強度を p_i 倍 ($p_i < 1$)した骨組では、*i*層はすべて の層の制約機構となり、他の層の制約機構となりえるの は*i*層のみであるので、各層の損傷分配率は次のように 単純な式で表現できる。

表3に示すように応答値から最小2乗法で求めた損傷集 中指数nは、骨組の層数や層位置によって必ずしも一定 値ではない。しかし,表3によると,層数または層位置 によって損傷集中指数nが変化する一定の傾向は認めら

		5層骨組	10層骨組	15層骨組	3つの骨組
	最上層	3.75	4.56	4.27	4.17
	中間層	5.80	2.65	2.67	3.22
	最下層	6.16	3.82	3.76	4.25
	3つの届位番	1 10	3.68	3 30	3 87

表3 損傷集中指数 n

れないので,本研究では表3の平均的な値を用いてnは 4とした。

n = 4

(38)

図5~7には, n=4 としたときの予測結果を太線で示 す。また, 参考のためにn=3 またはn=5 としたときの 予測結果も細線で示している。前節で提案した損傷分配 則では, 損傷集中特性は他の層の降伏を制約することに

- 9.-

よる損傷の再配分として主に捉えられているので,損傷 集中指数を変化させても損傷分配率に及ぼす影響は比較 的少ない。

以下では、秋山らが文献4)で提案しているせん断型多 質点系の損傷分布式とも比較しながら、n=4 とした本 論による損傷分配予測結果を応答値と比較する。ただ し、秋山らが文献4)で提案している損傷分布式では、 i 層の強度をp_i倍にしたときの j 層の損傷分配率は次 式で表わされる。

$$\gamma_{pj} = \frac{E_{pj}}{\sum_{k=1}^{N} E_{pk}} = \frac{E_{yj} p_j^{-n'}}{\sum_{k=1}^{N} E_{yk} p_k^{-n'}}$$
(39)

ここで

 $n' = 6 + 23 p_i^6$

 $p_i \leq 1$

まず,図8は,図6(c)に示したものと同じであるが,最 下層の強度を変化させた10層骨組の応答解析結果であ り,最下層と共に,最下層に隣接する第9層,および最 上層の損傷分配率を示している。太線で本論による予測 値,細線で秋山らによる予測値を示しているが,図8(c) から分かるように_{P10}を1より小さくしたとき最下層に 損傷が集中する特性については両者の予測結果はほとん ど一致している。一方,図8(a),(b)によると,3.4項でも 述べたように,*p*10 を1近傍で変化させると10層に隣接 する第9層の損傷分配率は急激に変化し,最下層から離 れた最上層の損傷分配率は緩やかに変化する傾向を応答 値は示す。本論による予測結果はこのような傾向につい ても良く近似しているが,秋山らの(39)式によれば第1 層と第9層は同じように変化すると予測することにな る。

次に図9は1つの層の強度のみを基準強度の0.8倍に低減 したときのこの弱い層の損傷分配率を示したものであ る。ここでも太線で本論による予測値を示し,細線で (39)式による予測値を示している。本論による予測値は およそ下から1/3程度の層位置で最大となり,この付近 の層で損傷が最も集中し易い傾向があることを示す。ま た,最上層に近づくに連れてその値は急激に小さくな り,最上層には損傷が集中し難いことを予測する。秋山 らの提案式では,この値は最下層から最上層に向かって 緩やかに単調減少している。応答値は非常にばらついて いるので,両者の合理性を比較することは困難ではある が,少なくとも図9(a)によると(39)式は低層骨組の最上

層への損傷集中を過大に評価する傾向¹³⁾があることがわ かる。

以下は,複数層の耐力を基準強度から変動させた例で あり,図10は8,9,10の3つの層の強度を同じ比率で変動 させた10層骨組の損傷分配率である。太線で示した本論 による予測値は, $p_8(=p_9=p_{10})$ を1より少し減少させる と8層の損傷分配率は急激に増大するが,9,10層の損傷分 配率は緩やかに増大することを予測する。このような傾 向は,応答値にも認められる。一方,細線で示した秋山 らの提案式によれば,8,9,10層の損傷分配率は同様の増 大傾向をとることが予測される。

最後に、図11に示す例は、最下層の強度が基準強度の 0.8倍(*p*_N=0.8)しかない骨組について、最上層の強度を 小さくして最上層に損傷を集中させ、最下層の損傷の軽 減を試みたものである。図11(a),(d)に示す5層骨組につい ては、本論と(39)式による予測結果はあまり違わない が、層数が多くなるに連れて両者の予測値の差異は大き くなっている。すなわち、層数が多くなると、最上層を 弱くしても最上層への損傷集中は起こり難くなり最下層 の損傷集中を軽減する効果は小さくなる傾向があるが、

この傾向は本論による予測の方が秋山らの損傷分布式に よるより顕著になる。本論による予測では、15層骨組に ついて $p_1 = 0.4$ ($p_1 / p_{15} = 0.5$)としても、図11(c)に示 すように最上層の損傷分配率は0.5程度であり、図11(f) によると最下層の損傷分配率は $p_1 = 1$ のときの半分程度 にしか軽減されていない。15層程度以上の骨組では最上 層への損傷の集中を図る効果が乏しいことは秋山らも明 らかにしている⁷。

6. 結論

本論では、損傷の分配が生じる最も単純な振動系とし てせん断型多質点系モデルを対象とし、地震応答解析結 果を基にその損傷分配の基本的な法則性について考察 し、損傷分配を支配する基本則を提案した。提案した基 本則の合理性の検証は地震応答解析結果との比較以外に 適当な手段はなく, 地震応答解析結果は非常にばらつい ている。このばらつきの原因としては、地震外乱の周波 数特性および骨組の振動特性によって動的地震荷重分布 が変化することが挙げられる。本論では、このような動 的地震荷重分布の変化を無視して、その平均的な値とし て(3)式に示した動的地震荷重分布を用いているので、 個々の応答解析結果と本論による予測値の対応関係は必 ずしも良くない。しかし、ここで示した各種の強度分布 をもつ骨組について、本論で示した分配則は、少なくと も損傷分布の定性的傾向・損傷分配率の平均的な値を予 測できるものであることは、明らかにし得たと考える。

筆者らは、ここで提案した損傷分配則が対象をせん断 型多質点系に限定したものとは考えていない。複数の要 素からなる振動系の損傷分配を支配する基本則と捉えて いる。ここで提案した複数要素への損傷分配則と、1要 素内での正負2方向への損傷分配を支配する損傷分配則 ¹⁴⁾を組み合わせることによって、より一般的な振動系の 損傷分布が予測できると考えている。

謝辞

本研究は,1994-1995年度文部省一般研究(C)(課題番号 06650639)の援助を受けた。また,本研究内容は耐震性能研究会(建設省建築研究所と(社)鋼材倶楽部の共同研究)で検討された。井上一朗主査はじめ貴重なご意見をいただいた委員各位に感謝します。

参考文献

- G.W.Housner : Limit Design of Structures to Resist Earthquakes, Proc.of 1st WCEE, pp.5-1-13, 1956
- 2)加藤勉・秋山宏:強震による構造物へのエネルギ入力と構造物の損傷,日本建築学会論文報告集,第235号,pp.9-18,1975.9
- 3)加藤勉・秋山宏:地震時における鋼構造せん断型多層骨組の損傷分 布則,日本建築学会論文報告集,第270号,pp.61-68,1978.8
- 4) 日本建築学会:建築耐震設計における保有耐力と変形性能, pp.261-

295, 1990

- 5)秋山宏・大井謙一:混合型の復元力特性をもつせん断型多層骨組の 損傷集中特性,日本建築学会論文報告集,第303号,pp.31-38, 1981.5
- 6) 秋山宏:はり降伏型鋼構造多層剛接骨組のD_S値,日本建築学会論 文報告集,第332号,pp.38-46,1983.10
- 7) 秋山宏:最上層損傷集中型多層骨組のD_S値,日本建築学会構造系 論文報告集,第362号,pp.37-44,1986.4
- 8)小川厚治:鋼構造骨組構成部材の適正強度分布に関する研究(その1 動的崩壊機構特性とエネルギー吸収能力),日本建築学会論文報告集,第323号,pp.13-22,1983.1
- 9)小川厚治:鋼構造骨組構成部材の適正強度分布に関する研究(その2 動的応答解析例による検討),日本建築学会論文報告集,第328号, pp.18-25, 1983.6
- 10) 小川厚治:鋼構造骨組構成部材の終局強度分布に関する一考察,
- 日本建築学会中国・九州支部研究報告,第5号,pp.289-292,1981.3 11) A.Papoulis: 工学のための応用確率論・基礎編,東海大学出版会, pp.172-183,1970
- 12) A.H-S.Ang and W.H.Tang: 土木・建築のための確率・統計の基礎, 丸善, pp.189-191, 1977
- 13) 加藤勉・秋山宏・大井謙一・東清仁:強震を受けるせん断型多層 骨組の損傷集中(鋼構造剛接骨組を対象として),日本建築学会関 東支部研究報告集,pp.169-172,1977
- 14) 待鳥賢治・小川厚治・黒羽啓明:強震を受ける構造物の正負2方向
 への損傷分配に関する一考察,日本建築学会九州支部研究報告,第
 35号1, pp.497-500, 1995.3