

DAMAGE DISTRIBUTION LAW IN TWO DIRECTIONS OF SINGLE-DEGREE SYSTEMS UNDER STRONG GROUND MOTIONS

小川 厚治*. 黒羽 啓明**, 待鳥 賢治*** Koji OGAWA, Yoshiaki KUROBANE and Kenji MACHIDORI

The authors have already proposed a basic law that governs damage distributions in elastic-perfect plastic shear-type models as a function of structure's strength distributions. In this paper, one quarter of the energy input due to ground motions is assumed to be absorbed first by plastic deflection in one direction, and then the rest of energy is assumed to be distributed throughout the following reversals of plastic deflection according to the damage distribution law. Thus the concentration of plastic deformation in one direction, and the maximum and residual deformations in one-degree-offreedom systems with various kinds of force-deformation curves are determined in a quantitative manner.

Keywords : single-degree system, strength decay, damage distribution, maximum deformation, residual deformation 1自由度系,耐力劣化,損傷分布,最大変形,残留変形

1. 序

地震外乱によって構造物に入力されるエネルギー量 は、構造物の強度や復元力特性などの影響をほとんど 受けない安定した量であり、構造物はこれを弾性振動 エネルギー(運動エネルギーE,と弾性歪エネルギー E_e の和)または塑性歪エネルギー E_p (以下,損傷と 呼ぶ。)として吸収する¹⁾。したがって、1自由度系で は、正負2方向の損傷の総量は容易に予測できる。構造 物の損傷が正負2方向に均等に生じれば、構造物は正負 2方向におけるエネルギー吸収能力を十分に発揮するこ とができ, また, 地震外乱終了時には残留塑性変形も 生じないことになる。しかし、既に多くの報告がある ように、特に劣化勾配を持つ振動系では塑性変形の1方 向への片寄り、累積の傾向が顕著である^{2,3)}。

筆者らは既に、完全弾塑性型の復元力特性をもつせ ん断型多質点系構造物を対象に、弾性限強度分布に応 じた損傷の各要素への分配則を提案している4。この損 傷分配則が微小増分に対しても成立すると仮定して⁵⁾, 1自由度系の正負2方向への損傷分配に適用すれば、正負 両方向の復元力特性が等しい構造物の損傷は正負両方向 に常に均等に生じることになり、塑性変形の1方向への 片寄りはこの損傷分配則だけでは説明できない。

構造物は、地動による全入力エネルギーのかなりの部 分を、1回の1方向への塑性変形によって吸収することは 既に報告されているの。筆者らは、地動による全入力工 ネルギーの一定部分は衝撃的に構造物に入力され、その エネルギーが1方向だけの塑性変形を生じさせること が、塑性変形の片寄りが生じ始める原因であると考え た。地動による全入力エネルギーの一定部分によって塑 性変形はまず1方向に生じ、その後の損傷はせん断型多 質点系構造物で定量化した損傷分配則にしたがって、各 方向の弾性限強度に応じて2方向に分配されると考える れば、1自由度系の正負2方向への損傷分布が予測できる ことを、この報告は明らかにしようとするものである。

本論文の一部は日本建築学会九州支部研究報告,1995.3に発表している。

		*熊本大学工学部建築学科	助教授・工博
	*	*熊本大学工学部建築学科	教授・工博
*	*	*熊本大学工学部建築学科	大学院生

Associate Prof., Dept. of Architecture, Faculty of Engineering, Kumamoto Univ., Dr. Eng. Prof., Dept. of Architecture, Faculty of Engineering, Kumamoto Univ., Dr. Eng. Graduate Student, Dept. of Architecture, Faculty of Engineering, Kumamoto Univ.

2. 基礎仮定

損傷の正負2方向への分配に用いた仮定事項は次の3つ である。

地動による全入力エネルギーE, は既知であり¹⁾,次
 式で与えられるとする。

$$E_t = E_i + E_e + E_p = e_t E_y \tag{1}$$

ここで, E_y は初期弾性限歪エネルギーであり,初期弾 性限強度を P_y ,初期弾性限変位を U_y とすると,次式で 表される。

$$E_{\rm v} = P_{\rm v} U_{\rm v} / 2 \tag{2}$$

[2] 地動による全入力エネルギーE, の一部 αE , が, まず 1方向の塑性変形によって吸収されるものとする。ただ し、 α は定数である。

[3] 塑性化する要素i に分配される損傷増分d E_{pi} は次式
 で表される。

$$dE_{ni} = cE_{ai}\lambda_i^{-4} \tag{3}$$

ここで, c は比例定数であり, E_{oi} は要素i の損傷分 配の基準値で, 地震荷重下で構造物が弾性の時の各要 素の弾性歪エネルギーとしている。また, λ_i は降伏荷 重係数である。

仮定[1]については,既に多くの研究^{1, 7)}が行われてい る。ここでは地震外乱強度による構造物の塑性化の程度 を表す指標として(1)式の e, を用いているに過ぎない。 仮定[2]で定義した定数αの値を決めるために地震応 答解析を行った。図1は,完全弾塑性系の地震応答解析 結果から,全入力エネルギー E_t に対する一回の塑性変 形で吸収されたエネルギーの最大値 $\Delta E_{p,max}$ の比 $\Delta E_{p,max}/E_t$ を求め,固有周期Tを横軸にとって示した ものである。なお,入力地震外乱は表1に示す12種の記 録を用いており,入力エネルギー量を表すパラメータ e_t が5,11,21(累積塑性変形倍率が2,5,10)となるように 増幅している。また,本論で示す応答解析例ではすべ て,粘性減衰定数は1%としており,数値積分の時間増 分は固有周期の1/500以下に設定している。

図1によると、入力エネルギーが大きくなるにつれて $\Delta E_{p,max}/E$ 、は減少する傾向が全体的に認められるが、 その影響は小さく、固有周期Tによって変化する定性的

表1 応答解析用入力地震外乱

	最大加速度	継続時間	マーク
El centro, 1940, N-S	341.7gal	53.73sec.	•
El centro, 1940, E-W	210.1gal	53.47sec.	0
Taft, 1952, N-S	152.7gal	54.36sec.	
Taft, 1952, E-W	175.9gal	54.38sec.	Δ
Hachinohe, 1968, N-S	225.0gal	35.99sec.	
Hachinohe, 1968, E-W	182.9gal	35.99sec.	
Sendai, 1962, N-S	57.5gal	13.98sec.	▼
Sendai, 1962, E-W	47.5gal	14.18sec.	∇
Tohoku Univ., 1978, N-S	258.2gal	40.94sec.	•
Tohoku Univ., 1978, E-W	202.6gal	40.94sec.	\diamond
Tokyo, 1956, N-S	74.0gal	11.38sec.	B
Osaka, 1963, E-W	25.0gal	14.98sec.	Ð

図1 1回の塑性変形で吸収されるエネルギーの最大値

傾向も認められない。また、Tokyo,N-S、Osaka,E-Wといった主要動の継続時間が短く、最大加速度の比較的小さい地震では、この値は若干大きくなる傾向があるが、その他の地震については、 $\Delta E_{p,max}/E_t$ は図1中に鎖線で示すように1/4程度である。従って、本研究では、 α は1/4とした。

 $\alpha = 1/4 \tag{4}$

仮定[3]は、完全弾塑性型の復元力特性をもつせん断 型多質点系について筆者らが既に提案している損傷分配 則である⁴⁾。ただし、ここでは、この分配則が微小増分 間で成立することを仮定し⁵⁾、更に、正負それぞれの塑 性変形に伴う損傷を区別することで、2方向への損傷分 配則として用いている。

なお、本論における損傷分配予測では、仮定[2]にし たがって、最初に損傷の生じる方向を正側と呼ぶことに する。その結果、本論の予測では、正側の損傷は負側の 損傷より必ず大きくなる。

3. 正負2方向への損傷分配

3.1 解析対象

ここでは、前項の仮定に基づいて、単調載荷時の荷 重-変形関係が図2に示すようなBi-linear型またはTrilinear型の1自由度系を対象に、正負2方向への損傷分配 の具体的な算定式を示す。ただし、繰り返し載荷時の履 歴特性としては、図3(a)に示すような、1方向の塑性挙動 が逆方向の履歴の影響を受けないとするモデル(秋山モ デルと呼ぶ。)と、図3(b)に示すように、系の復元力が いくつかの完全弾塑性要素と1つの弾性要素の復元力の 和で表現できるモデル(並列結合モデルと呼ぶ。)の2 種類を考える。塑性変形の片寄りの大きな原因となるP-ム効果は、負の剛性をもつ弾性要素との並列結合モデル として考慮できる。なお、本論では、荷重はP,変形

はUとし,これを初期弾性限での値 P_y , U_y で無次元化した値をp,uの記号で表している。

3.2 単一要素が塑性化する系

さて、Tri-linear型の並列結合モデルは、2つの完全弾 塑性要素と1つの弾性要素からなる系であり、1方向に2 つの塑性化する要素を含む。単純化のために、まずはこ のモデルを除外して、それ以外のモデル(Bi-linear型, および、Tri-linear型の秋山モデル)について考える。

最初に塑性変形が生じる方向を正側としているので, 仮定[2]より αE_t の損傷が生じるまでの正側塑性変形 sU_{p+} は, Bi-linear型については次式となる。

$$\frac{{}_{s}U_{p\,+}}{U_{y}} = {}_{s}u_{p\,+} = \alpha \, e_{t} \, / \, (1 + \sqrt{1 + \frac{\tau_{1} \, \alpha \, e_{t}}{1 - \tau_{1}}})$$
(5)

ただし, $_{su_{p+}}$ はこの時点での塑性率である。

同様に、Tri-linear型についても上式の $_{su_{p+}}$ が第2折れ 曲がり点での塑性率 u_{pm} より小さい場合は、 $_{su_{p+}}$ は(5) 式で算定できる。 $_{su_{p+}} \ge u_{pm}$ のときは次式となる。

$$\frac{{}_{s}U_{p}}{U_{y}} = {}_{s}u_{p} = \frac{\alpha e_{t} - u_{pm}(1-s)}{p_{m} + s}$$
(6)

ただし,

$$s = \sqrt{p_m^2 + \frac{\tau_2}{1 - \tau_2}} \{ \alpha e_t - (p_m + 1) u_{p_m} \}$$

また、 u_{pm} , p_m は、単調載荷時荷重-変形関係の第2折れ 曲がり点での荷重 P_m および塑性変形 U_{pm} を無次元化し た値である。すなわち、

$$u_{pm} = U_{pm} / U_y$$
, $p_m = P_m / P_y$ (7)

次に、それ以降の損傷は仮定[3]にしたがって正負2方 向に分配される。ここで、正負それぞれの累積塑性変形 倍率が u_{p+} , u_{p-} の状態を考え、その時点での正負の弾 性限強度を P_{y+} , P_{y-} ,塑性化後の剛性を $\tau_{+}K$, $\tau_{-}K$ と する。なお、 u_{p+} , u_{p-} の初期値は次式である。

$$u_{p+} = {}_{s}u_{p+} , \quad u_{p-} = 0 \tag{8}$$

Bi-linear型の系については、 $\tau_+ = \tau_- = \tau_1$ であり、弾性 限強度は2つの履歴モデルについてそれぞれ次のように 表される。

(a) Bi-linear型秋山モデル

$$\frac{P_{y+}}{P_{y}} = p_{y+} = 1 + \frac{\tau_{1}}{1 - \tau_{1}} u_{p+}$$

$$\frac{P_{y-}}{P_{y}} = p_{y-} = 1 + \frac{\tau_{1}}{1 - \tau_{1}} u_{p-}$$
(9)

(b) Bi-linear型並列結合モデル

$$\frac{P_{y+}}{P_y} = p_{y+} = 1 + \frac{\tau_1}{1 - \tau_1} (u_{p+} - u_{p-})$$

$$\frac{P_{y-}}{P_y} = p_{y-} = 1 + \frac{\tau_1}{1 - \tau_1} (u_{p-} - u_{p+})$$
(10)

- 15 -

Tri-linear型の秋山モデルについては次のようになる。 $u_{p+} < u_{pm}$ のとき,

$$\frac{P_{y+}}{P_y} = p_{y+} = 1 + \frac{\tau_1}{1 - \tau_1} u_{p+}$$

$$\tau_+ = \tau_1$$
 (11.a)

$$u_{p+} \ge u_{pm} \quad \mathcal{O} \succeq \gtrless,$$

$$\frac{P_{y+}}{P_{y}} = p_{y+} = p_m + \frac{\tau_2}{1 - \tau_2} (u_{p+} - u_{pm})$$

$$\tau_+ = \tau_2$$
(11.b)

u_{p -}<u_{pm} のとき,

$$\frac{P_{y_{-}}}{P_{y}} = p_{y_{-}} = 1 + \frac{\tau_{1}}{1 - \tau_{1}} u_{p_{-}}$$

$$\tau_{-} = \tau_{1}$$
 (11.c)

 $u_{p} \ge u_{pm} obs,$

$$\frac{P_{y-}}{P_y} = p_{y-} = p_m + \frac{\tau_2}{1 - \tau_2} (u_{p-} - u_{pm})$$

$$\tau_- = \tau_2$$
(11.d)

正負2方向の地震荷重が等しいことを仮定して⁸⁾,その 基準値Hの大きさは以下の結果に影響しないので,単 純化のためにP,を用いる。すなわち,

$$H = P_{y} \tag{12}$$

正負2つの要素の降伏荷重係数¹/₄, ¹/₂ は次式で表される。

$$\lambda_{+} = P_{y+} / H = p_{y+} , \ \lambda_{-} = P_{y-} / H = p_{y-}$$
 (13)

塑性化後の剛性が τK であるとき,全要素K のうち (1- τ)K の部分のみが塑性化していて他の部分 τK は 弾性であると考えると,2つの方向の損傷分配の基準値 E_{a+} , E_{a-} は次式となる。

$$E_{o+} = (1 - \tau_{+}) E_{v} , E_{o-} = (1 - \tau_{-}) E_{v}$$
(14)

(13), (14)式を(3)式に代入すると,正側損傷増分d *E*_{p+} と負側損傷増分d *E*_nの関係は次のように表される。

$$\frac{\mathrm{d}\,E_{p+}}{\mathrm{d}\,E_{p-}} = \frac{(1-\tau_{+})\,p_{y+}^{-4}}{(1-\tau_{-})\,p_{y-}^{-4}} \tag{15}$$

また、累積塑性変形倍率の増分間関係は次式となる。

$$\frac{\mathrm{d}\,\boldsymbol{u}_{p+}}{\mathrm{d}\,\boldsymbol{u}_{p-}} = \frac{(1-\tau_{+})\,p_{y+}^{-5}}{(1-\tau_{-})\,p_{y-}^{-5}} \tag{16}$$

ここで、(16)式の誘導には次の関係を用いている。

$$\frac{dE_{p+}}{dE_{p-}} = \frac{p_{y+} du_{p+}}{p_{y-} du_{p-}}$$
(17)

(16)式は,構造物の復元力特性にかかわらず,累積塑 性変形倍率の微小増分 du_{p+} または du_{p-} を与えて数値 積分すれば容易に解を導くことができる。

Bi-linear型の系についてのこの仮定[3]による損傷分配

過程では、 $\tau_1 > 0$ のときは(16)式の右辺は必ず1より小さ くなり、負側の塑性変形増分が正側の塑性変形増分より も大きくなって、残留塑性率 $u_p = u_{p+} - u_{p-}$ は単調に減 少する。また逆に、 $\tau_1 < 0$ のときは u_p は単調に増大す る。

(16)式の積分を(1)式の条件が満たされるまで行う。ただし、損傷 E_p は正側および負側の損傷 E_{p+} , E_{p-} の和であり、次式で表される。

$$E_{p} = E_{p+} + E_{p-} \tag{18}$$

$$E_{p+} = \alpha e_t E_y + P_y U_y \int_{s^{u_{p+}}}^{e^{u_{p+}}} p_{y+} d u_{p+}$$

$$= P_y U_y \int_{0}^{e^{u_{p+}}} p_{y+} d u_{p+}$$

$$E_{p-} = P_y U_y \int_{0}^{e^{u_{p-}}} p_{y-} d u_{p-}$$
 (19)

ここで、 $_{e}u_{p+}$ および $_{e}u_{p-}$ は、解析終了時の正側および 負側の累積塑性変形倍率である。

弾性振動エネルギー $E_i + E_e$ は,正負2方向の弾性限歪 エネルギーの小さい方の値を用いて近似する。すなわち,

 $E_{i} + E_{e} = E_{y} \min(p_{y+2}, p_{y-2}) = E_{y} \min(\lambda_{+}^{2}, \lambda_{-}^{2}) \quad (20)$ (18)~(20)式を用いると, (1)式は次のように表される。

$$e_{i}=2\int_{0}^{e^{u}p+}p_{y+}\,\mathrm{d}u_{p+}+2\int_{0}^{e^{u}p-}p_{y-}\,\mathrm{d}u_{p-}+\min(p_{y+}^{2},p_{y-}^{2}) \quad (21)$$

3.3 Tri-linear型の並列結合モデル

このモデルは、図4に示すように、2つの完全弾塑性要素a,bと1つの弾性要素cとを並列に結合したものであり、弾性限変位の小さい方の弾塑性要素を要素aとすると、各要素の弾性剛性 K_a , K_b , K_c ,初期弾性限変位 U_{va} , U_{vb} ,弾性限強度 P_{va} , P_{vb} は次式で表される。

$$k_{a} = \frac{K_{a}}{K} = 1 - \tau_{1} , \ k_{b} = \frac{K_{b}}{K} = \tau_{1} - \tau_{2} , \ k_{c} = \frac{K_{c}}{K} = \tau_{2}$$

$$u_{ya} = \frac{U_{ya}}{U_{y}} = 1 , \ u_{yb} = \frac{U_{yb}}{U_{y}} = \frac{U_{m}}{U_{y}} = u_{m}$$

$$p_{ya} = \frac{P_{ya}}{P_{y}} = 1 - \tau_{1} , \ p_{yb} = \frac{P_{yb}}{P_{y}} = (\tau_{1} - \tau_{2}) u_{m}$$
(22)

図4 Tri-linear型並列結合モデル

各要素の損傷分配の基準値E_{oi}は次式となる。

$$E_{oa+} = E_{oa-} = k_a E_y$$

$$E_{ob+} = E_{ob-} = k_b E_y$$
(23)

ここで, E_{oa+}, E_{oa-} は要素aの正負2方向に関する量で あり,同様に E_{ob+}, E_{ob-} は要素bに関する量である。

まず,正負2方向の要素a,b,計4つの要素の損傷増分 の一般的関係を導く。

要素a,bの正負2方向の累積塑性変形をそれぞれ U_{pa+} , U_{pa-} , U_{pb+} , U_{pb-} とし、各要素の累積塑性変形倍率 u_{pa+} , u_{pa-} , u_{pb+} , u_{pb-} を次のように定義する。

$$u_{pa+} = U_{pa+} / U_{y} , \quad u_{pa-} = U_{pa-} / U_{y}$$

$$u_{pb+} = U_{pb+} / U_{y} , \quad u_{pb-} = U_{pb-} / U_{y}$$
 (24)

各成分の弾性時応力 P_a , P_b , P_c は, 変形 $U(=uU_y)$ に よって次式で表される。

$$p_{a} = P_{a} / P_{y} = k_{a} (u - u_{pa})$$

$$p_{b} = P_{b} / P_{y} = k_{b} (u - u_{pb})$$

$$p_{c} = P_{c} / P_{y} = k_{c} u$$
(25)

ただし、ここで

$$u_{pa} = u_{pa+} - u_{pa-}, u_{pb} = u_{pb+} - u_{pb-}$$
 (26)
したがって、外力零のときの変形、すなわち、塑性変形
 U_{-} は次式となる。

$$u_{p} = U_{p} / U_{y} = k_{a} u_{pa} + k_{b} u_{pb}$$
(27)

ここで, *u_p* は系の塑性率である。

また,要素a,bの残留応力P_{ra},P_{rb} は次式となる。

$$p_{ra} = P_{ra} / P_{y} = k_{a} \left\{ k_{b} u_{pb} - (k_{b} + k_{c}) u_{pa} \right\}$$

$$p_{rb} = P_{rb} / P_{y} = k_{b} \left\{ k_{a} u_{pa} - (k_{a} + k_{c}) u_{pb} \right\}$$
(28)

地震荷重H は剛性に比例して各要素に分配されると すると,要素aが正側で降伏するのに必要な応力増分は $P_{ya}-P_{ra}$ であるので,要素aの正側降伏荷重係数 λ_{a+} は 次式で定義される。

$$P_{ya} - P_{ra} = \lambda_{a+} k_a H \tag{29}$$

ここで再び $H=P_v$ とすると、 λ_{a+} は次式となる。

$$\lambda_{a+} = 1 - k_b \, u_{p\,b} + (k_b + k_c) \, u_{p\,a} \tag{30}$$

同様に要素aの負側降伏荷重係数 λ_{a-} ,要素bの正負2方向の降伏荷重係数 λ_{b+} , λ_{b-} は次のようになる。

$$\lambda_{a-} = 1 + k_b u_{pb} - (k_b + k_c) u_{pa}$$

$$\lambda_{b+} = u_m - k_a u_{pa} + (k_a + k_c) u_{pb}$$

$$\lambda_{b-} = u_m + k_a u_{pa} - (k_a + k_c) u_{pb}$$
(31)

以上の結果を用いて,各要素の損傷増分間の関係は次 式で表される。

$$dE_{pa+}: dE_{pa-}: dE_{pb+}: dE_{pb-}$$

= $k_a \lambda_{a+}^{-4}: k_a \lambda_{a-}^{-4}: k_b \lambda_{b+}^{-4}: k_b \lambda_{b-}^{-4}$ (32)

また,各要素の累積塑性変形倍率間の関係は次式となる。

$$d u_{p a+} : d u_{p a-} : d u_{p b+} : d u_{p b-}$$

= $k_a \lambda_{a+}^{-4} / p_{y a} : k_a \lambda_{a-}^{-4} / p_{y a} : k_b \lambda_{b+}^{-4} / p_{y b} : k_b \lambda_{b-}^{-4} / p_{y b}$
(33)

(32),(33)式の関係は、すべての要素に損傷が分配されることを前提として導いている。しかし、以下に述べるように、一部の要素には損傷は分配されない。

まず,最初に損傷 α E,が生じるまでは,損傷はすべて正側に生じるので,負側の損傷は零となる。

$$dE_{pa-} = dE_{pb-} = du_{pa-} = du_{pb-} = 0$$
(34)

また,降伏変位が小さい要素aに一定の塑性変形が生じ ない限り,要素bが降伏することはない。すなわち,

 $u_{pa+} < u_{yb} - u_{ya}$ のとき,

$$dE_{pb+} = du_{pb+} = 0 (35)$$

最初に正側にα*E*,の損傷が生じるまでの間は,(34),(35)式の条件の下で,損傷が分配される。

損傷 αE_t が生じた時点での2つの要素の累積塑性変形 倍率を su_{pa+} , su_{pb+} とする。この時点までに生じる塑性 変形は要素aの方が要素bに比べて大きいことによって, 負側で要素bに損傷が生じる条件は(35)式より厳しくな る。すなわち,

 $u_{pa-} < u_{yb} - u_{ya} + {}_{s}u_{pa+} - {}_{s}u_{pb+} obtem,$

$$d E_{pb} = d u_{pb} = 0 (36)$$

損傷 α E_t が生じた後は, (35), (36)式の条件の下で損傷が 分配される。

解析終了時の各要素の累積塑性変形倍率を $_{e^{u_{pa+}}}$, $_{e^{u_{pa-}}, e^{u_{pb+}}, e^{u_{pb-}}}$ とすると,系の損傷 E_{p} は次式で表 される。

$$E_{p} = E_{p\,a\,+} + E_{p\,a\,-} + E_{p\,b\,+} + E_{p\,b\,-} + E_{a} + E_{b} + E_{c} \qquad (37)$$

$$E_{pa+} = U_y P_{y'e} u_{pa+} P_{ya}$$

$$E_{pa-} = U_y P_{y'e} u_{pa-} P_{ya}$$

$$E_{pb+} = U_y P_{y'e} u_{pb+} P_{yb}$$

$$E_{pb-} = U_y P_{y'e} u_{pb-} P_{yb}$$

$$E_a = U_y P_{y'} P_{ra}^2 / 2 k_a$$

$$E_b = U_y P_{y'} P_{rb}^2 / 2 k_b$$

$$E_c = U_y P_{y'kc_e} u_p^2 / 2$$
(38)

ただし, $_{e^{u_{p}}}$ は残留塑性率である。 弾性振動エネルギー $E_{i}+E_{e}$ は次式で近似する。

$$E_{i} + E_{e} = E_{v} \min(\lambda_{a+2}^{2}, \lambda_{a-2}^{2}, \lambda_{b+2}^{2}, \lambda_{b-2}^{2})$$
(39)

なお、ここでTri-linear型並列結合モデルについて述べた損傷分配則による結果は、 τ_1 を1または τ_2 に漸近さ

せると,前述のBi-linear型並列結合モデルの損傷分配則 による結果に滑らかに収束し,ここで述べた分配則は 3.2項の分配則と矛盾しない。

4. 地震応答解析結果との比較

4.1 Bi-linear型

まず, Bi-linear型の復元力特性をもつ系の地震応答解 析を行い,前節の予測値と比較する。ただし,第2分枝 剛性比 τ_1 は-0.1~0.1の範囲で変化させ,固有周期Tは 0.5, 1.0, 2.0秒の3種,入力エネルギー量を表すパラメー $9e_t$ は5, 11, 21の3種とした。

図5,6は、2方向の損傷のうち大きい方の値 E_{p+} と全損 傷 E_p との比 E_{p+}/E_p を示したもので、図5は秋山モデ ル、図6は並列結合モデルである。いずれの図も、個々 の地震外乱に対する応答を表1に示したマークで表して おり、12種の地震外乱に関する平均値を+印で示してい る。↑印はそれ以下に τ_1 を小さくすると倒壊すること を示している。また、実線で示しているのは本論による 予測値であり, e_r=21の図で倒壊する範囲では予測値を 示していない。なお、倒壊は、応答解析では荷重-変形 関係の履歴曲線が負の勾配をもって荷重零軸を横切る現 象と定義しており、予測値では降伏荷重係数の最小値が 零になる現象として定義している。

図5,6によると、応答値は非常にばらついてはいる が、次のような傾向が認められる。

- (1) 第2分枝剛性比 τ_1 が大きくなるにしたがって E_{p+}/E_p の値が0.5に近づく,すなわち,2つの方向の 損傷が一様化する。
- (2) 上記(1)の傾向は入力エネルギー e_t が大きくなるにし たがって顕著になり、 $\tau_1 < 0$ の領域では入力エネル ギーが大きい方が損傷の片寄りが激しくなるが、 $\tau_1 > 0$ の領域では入力エネルギーの大きい方が2つの方

向の損傷が一様化する。

(3) 上記(1), (2)のいずれの傾向も図5に示した秋山モデル より,図6の並列結合モデルの方が顕著である。

(4) 図5, 6のいずれについても, 固有周期によって性状

が定性的に変化するような傾向は認められない。

図5,6中に太線で示した本論による予測値は,以上に 述べた4つの定性的傾向をよく捉えている。本論の予測 値は,損傷の小さい $e_i = 5$ の場合や $\tau_1 > 0$ の系について は応答値の平均値をよく近似しているが,全損傷 e_i が 大きい場合には劣化勾配 τ_1 が急になる程,平均値を外 れむしろ上限値に漸近する傾向がある。この原因として は,(3)式で仮定した損傷分配則が損傷集中の上限的な値 を与えるように設定されていることが挙げられる⁴⁾。 $e_i = 21$ の応答解析例で倒壊が生じる最大の τ_1 の値は秋 山モデルについては -0.06,並列結合モデルについては -0.055であり,本論による予測によると秋山モデルでは -0.058,並列結合モデルでは-0.056となる。本論による予 測値は倒壊が起こる上限の τ_1 を近似している。

前述したように図5,6では固有周期Tの影響は認められないので、以下の結果はT=1秒の系についてのみ示す。図7,8は、秋山モデルと並列結合モデルの2つの履歴 モデルについて、塑性率 $u_p(=u_{p+}-u_{p-})$ の最大値 $u_{p \max}$ を示したものである。また,図9,10には,解析終 了時の残留塑性率 $_{e}u_{p}(=_{e}u_{p+}-_{e}u_{p-})$ を示している。こ れらの図においても,応答解析結果は表1のマークで, その平均値を+印で,予測値は実線で示している。

本論による予測では、 $\tau_1 < 0$ の系では損傷が1方向に 累積する傾向が現われるので、 $u_{pmax} \geq_e u_p$ はいずれも 解析終了時の値で等しくなる。また、この損傷の片寄り は、劣化勾配 τ_1 が急になる程、入力エネルギー e_i が大 きくなる程顕著になり、 u_{pmax} および $_e u_p$ は大きくな る。一方、 $\tau_1 > 0$ の領域では、最初に αE_i の損傷が生 じた時点で塑性率 u_p は最大になり、その後は減少する ので、 $_e u_p$ は u_{pmax} に比べて小さくなる。したがって、 $\tau_1 > 0$ の領域では、 u_{pmax} は τ_1 の影響をほとんど受けな いが、 $_e u_n$ は τ_1 が大きくなる程小さくなっている。

図7~10によると、上記の傾向は応答値にも顕著に現 われている。これらの図においても、本論による予測値 は、損傷の片寄りが小さい系については応答値の平均値 を近似し、損傷の片寄り・集中が生じる系については応

- 19 -

答値の上限値を近似する傾向が認められる。 4.2 Tri-linear型

示す2種類のTri-linear型の系について解析を行った。 まず、図11(a)に示すTri-linear型 I では、第3分枝は

Tri-linear型の系に対する本論による予測結果の合理性 を調べるために、単調載荷時の荷重-変形関係が図11に (u,p)=(4,1)を通る $\tau_2=-0.2$ の直線で,第2分枝と 第3分枝の交点の無次元化変位 u_m を1.5~5.5の範囲で変

化させている。したがって、 $u_m = 1.5$ では $\tau_1 = 1$ で、弾 性限強度が1.5 P、のBi-linear型となり、 u_m が大きくなる にしたがって τ_1 は小さくなり、 $u_m = 4$ では $\tau_1 = 0$ 、 $u_m > 4$ では $\tau_1 < 0$ となる。また、図11(b)のTri-linear型 II では、第2分枝と第3分枝の交点である最大耐力点は $(u_m, p_m) = (2, 1.2)$ で、この点までの荷重-変形関係の 形状は一定とし、第3分枝がp = 1を横切る点の無次元化 変位 u_d を3~7の範囲で変化させている。

紙面の都合で結果は残留塑性率 $_{e}u_{p}$ のみとし、Trilinear型 I の秋山モデルを図12に、Tri-linear型 I の並列結 合モデルを図13に、Tri-linear型 II の秋山モデルを図14 に、Tri-linear型 II の並列結合モデルを図15に示す。

これらの図においても、予測値は倒壊しない範囲での み示しているが、図12(c)に示す $e_r = 21$ のときのTri-linear 型 Iの秋山モデルについては u_m の値にかかわらずすべ て倒壊すると予測されるので予測値の実線は示していな い。応答解析では、図12(c)に示しているように全解析例 492中49例が倒壊を免れているが、9割程度は倒壊している。

図13(c)に示す $e_r = 21$ のときのTri-linear型 I の並列結合 モデルについては、 $u_m < 1.76$ または $u_m > 4.21$ の範囲で 系が倒壊することが本論による方法では予測される。各 地震外乱に対する応答値で倒壊しない限界を表す u_m の 値には↑印を付けて示しているが、Tokyo, N-Sに対する 応答解析ではすべて倒壊したので、図13(c)にはTokyo, N-Sに関する応答値は示していない。この図においても他 と同様に応答値の平均値を+印で示しているが、図13(c) の+印はTokyo, N-Sを除く11種の外乱に対する応答の平 均値である。なお、 $e_r = 5$ および $e_r = 11$ のときは、Trilinear型 I では倒壊した例は全くない。

図15(a)では、予測値を示す実線が応答値のマークと重なって明瞭ではないが、予測値は_eu_pが0.18程度で概ね 一定となっている。

さて、図12,13によると、Tri-linear型 I に関する結果で は残留塑性率がある u_m の値で最小値をとる性質があ る。各応答値の平均値と予測値について、残留塑性変形 が最小になるときの u_m の値を表2にまとめているが、両 者は良く対応している。この残留塑性変形が最小となる

表2 _eu_p が最小となるときのu_m

	秋山モデル		並列結合モデル		
	$e_{t} = 5$	$e_{t} = 11$	$e_{t} = 5$	$e_{t} = 11$	$e_{t} = 21$
応答平均値	2.1	3.6	1.8	2.2	2.8
予測值	2.24	3.36	2.09	2.69	3.22

点の近傍のように1方向への損傷の集中が比較的小さい 領域では、本論による予測値は応答値の平均値を近似 し、損傷の片寄りが健在化するに連れて本論による予測 値は損傷集中の上限値を近似する傾向が、前述したBilinear型の系についてと同様に、図12~15にも認められ る。

個々の解析結果に関する詳細な考察はここでは行わないが、Tri-linear型Iの残留塑性率があるu_mの値で最小となるのが、どのような現象の分岐点に対応するかは興味深い問題と考えている。このようなTri-linear型の復元力特性をもつ系の解析結果に関する考察は、構造物の塑性変形性能をいかに評価すべきかという問題と合わせて今後詳細に検討する予定である。

5. 結論

本論では、全入力エネルギーの1/4がまず構造物の1方 向での損傷として吸収されると仮定し、その後の損傷は 筆者らが完全弾塑性型のせん断型モデルで定量化した損 傷分配則にしたがって正負2方向に分配されると考える ことによって、各種の復元力特性をもつ1自由度系の最 大塑性率や残留塑性率、塑性変形の1方向への片寄り現 象などを予測する方法を示した。本論による予測値は、 1方向への損傷集中が小さい系については応答値の平均 値を与え、1方向への損傷集中が顕著になるにしたがっ て損傷集中の上限的な値を与えるものとなる傾向がある が、損傷集中の定性的傾向を良く捉えていると考える。 謝辞

.

本研究は,1994-1995年度文部省科学研究費 一般研究 (C)(課題番号 06650639)の援助を受けた。ここに記し て謝意を表します。

参考文献

- 1)加藤勉・秋山宏:強震による構造物へのエネルギ入力と構造物の損 傷,日本建築学会論文報告集,第235号,pp.9-18,1975.9
- Paul C. Jennings and Raul Husid : Collapse of Yielding Structures During Earthquakes, Proc. ASCE, Vol.94, No.EM5, pp.1045-1065, 1968.10
- 3) 曽我部博之・小高昭夫:強震を受ける弾塑性質点系のP-ム効果について、日本建築学会構造系論文集,第463号, pp.19-26, 1994.9
- 4) 塩崎洋一・小川厚治・黒羽啓明:せん断型多層骨組の損傷集中予測 式の提案,日本建築学会大会学術講演梗概集,pp.1535-1536,1993.9
- 5)加藤勉・秋山宏:地震時における鋼構造せん断型多層骨組の損傷分 布則,日本建築学会論文報告集,第270号,pp.61-68,1978.8
- 6) 井上一朗: 塑性歪履歴を受ける鋼構造部材の耐震性能判定に関する 一考察,構造工学論文集, Vol.41B, pp.621-629, 1995.3
- 7) 三宅辰哉・福知保長:粘性減衰を有する1質点系の履歴吸収エネル ギーに関する考察,日本建築学会構造系論文集,No.470,pp.85-94,1995.4
- 8)小川厚治:鋼構造骨組構成部材の適正強度分布に関する研究,その
 1 動的崩壊機構特性とエネルギー吸収能力,日本建築学会論文報告集,第323号, pp.13-22, 1983.1