
Name Resolution Middleware Using Relative
Positional Relationship to Support Wireless Visible

Area Communication

Atsushi Noda

Graduate School of

Information Science and

Electrical Engineering,

Kyushu University

744 Motooka Nishi-ku,

Fukuoka 819-0395, JAPAN

+81(92)802-3644

noda@f.csce.kyushu-u.ac.jp

Teruaki Kitasuka

Graduate School of

Science and Technology,

Kumamoto University

2-39-1 Kurokami,

kumamoto-shi, Kumamoto

860-8555, JAPAN,

+81(96)342-3898

kitasuka@cs.kumamoto-u.ac.jp

Shigeaki Tagashira,
Tsuneo Nakanishi and Akira Fukuda

Faculty of Information Science

and Electrical Engineering,

Kyushu University

744 Motooka Nishi-ku,

Fukuoka 819-0395, JAPAN

+81(92)802-3644

{shigeaki,tun,fukuda}@f.csce.kyushu-u.ac.jp

Abstract—In this paper, we propose name resolution middle-
ware that involves positional awareness to identify target hosts in
wireless visible area communication (WVAC). WVAC is a wireless
communication network that enables users to exchange informa-
tion with nearby hosts, especially within the users’ visible area,
wherein the underlying network can be locally and temporarily
constructed without the aid of any centralized administration.
In such communication, the proposed middleware assists the
user to intuitively identify a target host by presenting the
relative positional relationship among the neighbor hosts. The
middleware possesses the following characteristics: (1) it provides
simple APIs to be easily utilized by various applications, (2)
a dedicated server preliminarily located in the network is not
required to operate it, and (3) it adopts a positioning method that
could estimate the relative locations of neighbor hosts without any
pre-configuration. Finally, we construct a prototype system and
evaluate the middleware using this system. The results indicate
that this middleware can sufficiently work even on resource-
limited mobile devices.

Index Terms—Wireless Local Communication, Location-based
Host Selection, Real-time Locating System (RTLS), Location
Estimation.

I. INTRODUCTION

Due to recent advancements in mobile communication

technologies, many consumers enjoy various network ser-

vices through wireless communication devices. In particular,

a spread of infrastructure-less and short-range communication

devices, such as Bluetooth, ad hoc mode in IEEE 802.11, and

so on, has rapidly increased the demand for wireless local

communication, especially with nearby (visible) networked

terminals or equipments; however, a complicated procedure

is required to establish such local communication when con-

ventional communication techniques are used. This motivates

the study of a simple way to realize wireless communication

covering a user’s visible area, called wireless visible area

communication (WVAC), which enables the users to readily

exchange information with visible hosts.

In conventional computer networks, users are required to

specify (or identify) a remote host by its ID to establish a

connection. For example, fully qualified domain name (FQDN)

is introduced as a name-based approach, wherein a specified

name is resolved to its associated ID (e.g., an IP address) using

DNS. This approach is designed in a user-friendly manner; i.e.,

the unique name of a host hierarchically consists of human-

memorable names. As another approach to specify a remote

host, a browsing mechanism is used as a list-based approach in

a local area network. The browsing mechanism automatically

generates a list of hosts’ names sorted in a lexicographic order

and then the target can be identified by the user’s selection

from the list without typing the name. The name- and list-

based approaches work effectively in conventional computer

networks; however, these approaches are inadequate to support

WVAC, since a user is required to memorize the exact name

of a communication partner or look it up in a list lacking

positional awareness, although the user can obviously view

the partner. In particular, these issues become critical if the

communication with a partner is rarely established and a large

number of neighbor hosts exists in the network.

In this paper, we propose name resolution middleware that

involves positional awareness to identify target hosts to support

WVAC. The proposed middleware assists a user to intuitively

identify a target host by presenting relative positional relation-

ships among the neighbor hosts. The middleware possesses the

following characteristics: (1) it provides simple APIs to be

easily utilized by various applications, (2) a dedicated server

preliminarily located in the network is not required to operate

it, and (3) it adopts a positioning method that can estimate

the relative locations of the neighbor hosts without any pre-

configuration. More specifically, we enhance the positioning

method, which has been proposed by wireless LAN indoor

positioning system (WiPS) [3], [4], to estimate the relative

locations in WVAC. Moreover, we evaluate the effectiveness

2009 International Conference on Advanced Information Networking and Applications

1550-445X/09 $25.00 © 2009 IEEE

DOI 10.1109/AINA.2009.55

443

of the prototype system by developing an example application

providing a graphical user interface to display the relative

locations, and examine the impact of errors for the distance

measurement of wireless LAN devices. The results indicate

that this middleware can sufficiently work even on resource-

limited mobile devices.

To better understand our proposed middleware and the

results, the remainder of this paper is organized as follows.

Section II provides an overview of WVAC and its host selec-

tion issue. Section III describes our proposed middleware. An

evaluation of our proposed middleware is given in Section IV .

Section V investigates location-aware systems and positioning

systems. Section VI concludes the paper and discusses future

work.

II. WVAC

In this section, an overview of WVAC and its host selection

method is described.

A. Overview

WVAC is a wireless network that enables users to exchange

information with visible target hosts, wherein the underlying

network can be locally and temporarily constructed without

communication infrastructures. In other words, a pair of hosts

can be directly connected to each other in WVAC. For WVAC,

we can find many useful situations. For example, a user wants

to control only the TV without performing any complicated

operations. As another situation, when there are three printers

in an office, the user would like to print a document from the

nearest printer.

In a conventional computer network, users are required

to follow a unified procedure to communicate with a host,

regardless of whether it involves remote or local communica-

tion. This requirement leads to complicated operations even in

local communications. In particular, traditional ways to specify

hosts lack the advantage of positional awareness in real-world

environments; for the above useful situations, it is complicated

to specify the TV and the nearest printer, although the user can

obviously view them. In this paper, we consider well-suited

host selection for the WVAC environment.

B. Host Selection

Host selection is the user action in which a target host is

selected through the user interface of the user’s host. Here, we

consider that the user would like to control the TV in front. A

naive solution for selecting the TV is a name-based approach,

i.e., the TV is selected by its associated name. However, the

exact name should be known by the user and furthermore it

is annoying to type the name. Another solution is a list-based

approach for host selection. A list of automatically generated

target hosts is displayed on the user’s host. The user can select

the target host from this list. However, the list is generally

presented in a lexicographic order and therefore it is expensive

to look up the name of the TV from such a list. Furthermore,

the user also has to know the partial name for selecting the

TV.

Fig. 1. Illustration for specifying a target host using relative location.

In this paper, we propose location-based host selection for

WVAC. Figure 1 shows an illustration for location-based host

selection. The user can select the target host more intuitively,

i.e., the locations of the icons for neighbor hosts keep the

relative positional relationship on the real world on the display.

The user can easily find the target host on the display as

compared to the actual user’s view. Moreover, we intro-

duce the notion of positional domain names in the location-

based host selection. By using this domain name, users can

easily select a group of hosts concerned with a specified

domain, e.g., nearby domain or a specific domain. Although

the proposed mechanism realizes a intuitive host selection,

it requires additional calculation cost and management cost

for the location estimation. Therefore, we carefully design a

low-cost location sensing and management mechanism in the

location-based host selection. We aim at providing location-

based host selection as middleware so that various applications

can utilize it easily.

III. PROPOSED MIDDLEWARE

In this section, the proposed middleware for location-based

host selection in WVAC is described.

A. Basic Design

The basic function of the proposed middleware is to provide

translating/binding between relative locations and names, as

well as that between names and identifiers. The requirements

on designing the middleware could be summarized as follows:

• to prepare simple APIs that can be easily utilized by

various applications,

• to run without a dedicated server preliminarily located in

the network, and

• to adopt a positioning method that could estimate the

relative locations without any pre-configuration.

After designing the middleware satisfying the above require-

ments, we carefully consider a particular positioning method

for estimating the relative locations. Often, existing positioning

methods require several reference points with predetermined

444

locations and pre-calibrations [1], [2]. Therefore, we focus on

the method proposed by WiPS [3], [4] as a basic positioning

method, because this method can accurately maintain the rela-

tive positional relationships, and estimate the relative locations

in a short computation time without pre-calibration. However,

several issues are involved when using this method in the

WVAC environment. In the following section, we first explain

the APIs and the software architecture of the middleware and

then describe how to apply the WiPS method to our proposed

middleware.

B. Application Interface

The APIs of the proposed middleware provide the transla-

tion between names and identifiers, as well as that between

the relative locations and names. The APIs for the former

translation follow traditional APIs in the C language, i.e.,

gethostbyname and gethostbyaddr:

WVAC gethostbyname:

WVAC gethostbyname returns the hostent structure

for a given name. The returned structure contains

the name and identifier of the host.

WVAC gethostbyaddr:

WVAC gethostbyaddr returns the hostent structure

for a given identifier.

As for the latter translation, we introduce the notion of

relative domains to translate the relative locations into their

corresponding names. More specifically, a relative domain is

specified instead of a relative location and the names of hosts

that exist in the specified relative domain are returned. On

the other hand, the APIs for translating from the names to

the relative locations simply return the relative location that

corresponds to the specified name. The relative domains are

defined as follows:

ALL:

This domain represents the area that is within the

wireless communication range.

NEARBY domain:

This domain represents the area that is within r(> 0)
[m] around the user’s host.

SPECIFIC domain:

This domain represents the area that is within r(> 0)
[m] centering the point (x, y).

PINPOINT domain:

This domain represents the host existing at the point

(x, y). If there is no host at this point, the nearest

host is returned.

The APIs for the translation between the relative locations

and names are described as follows:

WVAC gethostlocbydomain:

WVAC gethostlocbydomain returns the hostloc struc-

ture for hosts that exist in a specified domain. The

returned hostloc structure contains the name and

relative location of each host.

WVAC gethostlocbyname:

Fig. 2. Software architecture of the proposed middleware.

WVAC gethostlocbyname returns the hostloc struc-

ture that contains the relative position for a specified

host name.

WVAC updatelocation:

In our proposed middleware, each application uses

the relative location information stored in its own

buffer. WVAC updatelocation updates the buffer to

the latest one.

WVAC rotateLocation, WVAC mreverseLocation:

Details of these APIs are explained in section III-D3.

C. Software Architecture

The proposed middleware consists of three subsystems,

namely, sniffer, location manager, and session manager, as

shown in Figure 2. The middleware runs on all of the hosts of

users and all of the target hosts. The proposed host selection

system consists of all the hosts that run this middleware. A

sniffer subsystem and session manager subsystem should be

run on each host participating in the system and the location

manager subsystem should be operated on a selected host. The

selection scheme of the location manager will be described

later.

Each sniffer subsystem is responsible for measuring the

distances to the neighbor hosts. It sends the pair list of

measured distances to the neighbors and their identifiers (e.g.,

IP addresses) to the location manager. The sniffer subsystem

does not depend on a specific wireless communication device;

any device that has the capability of distance measurement can

be accepted by the sniffer subsystem. For example, wireless

LAN devices compliant with the IEEE 802.11 MAC, which is

one of the most popular wireless communication devices and

normally installed in notebook PCs and PDAs, can realize the

distance measurement based on the received signal strength

indicator (RSSI). Note that RSSI attenuates in proportion

to the square of the distance between sender and receiver.

Moreover, the reliability of the distance measurement is low

due to reflection, attenuation, multipath, and so on, i.e., the

estimated distance includes error of an order of several meters.

The location manager subsystem aggregates the measured

distances from the sniffer subsystems of all the hosts. By

445

using the aggregated distances, the location manager calculates

the relative locations of all the hosts. The location manager

informs the calculated relative locations to each session man-

ager. The relative locations are expressed by two-dimensional

coordinates for each host.

Each session manager subsystem manages the received

relative locations centering on the host operating the session

manager. It answers the requests from applications, i.e., the

requested relative location is resolved to the corresponding

identifier. The middleware provides a library that has an

application programming interface to the session manager.

Application engineers can simply develop the location-based

application by using the session manager library.

D. WiPS-based Positioning Method

The location manager subsystem estimates the relative loca-

tions of all the hosts from the aggregated distance information.

In this subsection, we describe an overview of the positioning

method adopted by WiPS and enhance the positioning method

for our proposed middleware.

1) Overview of WiPS: WiPS [3], [4] is a positioning

system that can estimate the absolute locations based on the

relative ones using several reference points. The positioning

method determines the relative locations, while minimizing

the cumulative errors between the estimated distances and the

measured ones of all the pair of hosts by using the steepest

descent method. The major features of the method are as

follows: (1) the accuracy of the location estimation becomes

higher as the density of hosts increases and (2) the computation

time for location estimation is relatively shorter than that using

other existing methods, e.g., a least-squares method. However,

the method may yield not an optimum solution but a local

optimum one. The basic process of the location calculation is

described below.

1) Aggregate the list of distances of each pair of hosts.

2) Determine the initial position of each host.

3) Iterate the modification of the positions of hosts, until

convergence.

4) Notify the location to each host.

Note that the initial position is the key to improve the

computation time of the estimation due to fast convergence.

To reduce the computation time, the result of a previous

convergence is used as the initial position for the next cycle.

There are two difficulties to use this method in WVAC. First,

the above process is operated on a dedicated server. To operate

without a dedicated host, we introduce a selection mechanism

of the host, instead of a dedicated server, as the location

manager for the middleware. Second, user orientation cannot

be determined using this method. However, the orientation is

essential for estimating the relative locations. To overcome this

problem, we include a mechanism to correct the orientation

of the relative locations.

2) Selection of Location Manager and Location Estimation:
A location manager is responsible for calculating the relative

locations described in Section III-D1, and it is automatically

selected among all the hosts participating in WVAC. The basic

Fig. 3. Procedure for estimating relative locations.

idea of selection is to make the host starting the middleware

at the earliest time as the location manager. In cases where the

manager becomes down or multiple managers start at the same

time, this system cannot operate correctly. We will address

these issues as interesting directions of the future work. The

detailed procedure for location estimation is described as

follows:

Step.1 Each host invokes the middleware.

Step.2 The middlewares broadcast a discover message for

a specific port to find the location manager that has

been already started.

Step.3 If the middleware gets no response, it starts as the

location manager.

Step.4 Otherwise, the middleware registers its identifier

and name to the found location manager and then

receives a list of identifiers and names for the hosts,

which have already been registered, from the location

manager.

The process for location estimation is shown in Figure

3, and the procedure for location estimation is described as

follows:

Step.1 Each sniffer measures the distance to each host

included in the received list.

Step.2 The sniffers send the measured distances to the

location manager that runs on the bottom host, as

shown in Figure 3.

Step.3 The location manager calculates the relative locations

from the received distances and distributes the rela-

tive locations to the session manager running on each

host.

3) Modification of Relative Locations: The location man-

ager can calculate the relative locations of the participating

hosts in an infrastructure-less environment. However, it is

difficult for the session manager to provide orientation of

the relative locations matching each user’s view. Moreover,

although the location manager collates the distance between

any two hosts, it cannot acquire the direction information from

each user, which induces a mirror-reversed error of relative

446

(a) Relative

Locations

(b) Estimated

Relative

Locations of

Rotational Error

(c) Estimated

Relative Locations

of Mirror

Reversed Error

Fig. 4. Errors of estimated relative locations.

locations. To resolve these issues, the middleware provides two

operations to modify the relative locations. In the following,

we explain the details of these issues and their solutions.

Figure 4 (a) shows the relative locations for hosts A, B,

and C in an actual environment, which is centered on host

A. In this figure, the upper arrow represents the direction

of a user’s view. Figure 4 (b) shows the relative locations

estimated in the same situation in Figure 4 (a). We observe

the difference between the two figures; the estimated relative

locations are rotated by an angle θ as compared to that on the

actual view. Note that in this middleware, the initial direction

of the user’s view is set as a random direction. The main

idea for resolving this issue is to provide a user interface to

input a right angle of the user’s view, and store this angle in

the session manager. The API to deliver this angle θ to the

session manager is the WVAC rotateLocation, as described in

section III-B. More concretely, when the rotation is noticed by

a user, the orientation is modified by a predetermined angle

through the rotation operation until the orientation is matched

to the actual one. The session manager records the total angle

of rotation. Further, this will automatically provide corrected

relative locations modified by the rotation for future requests.

Figure 4 (c) shows the mirror-reversed error of the relative

locations. In this case, it is evident that the distances between

the hosts are the same as that in Figure 4 (a) and the

direction of the user’s view is also matched to the actual one;

however, the relative directions differ in the two figures. For

resolving this issue, the proposed middleware provides the API

WVAC mreverseLocation that reverses the relative location. If

a user notices the reversed error, the user employs the reverse

operation using this application and WVAC mreverseLocation
is invoked. After this modification, the session manager will

provide the corrected relative locations for future requests.

IV. EVALUATION

In this section, we evaluate the performance and operability

of the proposed middleware. In this evaluation, we first con-

struct the prototype system of the middleware and implement

an application example using the prototype system. Next, we

evaluate the computational resources required for estimating

the relative locations and examine the impact of errors for the

distance measurement of wireless LAN devices.

Fig. 5. Screenshot of location-aware instant messenger.

A. Location-aware Instant Messenger

We implement a location-aware instant messenger as an

application example using the proposed middleware. Figure

5 shows the screenshot of the application. This application

displays the relative locations provided by the middleware on

the user’s screen. The application has a naming mechanism

that can share the handle names of users participating in the

application group. The handle names are also displayed. The

application supports the graphical operations for modification

in terms of relative locations as described in Section III-D3,

i.e., the user can operate the rotation and mirror-reversing of

the displayed location information by dragging the screen. The

user selects a target by graphically selecting its corresponding

icon on the screen. Internally, the relative position is acquired

from the selected icon and then translated to its identifier. The

user can input messages to a form prepared by the application,

and the application sends the messages to the selected target.

We exhibit the pseudocode used in this application using

APIs provided by the proposed middleware, as shown in Fig-

ure 6. This pseudocode shows only a part of this application.

B. Computational Resources

We evaluated the amount of memory required for operating

the proposed middleware. In this evaluation, the location man-

ager calculates the relative locations by varying the number of

hosts, i.e., 5, 10, 20, and 40 hosts. We use SHARP Zaurus

SL-C1000 as the location manager; it has Intel(R) XScale

(TM) (PXA270 416 MHz) and 64 MB RAM. The other hosts

are generated by evaluation software and randomly placed in

the 100m × 100m field. They are located within the wireless

communication range of each other. The result excludes the

amount of memory required for the evaluation software. In this

evaluation, the distance measurement using wireless communi-

cation devices contains 20% error in a normal distribution. We

measure the amount of memory for 10 s during the estimation

and the result shows the average value.

Table I shows the result. First of all, we observe that the

memory usage does not increase too much as compared to an

447

if (WVAC_updatelocation()) { /* updates relative locations */
/* gets names of neighbor hosts with WVAC_getnamesbydomain */
for (repeats for number of surrounding hosts) {

/* gets relative locations with WVAC_getlocbyname */
/* displays hosts with names, while keeping relative positional relation */

}
}

Fig. 6. Pseudocode for messenger software using the proposed middleware.

TABLE I
RESOURCES REQUIRED FOR CALCULATING RELATIVE LOCATIONS.

Num of Hosts Memory Size [KB]
5 3700
10 3704
20 3716
40 3764

increase in the number of hosts. The increase is only about 64

KB and the total amount is about 3.7 MB. This is sufficiently

small as compared to the size of the memory equipped on

today’s standard mobile terminals.

We calculate the amount of communication required for this

middleware. The size of one packet of distance information is

(n − 1)× 8 B, where n denotes the number of hosts. In this

prototype system, each sniffer sends the distance data to the

manager every second. When the number of hosts is 10, the

amount of communication between the sniffer and location

manager becomes (n − 1)× 8 ×n = 9 × 8 × 10 = 720 B/s.

The size of one packet for the location information delivered to

each session manager is n× 76 B. When the number of hosts

is 10 and the location information is delivered every second,

the amount of communication between the location manager

and session manager is n× 76 ×n = 10 × 76 × 10 = 7600

B/s. The total amount of communication for 10 hosts is 720

+ 7600 = 8320 B/s. The amount of communication increases

with the square of the number of hosts; for example, when

the number of hosts is 40, the total amount of communication

becomes about 135 KB/s plus the protocol overhead. By

compressing the data packet, we can decrease the total amount

of communication.

C. Computation Time

Next, through a evaluation, we determine the computa-

tion time required for estimating the relative locations. This

evaluation runs on two types of computers: (1) a notebook

PC as a high-performance computer and (2) a PDA as a

low-performance computer (i.e., resource-limited device). The

detailed specifications are listed in Table II.

The evaluation environment is the same as the previous one.

The estimation is repeated 1000 times for different positions

and errors for all the hosts. At each time, two trials are

conducted. The first trial uses random values as the initial

positions for all the hosts. The second one uses the result of

the first trial as the initial positions and the measured distance

containing another error. From the viewpoint of a running

TABLE II
TWO COMPUTERS USED IN THE EVALUATION.

(a) Notebook PC
Model Panasonic Let’s note CF-R4
CPU Intel(R) Pentium(R) M 1.20GHz
RAM 1GB

(b) PDA
Model SHARP Zaurus SL-C1000
CPU Intel(R) XScale(TM) (PXA270 416MHz)
RAM 64MB

TABLE III
COMPUTATION TIME FOR ESTIMATION [MS]. PC1: FIRST TRIAL FOR

NOTEBOOK PC. PC2: SECOND TRIAL FOR NOTEBOOK PC. PDA1: FIRST

TRIAL FOR PDA. PDA2: SECOND TRIAL FOR PDA.

Num
of hosts PC1 PC2 PDA1 PDA2

5 0.43 0.35 147 110
10 2.5 1.8 755 433
20 15 9 2443 1440
40 98 53 - -

system, the first trial represents the immediate computation just

after the location manager starts, and the second trial implies

the continuous computation of the steady location manager. In

this situation, we measure the average computation time and

the worst one by varying the number of hosts.

Table III lists the results of this evaluation. From the table,

we observe that the average computation time for the notebook

PC is less than 100 ms in the entire range of the number of

hosts. As for the PDA, the computation time can be decreased

to less than 600 ms when the number of hosts is less than

or equal to 10, whereas it is more than 2500 ms when the

number of hosts becomes 20.

As described in Section III-D, the proposed positioning

method can reduce the computation time if the quality of

the initial positions is improved. To clarify this effect, we

present a comparison between the computation times for the

first and second trials. Figure 8 and Table III show the results

of this comparison. From the figure, we can see that the

computation time can be improved especially when the number

of hosts increases. In particular, the second trial for the PDA

improves the time consumption by 40 % over the first trial

when the number of hosts is 20; however, the computation

time is over 1000 ms even during the second trial. The average

computational time t is approximated as t = an2.4, where a
is 0.01 for PC, or 2.11 for PDA, and n is the number of hosts.

448

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

C
om

pu
ta

tio
n

tim
e

[m
s]

Number of hosts

average_PC
worst_PC

average_PDA

Fig. 7. Computation time of the positioning method.

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

R
at

io
 o

f s
ec

on
d

to
 fi

rs
t [

%
]

Number of hosts

Fig. 8. Computation time ratio of second trial to first trial.

The above results indicate that the location estimation

using resource-limited mobile devices is available for limited

scenarios where high scalability or real-time solutions are not

required. Otherwise, a notebook PC should be used as the

location manager.

D. Effect of Noise Reduction Mechanism

The prototype system uses wireless LAN devices compliant

with IEEE 802.11 as the distance measurement device. Recall

that the distance measurement is based on the attenuation of

RSSI acquired by the devices. The accuracy of the estimated

distance is low, which leads to low system reliability. There-

fore, the prototype system incorporates a filtering mechanism

of the distance measurement into the sniffer subsystem to

reduce the impact of errors. Here, we describe the filtering

mechanism and evaluate the effectiveness of the mechanism

through experiments.

The main idea of the filtering mechanism is to cancel the

sharp transition of the estimated distances as the measurement

error. Figure 9 (a) shows the result of the measured distances

using wireless LAN devices in an actual environment. In this

figure, we plot the estimated distances while varying the actual

distance between the two devices from 0 m to 5 m. From this

figure, we observe that the curve of the estimated distances

contains noise. Next, we apply the filtering mechanism to the

sniffer subsystem. More concretely, we introduce a threshold

for filtering the sharpness of the transition, i.e., if the difference

between two successive distances is larger than the threshold,

it is cut off. We assume that the average walking speed is

less than 5 m/s; therefore, the threshold is set as 5 m/s in

this experiment. Figure 9 (b) shows the result of the filtered

distances. From this figure, we can see that the filtering

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80

D
is

ta
nc

e
[m

]

Time [s]

(a) Transition of raw distances.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80

D
is

ta
nc

e
[m

]

Time [s]

(b) Transition of filtered distances.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80
D

is
ta

nc
e

[m
]

Time [s]

(c) Transition of filtered and averaged distances.

Fig. 9. Effect of noise reduction for measured distances.

mechanism reduces noise in the estimated distances.

Further, the sniffer subsystem adopts the averaging of the

estimated distances to significantly reduce the measurement

error. Figure 9 (c) shows the result of the filtered and averaged

distances. In this experiment, the interval for averaging is 1

s. From Figure 9 (c), the line of the estimated distance is

smoother as compared to Figures 9 (a) and (b). We confirm

that averaging can improve the stability of the system. Further,

it can reduce the communication traffic because only the

averaged information of the estimated distance is transferred

to the location manager. The interval for averaging should be

carefully adjusted according to the application requirement.

V. RELATED WORK

In this section, we investigate location-aware host selection

and positioning systems. First, we introduce the graphical user

interfaces for sensor networks [5], [6]. These systems can dis-

play information from sensors onto a geographical map, such

as Google Maps, Google Earth, or Virtual Earth. Geo-Coding

[7] can reduce costs in terms of operations and management

by simplifying the communication process from/to sensors

through such interfaces. These approaches target pre-organized

networks, i.e., locations of sensors are preliminarily configured

manually and a dedicated server is used for managing sensors,

which is different from the environment covered in this paper.

Second, several positioning systems have been proposed to

autonomously estimate the locations of hosts in unorganized

networks where the locations are not configured for the hosts.

449

Each host is equipped with a receiver device that is assigned

an ID, and the location is estimated by using an appropriate

positioning method. A host can be identified by its assigned

ID and estimated location. These systems can be mainly

classified into three types, i.e., ultrasound-based system, RF-

based system, and their combinations [8] [9] [10]. Active

Bat [8] and DOLPHIN [9] are ultrasound-based positioning

systems. The main goal of these systems is to determine the

precise locations of hosts in a specific environment wherein

several ultrasound receivers are mounted in ceilings. This

system was evaluated in an actual environment, which showed

that the error of the estimated distance is from 3 cm to 20 cm.

However, it is expensive to construct a specific environment.

As for RF-based systems, RADAR [11] and Bradio [12]

have been proposed. These systems use wireless LAN devices

to estimate the area (or room) where a target host is located.

The estimation procedure consists of two phases: survey phase

and estimation phase. In the survey phase, hosts measure the

RSSI values to the access points in each target area and then

the measured values associated with these areas are stored

into a location database. In the estimation phase, the area is

determined from the RSSI values measured by a host from

the database. The survey phase needed by this approach is

unsuitable for local and temporary networks.

Third, there are some studies for proximity sensing. NearMe

wireless proximity server [13] provides a list of physically

nearby hosts. The cost on estimating the proximity is lower

than that on computing locations and in addition, several

applications need proximity information rather than location

information for nearby hosts. However, neighbor hosts existing

in a similar distance cannot be distinguished by using only

the proximity information, e.g., the hosts exists on the right

side and left side. Location information is more intuitively

for users to find the target host on the display as compared

to the actual user’s view. NearMe is unsuitable for local and

temporary networks because the mechanism requires access

points and central database.

VI. CONCLUSION

In this paper, we proposed middleware to realize efficient

host selection for WVAC. The proposed middleware supports

location-based host selection where a user can select a target

host through its relative location in addition to its name. We

described the middleware design and enhanced the method

proposed by WiPS [3], [4] to estimate the relative locations

for WVAC. We evaluated the middleware through several ex-

periments using a prototype system in an actual environment.

The result of the experiments suggests that this middleware

can work even on resource-limited mobile devices under

limited scenarios where the number of devices is less than

10. Moreover, we evaluated the effectiveness of the prototype

system by developing a location-aware instant messenger, and

examined the impact of errors for the distance measurement

of wireless LAN devices.

In the future, we will endeavor to incorporate support for

secure communications. For practical applications, we must

consider secure communications in WVAC. However, it is dif-

ficult to safely authenticate public keys in such environments.

Furthermore, we will address the determination problem of

the user’s view. The current system requires users to input

the angle. It makes the automatic mechanism more useful

in live environments. It is also our future work to deal with

cases that the manager becomes down or multiple managers

are established at the same time. The evaluation of this paper

is conducted through simulation in an ideal environment. We

will evaluate our middleware in more realistic simulation

environment and also compare our results with other locating

techniques rather than WiPS.

ACKNOWLEDGMENT

This work was partially supported by “The Kyushu Univer-

sity Research Superstar Program (SSP)”, based on the budget

of Kyushu University allocated under President’s initiative and

supported by Grant-in-Aid for Scientific Research.

REFERENCES

[1] J. Hightower and G. Borriello, “A Survey and Taxonomy of Location
Systems for Ubiquitous Computing,” Technical Report UW-CSE 01-08-
03, 2001.

[2] N. Patwari, J. N. Ash, S. Kyperountas, A. O. HeroIII, R. L. Moses and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, Vol.22, Issue.4,
pp. 54–69, 2005.

[3] T. Kitasuka, K. Hisazumi, T. Nakanishi and A. Fukuda, “Positioning
Technique of Wireless LAN Terminals Using RSSI between Terminals,”
Proc. the 2005 Int. Conf. on Pervasive Systems and Computing (PSC-
05), pp. 47–53, 2005.

[4] T. Kitasuka, K. Hisazumi, T. Nakanishi and A. Fukuda, “WiPS: Location
and Motion Sensing Technique of IEEE 802.11 Devices,” Proc. Third
Int. Conf. on Information Technology and Applications (ICITA’2005),
pp. Vol.II, 346–349, 2005.

[5] G. Werner-Allen, P. Swieskowski and M. Welsh, “MoteLab: a wireless
sensor network testbed,” Proc. the Fourth Int. Conf. on Information
Processing in Sensor Networks, pp. 483–488, 2005.

[6] S. Andre, N. Suman, L. Jie, P. Bodhi and Z. Feng, “SenseWeb: browsing
the physical world in real time,” Demo Abstract, Proc. the Fifth Int.
Conf. on Information. Processing in Sensor Networks, 2006.

[7] C. Decker, T. Riedel, P. Scholl, A. Krohn and M. Beigl, “Graphically
Geo-Coding of Sensor System Information,” Proc. Fourth Int. Conf. on
Networked Sensing Systems (INSS’07), pp. 138–141, 2007.

[8] A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster, “The
Anatomy of a Context-Aware Application,” IEEE Computer, Vol. 34,
No. 8, pp. 50–56, 2001.

[9] M. Minami, Y. Fukuju, K. Hirasawa, S. Yokoyama, M. Mizumachi, H.
Morikawa and T. Aoyama, “DOLPHIN: A Practical Approach for Im-
plementing a Fully Distributed Indoor Ultrasonic Positioning System,”
Proc. Int. Conf. Ubiquitous Computing (UbiComp) 2004, LNCS 3205,
pp. 347–365, 2004.

[10] P. Bellavista, A. Corradi and C. Giannelli, “Coupling Transparency and
Visibility: a Translucent Middleware Approach for Positioning System
Integration and Management (PoSIM),” Proc. 3rd Int. Symp. on Wireless
Communication Systems (ISWCS’06), pp. 179–184, 2006.

[11] P. Bahl and V. N. Padmanabhan “RADAR: An In-Building RF-based
User Location and Tracking System,” Proc. Nineteenth Annual Joint
Conf. of the IEEE Computer and Communications Societies (INFO-
COM) 2000, Vol. 2, pp. 775–784, 2000.

[12] B. Yoshimi, G. B. Bolam, N. Sukaviriya, J. Elliott, B. Carmeli, J. Morgan
and H. Derby, “Bradio: a wireless infrastructure for pervasive computing
environments,” Proc. 21st IEEE Int. Conf. on Performance, Computing,
and Communications, pp. 309–316, 2002.

[13] J. Krumm, and K. Hinckley, “The NearMe Wireless Proximity Server,”
Proc. Int. Conf. on Ubiquitous Computing 2004, pp. 283–300, 2004.

450

