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Abstract

Background and Purpose:

Three-dimensional time-of-flight (3D TOF) MR angiography

(MRA) is a noninvasive imaging modality and now readily accepted as a

firstline diagnostic tool in MR examination of several cerebrovascular

diseases. Concerning TOF MRA, the 3T system offers some potential

advantages compared to 1.5T system. The various parameters ofthe 3D

TOF MR angiograms such as the matrix size, reduction factor in parallel

imaging, and acquisition time, however, have not been compared between

1.5Tand3T.

3D TOF MRA at 3T is feasible and useful in the follow up of

patients with intracranial aneurysms treated with coil placement and the

susceptibility-induced artifact created by platinum coils were minimal;

however, they did not compare 3D TOF sequences between 1.5T and 3T.

The purpose of this study were two folds: (1) to analyze the

influence ofmatrix, parallel imaging and acquisition time on image quality

of3D TOF MRA at 1.5T and 3T, and to illustrate whether the combination

of larger matrices with parallel imaging technique is feasible, by evaluating

the visualization of simulated intracranial aneurysms and aneurysmal blebs

using a vascular phantom with pulsatile flow; and (2) to analyze the

influence ofthe matrix and the echo time (TE) of3D TOF MRA on the

depiction ofresidual flow in aneurysms embolized with platinum coils at

1.5T and 3T and to establish the optimal parameters using a vascular



phantom with a pulsatile flow.

Materials and Methods:

An anthropomorphic vascular phantom was designed to simulate

the various intracranial aneurysms, aneurysmal blebs and aneurysms

embolized with platinum coils. The vascular phantom was connected to an

electromagnetic flow pump with pulsatile flow, and we obtained 1.5 T and

3T MRAs altering the parameters of3D TOF sequences including

acquisition time. Two radiologists evaluated the depiction ofthe simulated

aneurysms.

Results:

The aneurysmal blebs were not sufficiently visualized on the

high-spatial-resolution 1.5T MRA (matrix size of384 x 256 or 512 x 256)

even with longer acquisition time (9 or 18 min.). At 3T with acquisition

time of4.5 min. using parallel imaging technique, however, the depiction

of aneurysmal blebs was significantly better for the high-spatial-resolution

sequence than for the standard resolution sequence. For the

high-spatial-resolution sequence, the longer acquisition times did not

improve the depiction of aneurysmal blebs in comparison with 4.5 minutes

at3T.

The increased spatial resolution and the shorter TE offered better

image quality at 3T. For the depiction of an aneurysm remnant, the

high-spatial-resolution 3T MRA (matrix size of384x224 and 512 x 256)



with a short TE of 3.3 msec were superior to the 1.5T MRA obtained with

any sequences.

Conclusion:

For 3D TOF MRA, the combination ofthe large matrix with parallel

imaging technique is feasible at 3T, but not at 1.5T. 3T MRA is superior

to 1.5T MRA for the assessment of aneurysms embolized with platinum

coils.
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Abbreviations

MRI: magnetic resonance imaging

MRA: magnetic resonance angiography

3D: three dimension

2D: two-dimensional

CE MRA: contrast enhanced MRA

DSA: digital subtraction angiography

TOF: time-of-flight

PC MRA: phase-contrast MRA

RF: radiofrequency

TR: repetition time

TE: echo time

VENC: velocity-encoding

SNR: signal to noise ratio

MOTSA: multiple overlapping thin slab acquisition

MT: magnetization transfer

TONE: tilted optimized nonsaturating excitation

3T: 3tesla
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Chapter 1. Background and Objectives

1. Introduction

In conventional magnetic resonance imaging (MRI), the pulsatility of

the blood flow usually causes artifacts. Signal intensities are often lower

than expected from Tl or T2 values and the vessel cross sections may be

visible a couple of times along the phase encoded direction. The

understanding ofthese phenomena and the development ofnew techniques

to counter these artifacts led, in the late 1980s, to the development of the

so-called MR angiography (MRA) sequences. Signal intensities in the

blood vessels became hyperintense and most artifacts were overcome. Two

groups of sequences were developed in parallel and are still extensively

used today: time-of-flight and phase contrast imaging. In the late 1990s,

ultrafast acquisitions have been introduced for MRA. The availability of

stronger gradients that can be switched on and off in an always shorter time,

gave rise to three dimension (3D) techniques with extremely short TR. The

short echo time makes the use of flow rephazing gradients obsolete. The Tl

weighing is limited: only with a highly concentrated contrast agent in the

vessels is a high signal intensity observed. In practice, contrast-enhanced

(CE) MRA has to be performed during the first pass ofthe contrast bolus.

Technical advances in MRA have improved the accuracy of this

technique in various clinical situations, such as aneurysms, arterial and

venous steno-occlusive diseases, vascular malformations, inflammatory

12



arterial diseases, preoperative assessment ofthe patency of dural sinuses,

and congenital vascular abnormalities. In many centers, MRA has replaced

conventional digital subtraction angiography (DSA) in screening for

intracranial vascular disease, because of its non-invasive and non-ionizing

character.

2. Technical basics ofMRA

Several MRA techniques have been developed for the imaging ofthe

intracranial vascular system, such as time-of-flight MRA (TOF MRA),

phase-contrast MRA (PC MRA), and more recently CE MRA.

1) TOF MRA

In TOF MRA, repetitive pulses are used to suppress stationary

background tissues, while the unsuppressed protons of flowing blood create

a signal. The high signal intensity in the blood vessels during TOF MRA is

attributable to flow-related enhancement, and the absence of flow is

characterized by reduced signal intensity (1). Hyperintense signal

intensities in the blood vessel are not expected in Tl-weighted acquisitions,

since the Tl ofthe blood is not short. The paradoxical enhancement due to

inflow phenomena in the TOF technique can be understood as follows: the

spins in the blood vessel continuously enter (inflow) and leave the imaging

volume. Therefore, they are subjected to a few radiofrequency excitation

13
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their signal is therefore low. On the other hand, flowing spins that enter the

slice experience only a few RF pulses and hence cause large signal

intensities. The blood then leaves the imaging plane and is replaced by

fresh blood that will experience again only a few pulses. Under these

conditions, the hypo-intense steady-state value is never reached in the

blood vessel.

2) PC MRA

PC MRA uses a different technique to create vascular contrast, based

on manipulating the phase of the magnetization. This effect is obtained by

applying a bipolar phase-encoding gradient and a velocity-encoding

(VENC) factor (2, 3). Since PC MRA is sensitive to flow velocities, blood

velocities higher than the preselected VENC value will not be represented

or misrepresented in the image, so that the user must choose this value

carefully. Higher VENC factors are necessary to image arteries selectively,

whereas a VENC factor of 20 cm/s will represent the veins and sinuses(3).

The one-to-one relation between the velocity ofthe spins and the

phases they acquire when moving along a magnetic field gradient is the

basis for phase contrast imaging. Whereas in TOF MRA flowing spins are

optimally rephazed at the measurement, this is no longer the case in phase

contrast imaging. The latter technique starts from a flow rephazed

acquisition but adds additional bipolar gradient. (Fig.2)
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Table. 1 Advantages, disadvantages and major applications of MRA

advantages disadvantages major applications

•No needs of contrast

material

3D TOF MRA 'Less intravoxel dephaong
•High SNR

•Smoother vessel contour

•More saturation effects

•Insensitive to slow flow

•Artifacts attributable to

thrombus and short T1

substances

•High-flow (arterial structures)

•AVMs

•Aneurysm

•Carotid disease

•screening

3D PC MRA

•No needs ofcontrast

material

•No saturation effects

•Direction and quantification

of flow velocities

•Excellent background

suppression

•Long acquisition time •Cerebral arterie

3DCEMRA

•No saturation effects 'Venous puncture

•Reduced intravoxel dephasing • High cost ofgadolinium

by gadolinium 'Critical bolus timing and

•High SNR venous enhancement

•Excellent background

suppression

•Cerebral arteries

•Cerebral veins

•Dynamic evaluation

•ofAVMs.

•dural fistula, shunts

•Aneurysm and treatment follow-up

•Carotid disease

3)CEMRA

The MR signal on CE MRA depends on the Tl shortening effect of

gadolinium. The intrinsic advantage ofT1 -based techniques is that they

provide a morphological rather than a physiological image ofthe blood

vessel. In theory, the appearance of the blood vessels is closer to the

classical angiographic image than is the TOF or PC angiogram.

CE MRA has a higher signal to noise ratio (SNR) and a shorter

acquisition time than other MRA techniques. However, the disadvantage of

this technique is its imaging window, which is restricted to the first pass of

the contrast bolus. CE MRA requires good coordination between the

contrast injection, patient cooperation, and the starting time ofthe
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acquisition. There are several methods to achieve proper bolus timing, such

as simple fixed timing delay, test bolus, multiphase scanning, and real time

fluoroscopic detection of contrast arrival (5).

3. Application of TOF MRA for screening intracranial aneurysms

DSA is still considered the gold standard in the investigation for

intracranial aneurysms. False-negative rates of5%-10% are reported in the

literature, attributable not to limitations of spatial resolution, but to the

limited number ofprojections of the neck of an aneurysm. Nevertheless,

DSA requires a highly skilled radiologist to perform the procedure and

remains an invasive technique with arterial puncture and intra-arterial

catheter manipulation, with a 1% major complication risk and a 0.5% rate

ofpersistent neurological deficit (6).

MRA, by its ability to obtain multiple projections, allows

accurate evaluation of the anatomical implantation, the origin ofthe lesion,

and the neck of the aneurysm. Technical advances in MRA throughout the

1990s have continued to improve the sensitivity ofthis technique for

detecting cerebral aneurysms as a screening tool, and MRA has been used

as an alternative to DSA for the presurgical work-up of aneurysmal

subarachnoid hemorrhage (7). Aneurysms as small as 3 mm can now be

detected with 3D TOF MRA (8). Once obtained, MRA data can be viewed

from any projection in both 2D and 3D reformation algorithms to detect the

aneurysm and to evaluate its neck. Multiplanar reformations are

18



particularly helpful in defining the neck and also the parent and branch

vessels related to aneurysms (9). The detection and treatment of an

aneurysm before it ruptures with possible lethal subarachnoid hemorrhage

is an important research topic. TOF MRA can identify aneurysms (at least 3

mm in size) with a sensitivity of 74%-98% (8, 10). MRA is ideal for

screening cerebral aneurysms because the procedure is noninvasive and the

patient is not exposed to radiation.

The role of endovascular treatment in the management ofpatients

with intracranial aneurysms is increasing. Indications for endovascular

occlusion with coils and minimization of the risks ofthromboembolic

complications depend on a number of factors, such as the analysis ofthe

neck/fundus ratio and the understanding of the relationship ofthe aneurysm

to both parent and branch vessels (11). If a residual aneurysm or aneurysm

regrowth is identified, retreatment is often considered (12). This routine

follow-up is usually made with DSA. However, a few studies with 3D TOF

MRAhave reported the potential role ofMRA in the follow-up, with

sensitivity rates ranging from 71% to 91% and the specificity rates ranging

from 89% to 100% in ruling out residual flow (12, 15). False-negative

examinations can be explained by the presence ofslow flow in the

aneurysm with a saturation phenomenon or magnetic susceptibility artifact

of the coil mass (12.15). False-positive examinations are probably related

to blood clot(s) within the coil mass, which can be interpreted as flow (12).

Thus, in the screening of intracranial aneurysms, 3D TOF MRA is

now the most widely used sequence.
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gradient. (Figure 3(a)) Gradient motion rephazing consists ofreplacing any

couple ofbalanced pulses by three pulses. These schemes ensure in phase

signals for spins that flow with a constant velocity. In practice it means that

the signal intensity is not increased, but that signal voids or ghost signals

are largely eliminated. The vessel can be visualized with the signal as

predicted by the inflow effect. (Figure 3(b)) As a result, the hyperintense

signal intensities in the blood vessels depend not only on the inflow effect,

but also on the type of flow. Only with laminar flow do the special flow

rephazing gradients perform properly. Spin rephazing in case ofturbulent

flow remains unpredictable.

In practice, the applicability of the technique depends on the velocity

of the blood in the vessel, the length ofthe vessel in the imaging slab, the

flow pattern and the sequence parameter setting. Whenever the blood

remains for a longer period in the slice or slab, the signal becomes

saturated. It is particularly difficult to visualize veins and slow flowing

arterial blood in patients with low cardiac output, in obstructive diseases or

in highly resistant vessels. Other determining factors are artifacts due to

respiratory motion or intrinsic organ motion.

Image quality on 3D TOF MRA can be improved by use of a

technique called "multiple overlapping thin slab acquisition (MOTSA)"
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spin phase dispersion effect within the vessels (21). In this technique, the

flip angle varies across the slab that it is set lower at the inlet side and

gradually increases as it approaches the exit side to increase the blood

signal (21).

The remaining saturation effects of slow-flow in small arterial branches can

be further eliminated by intravenous injection of paramagnetic contrast

material, but with the disadvantages of increased cost, possible

superimposition ofveins, and enhancement of surrounding tissues (22).

5. Limitations of TOF MRA

The main limitations of the technique are the spin dephasing that

occurs in complex or turbulent flow pattern, particularly in 3D TOF, and in

vessels in close proximity to tissues with short Tl, such as fat or subacute

hemorrhage. Signal loss may also occur in the presence of flow resulting

from the spin saturation effect, as in the case of slow flow in the distal

intracranial vessels, or becuase of intravoxel phase dispersion, as in

situations of turbulent flow or magnetic field inhomogeneities (1, 23). The

TOF technique shows the intracranial aneurysm but the signal intensity is

reduced due to slow or turbulent flow in the aneurysmal sac.

Disadvantages ofMRA are reduced visualisation ofvery small distal

cortical or deep branches, poor temporal information, poor selectivity and

dependence on flow or patient's cooperation. Here we will limit ourself to a

summary ofsome essential elements. The high quality of intracranial MRA
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is based on the substantial inflow effect throughout the cardiac cycle, the

small volume of interest and the minimal effects of the most common

causes ofMR artifacts, such as respiration, cardiac motion, and

susceptibility changes on the head. Any material whose static magnetic

susceptibility differs from that of surrounding tissues will distort the

magnetic (BO) field. In addition, dynamic eddy currents in the conduction

ofmaterials caused by time variable magnetic fields, such as RF and BO

gradient fields, may lead to Bl field homogeneity, image intensity, and

distortion artifacts (24). These effects with metal also cause the image

degradation in 3D TOF MRA, which is the limiting factor in the

assessment of aneurysm remnants and parent vessel stenosis after aneurysm

coiling (25).

6. Objectives

With regard to 3D TOF MRA, the 3T system offers some potential

advantages compared to a 1.5T system. The approximate doubling ofthe

SNR from 1.5 to 3T can provide higher spatial resolution (26, 27) and the

increased Tl relaxation time at higher magnetic field strength yields

improvement of vessel-tissue contrast at 3T imaging (28). Therefore, these

advantages provide prospects for further improvement of depiction of

aneurysm. The various parameters ofthe 3D TOF MRA such as the matrix

size, reduction factor in parallel imaging, acquisition time and TE, however,

have not been compared between 1.5T and 3T. On the other hand, one of
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the major limitations of 3T MRA is its greater susceptibility effects, which

can increase the varying degrees of susceptibility-induced artifact created

by embolized platinum coils.

The purpose of this study is to analyze the influence of matrix,

parallel imaging, acquisition time and TE on image quality of 3D TOF

MRA at 1.5T and 3T, and to illustrate whether the combination of larger

matrices with parallel imaging technique is feasible, by evaluating the

visualization of simulated intracranial aneurysms and residual flow in

aneurysms embolized with platinum coils using a vascular phantom with

pulsatile flow.
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Chapter II 3D TOFMRA of intracranial aneurysms at 1.5T and 3T:

Influence of matrix, parallel imaging and acquisition time on image

quality —A vascular phantom study

1. Abstract

2. Introduction

3. Materials and Methods

4. Results

5. Discussion
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1.Abstract

Purpose:

A 3T MRI system provides a better signal-to-noise ratio and inflow effect

than 1.5T in 3D TOF MRA. The purpose ofthis study is to analyze the

influence ofmatrix, parallel imaging and acquisition time on image quality

of3D TOF MRA at 1.5T and 3T, and to illustrate whether the combination

of larger matrices with parallel imaging technique is feasible, by evaluating

the visualization of simulated intracranial aneurysms and aneurysmal blebs

using a vascular phantom with pulsatile flow.

Materials and Methods:

An anthropomorphic vascular phantom was designed to simulate the

various intracranial aneurysms with aneurysmal bleb. The vascular

phantom was connected to an electromagnetic flow pump with pulsatile

flow, and we obtained 1.5 T and 3T MRAs altering the parameters of3D

TOF sequences including acquisition time. Two radiologists evaluated the

depiction of simulated aneurysms and aneurysmal blebs.

Results:

The aneurysmal blebs were not sufficiently visualized on the

high-spatial-resolution 1.5T MRA (matrix size of384 x 256 or 512 x 256)

even with longer acquisition time (9 or 18 min.). At 3T with acquisition

time of 4.5 min. using parallel imaging technique, however, the depiction

ofaneurysmal blebs was significantly better for the high-spatial-resolution

sequence than for the standard resolution sequence. For the

high-spatial-resolution sequence, the longer acquisition times did not
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improve the depiction of aneurysmal blebs in comparison with 4.5 minutes

at3T.

Conclusion:

For 3D TOF MRA, the combination ofthe large matrix with parallel

imaging technique is feasible at 3T, but not at 1.5T.

2.1ntroduction

Three-dimensional time-of-flight (3D TOF) MR angiography

(MRA) is a noninvasive imaging modality and now readily accepted as a

firstline diagnostic tool in MR examination of several cerebrovascular

diseases (29-32). Concerning TOF MRA, the 3T system offers some

potential advantages compared to 1.5T system. The approximate

doubling of signal-to-noise ratio from 1.5 to 3T can provide the higher

spatial resolution (33,34) and the increased Tl relaxation time at higher

magnetic field strength yields improvement ofvessel-tissue contrast at 3T

imaging (28). Several previous studies have reported that the

high-spatial-resolution 3T MRA allowed better visualization of small

vessel segments and vascular disease, including intracranial aneurysms and

intracranial stenoses and obstructions (33,34,35,36). The various

parameters ofthe 3D TOF MR angiograms such as the matrix size,

reduction factor in parallel imaging, and acquisition time, however, have

not been compared between 1.5T and 3T.

The purpose of this study is to analyze the influence ofmatrix,

parallel imaging and acquisition time on image quality of3D TOF MRA at
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1.5Tand3mandtoillustratewhetherthecombinationoflargermatrices

withparallelimagingtechniqueisfeasible,byevaluatingthevisualization

ofsimulatedmtracranialaneurysmsandaneurysmalblebsusingavascular

phantomwithpulsatileHow6

3.MaterialsandMethods

PhantomDesign

Ananthropomorphicvascularphantom(RenaissanceofTechnology

Colporatio､,Shizuoka,Japan)consistedofal9-cm-diametercylinder

madeofsiliconerubberwasdesignedtosimulatethebilateralintracranial

arterieswithvariousmtmcranialaneurysms．TWotypesofsimulated

aneurysms-l7aneurysmswithdiameterof3nⅡ、ａｎｄl5aneurysmswith

diameterof6mm-wereplacedonthesimulatedmternalcarotidartelyb

anteriorcerebralarteryandmiddlecerebralartely(Figurel)．Ofall32

Anan画mppmpEPhiCmsCu此Ph皿to、

０

⑯）(A）

ＦＨ２ｍｒＬ▲､､凹迅PmhDgmph(A)麺dSChGmadiCdI左WIng⑪りOflhcﾛmhmqp｡、nrlmiGvEScNmar
phamOmpsedm唾鋤弊TiM;phamOmW■５.函gnedtOSimmU“nhei述乙GI鍾遡mtencswi山a
ln団｡f麺an国呵snm乱Of3Zanm可圏､＆15hadananBmyBmamjlebW5thdUam巳(宜鹸2ｍｍ
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aneurysms, 15 had an aneurysmal bleb with diameter of 2 mm, which was

placed at a tip onto the surface ofthe aneurysm.

Image Acquisition

The phantom tube filled with gadodiamide-saline solution was

connected to an electromagnetic flow pump (LMI Milton Roy, Acton, MA)

that allowed pulsatile perfusion with pulse rates between 40 and 100 beats

per minute. The phantom was connected to a system ofreservoirs and a

pump that maintained a constant pressure difference across the flow tube

within the phantom. Pulsatile flow was generated by a pulsatile blood

pump (model 1405; Harvard Apparatus An Ealing; South Natick, Mass).

In this pump, an electric motor drives a flywheel, which pushes a plunger

in and out of a cylinder. As the plunger moves forward, flow is ejected

out ofthe one-way valve and is propelled toward the flow circuit.

Pulsatile flow with a pulsation rate of 50 pulses per minute and mean

velocity of 25cm/sec (maximum; 50 cm/sec) was produced in the

experimental assembly in a closed system. To emulate the characteristics

of blood, the Tl ofthe solution obtained at 1.5T was adjusted to

approximately 900 msec with gadopentetate dimeglumine (41), and all

examinations at 1.5T and 3T were obtained by using this solution.

MR angiographic studies were obtained with a Signa EXCITE 1.5T

MR system (GE Medical Systems, Milwaukee, Wis) and a Signa EXCITE

3T MR system (GE Medical Systems, Milwaukee, Wis) by using a

dedicated eight-channel phased-array coil (USA Instruments Aurora, Ohio).

30



Table 1, Scanning parameter* for die 3D time-of-flight MR angiography and result* in evaluation forthe depiction of simulated lesion*.
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The various 3D TOF sequences were performed at 1.5 T and 3T MRI

systems (Table 1). For all 3D TOF sequences, the variables included the

matrix size, reduction factor in parallel imaging, and acquisition time.

The following parameters were kept constant: repetition time (TR), echo

time (TE), bandwidth (BW), field ofview (FOV), flip angle, and section

thickness.

Image Analysis ofMRA

A certified neuroradiologist (S.K.) interpreted the MR angiograms,

and selected the 12 simulated aneurysms (with bleb; 5, without bleb; 7) for

the evaluation; the aneurysms containing air bubbles in the phantom lumen

were eliminated in this process. For the image quality ofthe MRA

obtained from various sequences with 1.5T and 3T systems, two
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neuroradiologists (N.Oh, J.M.) independently evaluated the reproducibility

ofMR angiograms in the assessment of simulated aneurysms and

aneurysmal blebs. For interpretation ofMRA, these radiologists were

blinded to the MR imaging systems (1.5T and 3T systems) and MR

imaging parameters (TE, voxel dimension, acquisition time, etc.). The

volume-rendered (VR) display was used for this evaluation ofMR

angiograms. In assessing the MR angiograms, each image was analyzed

separately and only one image was shown at a time. After independent

interpretations were performed, the differences in assessment ofboth

observers were resolved by consensus. The schematic drawing of an

anthropomorphic vascular phantom was always used as the standard of

reference (Fig 1. B), and the radiologists rated the aneurysm and

aneurysmal bleb depiction using a 5-point scale as follows; 5=excellent (an

aneurysm or aneurysmal bleb was depicted with same quality, which is

close to that at the schematic drawing), 4=more than adequate (aneurysm or

aneurysmal bleb was clearly depicted but image quality somewhat reduced

compared with that at the schematic drawing), 3=adequate (depiction ofthe

aneurysm or aneurysmal bleb was still sufficient), 2 = insufficient

visualization, 1 = not visible.

The MR angiograms were displayed and interpreted on a diagnostic

monitor (Flexscan L365; EIZO NANAO, Ishikawa, Japan). An intuitive

and efficient user interface allows the manipulation ofthese views in real

time, and the reviewers determined the threshold of vessel images in each

subject by interactively observing the angiograms at the workstation.

32



Statistical Analysis

For evaluation, statistical analyses were performed with a statistical

software package (StatView 5.0; SAS Institute, Cary, NC). For the scores

of overall image quality, all results were expressed as the mean ± standard

error ofthe mean for each sequence obtained with both field strengths.

Analysis ofWilcoxon signed rank test was performed on the results to

assess the statistical significance ofthe different scores assigned to the each

sequence. A P value of less than 0.05 was considered to indicate a

statistically significant difference. To evaluate the level of interobserver

agreement of scores ofimage quality for the aneurysms and aneurysmal

blebs, a Kendall W test was performed. Kendall W coefficients between

0.5 and 0.8 were considered to indicate good agreement, and coefficients

higher than 0.8 were considered to indicate excellent agreement.

4.Results

For the depiction ofthe simulated aneurysm and aneurysmal bleb

on 1.5T and 3T MR angiograms, results ofthe final consensus reviewed by

two radiologists are summarized in Table 1.

Relationship between matrix size and image quality ofMR angiograms

with use of parallel imaging (reduction factor=2)

The radiologists scored the depiction of simulated aneurysms and

aneurysmal blebs as "excellent (score 5)" or "more than adequate (score
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4)，，onallhigherspatial-resolution3TMRangiograms(meanimagescore

＝４．２０ｗｉｔｈｍａｔｒｉｘｓｉｚｅｏｆ３８４ｘ２５６ａｎｄ４４０ｗithmatrixsizeof512x

256)．At3T,theaveragereaderratingsregardingthedepictionof

aneurysmalblebsweresignificantlyhigherfbrthehigherspatial-resolution

sequencethanfbrthestandardresolutionsequence(meanimagescore：

4.2Owithmatrixsizeof384x256versus３．４０withmatrixsizeofl92x

l92,p=0.016)(Figures2and3)．AtL5mhowevel;theaneurysmalblebs

werenotsufficientlyvisualizedwiththematrixｓｉｚｅｏｆ３８４ｘ２５６ａｎｄ５１２ｘ

Ｚ５６,andtheoverallimagequalitywerescoredas"notvisible(scorel),,

(Figures2and3）
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Relationshipbetweenacquisitiontime(reductionfhctor)andimage

qualityofR皿Rangiograms

Figure4showsthecomparisonoftheaveragereaderratings

regardingthedepictionofaneulyｓｍａｌｂｌｅｂｓａｔＬ５Ｔａｎｄ３ＴＭＲＡｏｂｔａｍｅｄ

ｗithvariousacquisitiontimes(reductionfactors)．Theimagedegradation

increasedwithmcreasedreductionfactoratL5T・Forexample,withthe

matrixsizeof256x256,thereductionfactorof2showedasignificam

degradationofimagequality(meanimagescore＝1.20)comparedwiththe

reductionfactorofl(meanimagescore＝4.00,p<0.01)and1.3(mean

imagescore＝2.80,p=0.034)(Figure5)．At3mhowever,theimage

qualitywasnotmHuencedbythereductionfactorwiththematｒｉｘｏｆ３８４ｘ

２５６(Figure5);thatis,thelongeracquisitiontimes(7minorlonger)did

notnecessarilyimprovethedepictionofaneurysmalblebs．
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TTleaneurysmalblebswerenotsuHicientlyvisualizedonthehigher

spatial-resolutionL5TMRA(matrixsizeof384x256or51Zx256)even

withlongeracquisitiontime(9minorl8min.).AtLnbestimage

qualitywasobtainedwiththematrixof256x256､ＷｈｅｎＬ５Ｔｗｉｔｈｔｈｅ

ｍａｔｒｉｘｏｆ２５６ｘ２５６ａｎｄ３Ｔｗｉｔｈｔｈｅｍａｔｒｉｘｏｆ３８４ｘ２５６ｗｅｒｅcompared，

the3TMRAwiththeacquisitiontimeof45nnnutes(meanimagescore＝

4.20)wassuperiortoL5TMRAwiththeacquisitiontimeof9minutes

(meanimagescore＝4.00)andalmostequivalenttotheL5TMRAwithan

acquisitiontimeofl8minutes(meanunagescore＝4.20)(Figure6)．
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Interobserver Agreement

For evaluation ofMR angiograms, interobserver agreement

between the two radiologists in rating the depiction ofaneurysms and

aneurysmal blebs was good for both the 3T system and the 1.5T system;

with Kendall lvalues (x), 0.51 vs 0.55 for aneurysms, and 0.52 vs 0.63 for

aneurysmal blebs, respectively.

5.Discussion

Winfried et al have reported that the high-spatial-resolution 3D

TOF MRA at 3T is superior to that at 1.5 T in the diagnosis of

cerebrovascular disease (33). Similar to previous assertions, our results of

3T MRA demonstrated that the depiction of simulated aneurysms and

aneurysmal blebs was gradually superior as matrix size increased. With

the improved signal-to-noise ratio at 3T, it is possible to increase spatial

resolution at 3D TOF MRA with preservation of image quality (33,34).

In contrast, the simulated aneurysmal blebs were not sufficiently visualized

on high-spatial-resolution 1.5T MRA. Further increases in spatial

resolution cause further reduction of signal-to-noise ratio, and this would

result in the image degradation at 1.5T MRA regarding the depiction of

aneurysms and aneurysmal blebs. Therefore, the spatial resolution at 3D

TOF MRA may be still limited at 1.5T, even if longer acquisition times are

used.

The parallel imaging techniques such as array spatial sensitivity

encoding technique (ASSET) and sensitivity encoding (SENSE) has been
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proposed to markedly reduce image acquisition time (38-40); however, the

decrease in signal-to-noise ratio inherent to parallel imaging technique also

has been reported (39). According to the experimental data (39-42), the

reduction in signal-to-noise ratio is characterized by the square root of the

reduction factor. Gaa J et al. have reported that the parallel imaging

technique is more beneficial for 3T MRA than for 1.5T MRA, because the

higher SNR available at 3T allows for higher spatial resolution without

prolongation ofmeasurement time (36). Similar to this previous assertion,

our study also showed that the parallel imaging technique did not degrade

the MRA image at 3T, but at 1.5T. The high-spatial resolution 3T MRA

may certainly benefit from the use ofparallel imaging technique to reduce

the acquisition time while maintaining the high spatial resolution. In this

study, the 3T MRA with an acquisition time of4.5 minutes using parallel

imaging technique provided a high-quality imaging for the depiction of

aneurysmal blebs. Moreover, among 3T MRAs obtained with acquisition

times more than 4.5 minutes, there were no significant differences for the

average reader ratings in the depiction of aneurysmal blebs. For the 3D

TOF MRA at 3T, therefore, an acquisition time of 4.5 minutes using

parallel imaging technique seems clinically feasible; the longer acquisition

times may be associated with poor image quality because ofthe increasing

risk ofpatient movements.

Our study has some limitations. First, we used the anthropomorphic

vascular phantom, because, in a clinical study, it is impossible to compare

the visualization ofaneurysms using the various parameters between 1.5T
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and 3T MRA. Although vascular phantom studies cannot always simulate

clinical conditions, we still believe that our data provided important

information about the influence ofmatrix, parallel imaging and acquisition

time on the image quality and the clinical settings ofMRA sequences at 3T.

Second, although the MIP technique is most widely applied for the

postprocessing of3D TOF MRA, we used the volume-rendering (VR)

technique as the only 3D display method, which maintains the original

anatomic spatial relationships ofthe 3D data set, for evaluating the MR

angiograms. Our study did not aim to compare the detectability of the

simulated intracranial aneurysms, but to compare the visualization,

especially of aneurysmal blebs.

In conclusion, for 3D TOF MRA, the combination ofthe large matrix

with parallel imaging technique is feasible at 3T, but not at 1.5T. The 3T

system allowed shorter acquisition time less than 5 minutes with the use of

parallel imaging technique while maintaining the higher spatial resolution.
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Chapter HI MRA of Intracranial Aneurysms Embolized With

Platinum Coils: A Vascular Phantom Study at 1.5T and 3T

1. Abstract
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3. Materials and Methods

4. Results
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1. Abstract

Purpose: To analyze the influence ofmatrix and echo time (TE) of

three-dimensional time-of-flight (3D TOF) magnetic resonance

angiography (MRA) on the depiction of residual flow in aneurysms

embolized with platinum coils at 1.5T and 3T.

Materials and Methods: A simulated intracranial aneurysm ofthe

vascular phantom was loosely packed to maintain the patency of some

residual aneurysmal lumen with platinum coils and connected to an

electromagnetic flow pump with pulsatile flow. MRAs were obtained

altering the matrix and TE of3D TOF sequences at 1.5T and 3T.

Results: The increased spatial resolution and the shorter TE offered better

image quality at 3T. For the depiction ofan aneurysm remnant, the

high-spatial-resolution 3T MRA (matrix size of384x224 and 512 x 256)

with a short TE of 3.3 msec were superior to the 1.5T MRA obtained with

any sequences.

Conclusion: 3T MRA is superior to 1.5T MRA for the assessment of

aneurysms embolized with platinum coils; the combination ofthe

512x256 matrix and short TE (3.3msec or less) seems feasible at 3T.

2. Introduction

Coil placement has been proven to be safe and effective in the

treatment of intracranial aneurysms (43,44). However, several previous

studies have also reported that patients treated with platinum coils can have

a recurrence at the aneurysm neck, even in cases of initial total occlusion
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(45,46). Therefore, long-term follow-up with neuroimaging is necessary to

establish the stability of endovascular treatment and to depict a

recanalization that may require further treatment. Three-dimensional

time-of-flight (3D TOF) magnetic resonance angiography (MRA) is now

readily accepted as a noninvasive imaging modality, which may be

comparable to digital subtraction angiography (DSA) to assess aneurysm

remnants and parent vessel stenosis after aneurysm coiling (13,14,47).

With regard to 3D TOF MRA, the 3T system offers some

potential advantages compared to a 1.5T system. The approximate doubling

ofthe signal-to-noise ratio (SNR) from 1.5 to 3T can provide higher spatial

resolution (33,34) and the increased Tl relaxation time at higher magnetic

field strength yields improvement ofvessel-tissue contrast at 3T imaging

(28). Therefore, these advantages provide prospects for further

improvement of depiction of aneurysm remnants. On the other hand, one of

the major limitations of 3T MRA is its greater susceptibility effects, which

can increase the varying degrees of susceptibility-induced artifact created

by platinum coils. A previous study using an aneurysm phantom has

reported that the imaging at 3T does not provide an incremental gain for 3D

TOF sequences compared to that at 1.5T because of significant increases in

coil-induced artifacts (48). The authors, however, were not able to

determine the overall image quality ofthe 3D TOF MRA because they

used a closed aneurysm phantom with no flow, which cannot estimate the

effects of flowing blood within the aneurysm. Majoie et al (49) reported

that high-spatial-resolution
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with various intracranial aneurysms. One ofthe simulated aneurysms with

diameter of 6 mm was loosely packed to maintain patency ofsome residual

aneurysmal lumen with the interlocking detachable coils (IDCs; Boston

Scientific/Target Therapeutics, Watertown, MA) (Fig. 1). The other

aneurysms were not packed with IDC. A tracker catheter (Target

Therapeutics/ Boston Scientific) was introduced into the aneurysm and

IDCs were positioned in the dome ofthe simulated aneurysm, and the

aneurysm model with IDCs was constructed.

The embolized volume was calculated using the following

equation: embolized volume =(volume ofthe embolized coil) / (volume of

the aneurysm). The volume ofthe coil is approximately calculated based on

the supposition that the coil is a cylinder. The algebraic equation to

calculate the volume ofthe coil is: volume of

coil = 7rx (diameter of coil / 2)2 x length of coil. The primary diameter of

each type of coil is published by Boston Scientific, Target (Fremont, CA).

Assuming an aneurysm model of6 x 6 x 4 mm3, the aneurysm volume

was also calculated by using the following formula: volume ofthe

aneurysm =4rc/3 x(width/2) x (length/2) x (height/2) mm3. Therefore, the

aneurysm model with IDC achieved the embolized volume: 6x6x4 mm3,

29.8% occlusion.

Image Acquisition

The phantom tube filled with gadodiamide-saline solution was connected to

an electromagnetic flow pump (LMI Milton Roy, Acton, MA) that allowed
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pulsatile perfusion with pulse rates between 40 and 100 beats per minute.

To emulate the flow characteristics ofblood, the Tl ofthe solution

obtained at 1.5T was adjusted to 900 msec with gadopentetate dimeglumine

(37). The phantom was connected to a system of reservoirs and a pump that

maintained a constant pressure difference across the flow tube within the

phantom. The pulsatile flow was generated by a pulsatile blood pump

(model 1405; Harvard Apparatus, Ealing; South Natick, MA). In this pump

an electric motor drives a flywheel, which pushes a plunger in and out ofa

cylinder. As the plunger moves forward, flow is ejected out ofthe oneway

valve and is propelled toward the flow circuit. Pulsatile flow with a

pulsation rate of 50 pulses per minute and mean velocity of 25 cm/sec

(maximum; 50 cm/sec) was produced in the experimental assembly in a

closed system.

MRA studies were performed with a Signa EXCITE 1.5T MR

system (GE Medical Systems, Milwaukee, WI) and a Signa EXCITE 3T

MR system (GE Medical Systems) by using a dedicated eight-channel

phased-array coil (USA Instruments, Aurora, OH). For the aneurysm with

IDCs, various 3D TOF sequences were performed at 1.5T and 3T MRI

systems (Table 1). Variables included the TE, acquired voxel dimension,

and acquisition time. For all 3D TOF sequences, the following parameters

were kept constant: repetition time (TR = 30 msec), bandwidth (BW = 65

kHz), field ofview (FOV = 18 cm), flip angle (FA = 20°), section thickness

(ST =1.0 mm), and phase encoding direction. Therefore, for the 1.5T and

3T systems a total of22 MR angiograms were prepared in this study.
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Image Analysis ofMRA

The image quality ofthe MRA obtained with the 1.5T and 3T

systems was evaluated together by two neuroradiologists (N.O., J.M.)

according to the following criteria: the depiction ofaneurysm remnants and

the degree ofcoil-induced artifacts and the final judgments were obtained

by consensus. For interpretation ofthe MRA, these radiologists were

blinded to the MR imaging systems (1.5T and 3T systems) and MR

imaging parameters (TE, voxel dimension, acquisition time, etc). Before

the evaluations these radiologists were informed ofthe packing percentage.

The schematic drawing ofan anthropomorphic vascular phantom and the

aneurysm after the insertion ofIDCs were always used as the standard of

reference (Fig. 1). MR angiographic source and maximum intensity
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Table 2

Imago Scores of MRA

Depiction ot anoujyaoi remnants

excellent °<anouiysm remnants were ctoatly visualized

good ■= aneuiysm remnants wets satisfectoiy vfeuaSzod tut the signs! intensity in a paten) lumen oJ aneuiysm somewhat reduced

inadequate » insufficient vteuafizafon and <8fficu!t to diagnose wfih confidence not vtsfi)le

ColUnducod artifacts

none « artJacthaa no {nSuenco on the depiction oi a patent artery

nwnof « attract raises minor pseudosteoosis of oparenlartofy

moderate *• artiiact causestho msttuxt pseudestenosts of param anon/ sufficteni to tntortofo wiSidtegnosttcQuafty

j s/UIbcI resoRsin a nondiajnosflc stady

projection (MIP) images were used for this evaluation. A five-grade system

was used to evaluate the depiction of aneuiysm remnants (Table 2). These

radiologists also evaluated whether the coil-induced artifacts affected the

depiction of a parent artery. The effects ofthe coil-induced artifacts on the

depiction of a parent artery were judged by using a four-grade system

(Table 2). In assessing the MR angiograms, each image was analyzed

separately and only one image was shown at a time. The MR angiograms

were displayed and interpreted on a diagnostic monitor (Flexscan L365;

Eizo Nanao, Ishikawa, Japan). An intuitive and efficient user interface

allows the manipulation (eg, rotation, zoom, electronic scalpel) ofthese

views in real time, and the reviewers determined the threshold of vessel

images in each subject by interactively observing the angiograms at the

workstation.

4. RESULTS

The results ofthe final consensus reviewed by two radiologists

on the image quality of 1.5T and 3T MRA are summarized in Table 1.

At 3T the depiction ofthe aneuiysm remnant was gradually
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superior as matrix size increased. With a TE of 3.3 msec at 3T the

depiction of an aneurysm remnant was scored as "good" with a matrix size

of 384 x 224 and "excellent" with a matrix size of 512 x 256, whereas it

was scored as "inadequate" with a matrix size of256 _ 160. In contrast, the

aneurysm remnant was not sufficiently visualized on 1.5T MRA with a

matrix size of384 x 224 with any TEs.

At 3T the depiction ofthe aneurysm remnant improved as the TE

was reduced. For example, with a matrix size of384 x 224 at 3T the

radiologists scored the depiction of an aneurysm remnant as "not visible"

on MRA with a TE of6.5 msec, "adequate" with a TE of4.5 msec, "good"

with a TE of 3.3 msec, and "excellent" with TEs of 2.8 msec and 1.7 msec

(Fig. 2). With a TE of 3.3 msec at 3T the depiction ofan aneurysm remnant

was scored as "good" with a matrix size of384 x 224 and "excellent" with

a matrix size of 512 x 256; however, it was scored as "inadequate" with a

matrix size of 256 x 160 (Fig. 3).

For the depiction of an aneurysm remnant, the

high-spatial-resolution 3T MRA (matrix size of384 x 224 and 512 x 256)

with a short TE of Si 3.3 msec was superior to the 1.5 T MRA obtained

with any sequences. For example, for a short TE of §3.3 msec the

high-spatial- resolution 3T MRA with an acquisition time of4minutes 25

seconds was superior to 1.5T MRA with an acquisition time of9 minutes

18 seconds for the depiction of an aneurysm remnant. For both 1.5T and 3T

MRA with a TE of 6.5 msec the effect of coil-induced artifact on the
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For comparison ofMRA obtained with the same TE, the

high-spatial-resolution 3T MRA ( 2 "3 m) was superior to any 1.5T or the

standard 3T MRA with a matrix size of 256 x 160 in the depiction ofthe

aneurysm remnant. With the improved SNR at 3T it is possible to increase

the spatial resolution at 3D TOF MRA with preservation ofimage quality

(33,34). On the other hand, the results indicated that further increases in

spatial resolution at 1.5T MRA could not improve the depiction ofthe

aneurysm remnant. Further increases in the spatial resolution at 1.5T

imaging caused further reduction of SNR and would simultaneously

degrade image quality. Therefore, the spatial resolution at 3D TOF MRA is

still limited at 1.5T.

For the depiction ofthe aneurysm remnant, the

high-spatial-resolution 3T MRA with an acquisition time of4 minutes 25

seconds using a reduction factor 2 was superior to the 1.5T MRA with an

acquisition time of9 minutes 18 seconds. A parallel imaging technique

such as sensitivity encoding (SENSE) has been proposed to markedly

reduce image acquisition time (40-42). The high-spatial-resolution 3T

MRA may certainly benefit from the use of a parallel imaging technique to

reduce the acquisition time while maintaining the high spatial resolution.

On the other hand, a decrease in the SNR inherent to SENSE has been

reported (41); the

reduction in SNR is characterized by the square root ofthe reduction factor.

Although we used a 1.3 reduction factor at 1.5T, which was smaller than

2.0 at 3T, the parallel imaging technique may have still affected the image
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quality of 1.5T MRA because the image degradation caused by the parallel

imaging technique seems to be more prominent at 1.5T than at 3T.

Any material whose static magnetic susceptibility differs from

that of surrounding tissues will distort the magnetic (BO) field. In addition,

dynamic eddy currents in the conduction ofmaterials caused by time

variable magnetic fields, such as radiofrequency (RF) and BO gradient

fields, may lead to Bl field homogeneity, image

intensity, and distortion artifacts (24). These effects with metal also cause

the image degradation in 3D TOF MRA, which is the limiting factor in the

assessment ofaneurysm remnants and parent vessel stenosis after aneurysm

coiling (50). Previous studies have reported that reducing the IE reduced

the heterogeneity ofthe magnetic field that occurs with metal (48, 51, 52).

Gonner et al (51) reported that the MR angiographic technique with a short

TE of 2.4 could depict more diagnostically relevant adjacent vessels by

reducing the extent of coil-induced artifacts. Regarding the 3D TOF

sequence at 3T, Walker et al (48) reported that reducing the TE from 7.2

msec to 3.5 msec was effective for minimizing coil-induced artifacts.

Similar to previous assertions, our results ofMRA at 3T showed that the

depiction ofthe aneurysm remnant was gradually superior as the TE was

reduced, which is consistent with the findings of previous studies. Some

studies have reported that the coil-induced signal intensity loss mimicked a

narrowing or occlusion ofthe parent and branch vessels on MR angiograms

(14, 53). In this study there was no definite difference between both field

strengths regarding the effects ofthe coil-induced artifacts on the depiction
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of a parent artery when a 3D TOF sequence with a short TE of smaller

reductions below 3.3 msec was used. The echo delay of 1.1 msec, 3.3 msec,

and 5.5 msec places lipids and water out ofphase at 3T, which leads to low

signal on gradient echoes in all voxels that contain water and lipid

components. Therefore, the combination ofthe matrix of 512 x 256 and the

TE of 3.3 or 1.1 msec may be optimal at 3T when considering acquisition

time and opposed phase ofTE.

There are a few limitations in this study. First, the

anthropomorphic vascular phantom was made of silicone rubber. In 3D

TOF MRA, diminution of signal intensity loss due to spin dephasing is

resolved most effectively with implementation of short TE (52).

Coincidentally, the sequence with shorter TE may cause a reduction of

vascular contrast because ofa higher signal from the background tissue.

MRA at a higher field strength results in a more efficient suppression ofthe

background tissue because the Tl longitudinal relaxation time is longer (28,

34), providing an improvement ofvascular contrast. In this study it was

impossible to know whether these factors associated with the phantom

made of silicone rubber would tend to overestimate or underestimate the

image quality ofMRA at 3T compared with human MR examination.

Second, since an MRA cannot depict the coils themselves, the coil

compaction was estimated by using an actual simulated aneurysm after the

insertion ofIDCs as the standard of reference. However, it was not possible

to precisely determine whether a localized signal intensity loss in the parent

artery was due to coil-induced artifacts or turbulence induced by protrusion
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ofthe coils. In this study a simulated aneurysm with a diameter of6 mm

was loosely packed with the IDCs, which were relatively small objects less

affected by coil-induced artifacts. Despite these limitations, it is important

to compare two systems under the same experimental conditions. Third, we

did not evaluate DSA imaging ofthe phantom, although DSA is always

used for a rough evaluation of an aneurysm remnant during embolization

with platinum coils in a clinical situation. The embolized ratio calculated

from the aneurysmal volume and theoretical coil volume, which we

adopted in this study, is also considered an important standard when

assessing whether coil embolization is sufficient or not. The previous study

reported that the probability of coil compaction was significantly higher

when the coil-packing ratio was less than 50% (54). Fourth, we did not use

the contrast-enhanced MRA technique in our phantom study. Although

some authors have reported that the contrast-enhanced MRA at 1.5T

constitutes a reliable technique for the detection of aneurysm remnants (55,

56), the optimal protocol for contrast-enhanced MRA at 3T has not been

fully evaluated. Therefore, further investigation with regard to the

contrast-enhanced MRA at 3T is necessary.

In an attempt to establish the optimal parameters at 3T, 3D TOF

MRA at 3T was compared with that at 1.5T to assess the depiction of

residual flow in an aneurysm embolized with platinum coils by using a

vascular phantom with pulsatile flow. In conclusion, the

high-spatial-resolution MRA at 3T with short TE of S 3.3 msec offers

superior image quality for the depiction ofaneurysm remnants compared
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with 1.5T. Among the 3T MRAs obtained with TE i 3.3 msec, the best

image quality regarding the depiction ofthe aneurysm remnant was

obtained with a matrix size of 512 x 256.
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