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This paper describes and compares three different approaches to estimate simultane-

ous localization and mapping (SLAM) in dynamic outdoor environments. SLAM has
been intensively researched in recent years in the field of robotics and intelligent vehi-
cles, many approaches have been proposed including occupancy grid mapping method
(Bayesian, Dempster-Shafer and Fuzzy Logic), Localization estimation method (edge or

point features based direct scan matching techniques, probabilistic likelihood, EKF, par-
ticle filter). In this paper, a number of promising approaches and recent developments
in this literature have been reviewed firstly in this paper. However, SLAM estimation in
dynamic outdoor environments has been a difficult task since numerous moving objects

exist which may cause bias in feature selection problem. In this paper, we proposed a pos-
sibilistic SLAM with RANSAC approach and implemented with three different matching
algorithms. Real outdoor experimental result shows the effectiveness and efficiency of our
approach.
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1. Introduction

The SLAM problem for a mobile robot is to build a consistent map of the environ-

ment and at the same time determine its location within this map [1]. The solution

to the SLAM problem has been seen as the fundamental in making a robot truly au-

tonomous [2]. One of the common assumptions used in SLAM is that the unknown

environment is assumed to be static containing only rigid, stationary objects. Non-
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rigid or moving objects are processed as outliers and filtered out.

In the robotics literature, SLAM has been seen as the prime tool to solve the so-

called DAMTO (detection and tracking of moving objects) problem. While SLAM

provides the vehicle with a map of static parts of the environment as well as its

location in the map, DATMO allows the vehicle being aware of dynamic entities

around, tracking them and predicting their future behaviors. It is believed that if

we are able to accomplish SLAM reliably in real time, we can detect every critical

situation to warn the driver in advance and this will certainly improve driving safety

and can prevent traffic accidents.

Basically, SLAM approaches have been proposed including the process of oc-

cupancy grid mapping, and the process of localization estimation. Occupancy grid

mapping (OGM), which is also called Map-learning, is the process of memorizing

the data acquired by the robot during exploration in a suitable representation.

Bayesian, Dempster-Shafer and Fuzzy Logic are the typical methods for occupancy

grid mapping. Localization is the process of deriving the current position of the

robot within the map. Typical methods are features based direct scan matching

(matching techniques such as ICP, RANSAC), probabilistic likelihood, particle fil-

ter and Extended Kalman Filter (EKF).

Sensor selection also takes a critical role in SLAM process. In this paper SLAM

approaches are classified into three main categories: visual SLAM and Lidar SLAM.

While visual and Lidar can also contain many types and levels, such as monocular

camera, stereovision, laser scanner, sonar and fusion of these sensors. However,

SLAM estimation in dynamic outdoor environments has been a difficult task since

numerous moving objects exist which may cause bias in feature selection problem.

In this paper, we proposed a possibilistic SLAM with RANSAC and implemented

with three different matching algorithms. Real outdoor experimental result shows

the effectiveness and efficiency of our approach.

This paper reviews a number of promising approaches and provides an overview

of recent developments in this domain. The emphasis of this paper is to discuss

the various methods with different sensor(s) data to estimate SLAM and global

localization, and provide a comprehensive performance analysis among the common

SLAM approaches, like computation speed, accuracy and cost.

The reminder of this paper is organized as follows. Section 2 presents a general

review on occupancy grid mapping approaches and Section 3 describes the method

of localization estimation. Practical analysis of different SLAMs is shown in Section

4. Section 5 concludes the paper.

2. Preprocess of SLAM

In the past two decades, occupancy grid maps have become a dominant paradigm for

environment modeling in mobile robotics. It is based on the use of a two-dimensional

representation called occupancy grid (OG), once acquired, they enable various key

functions necessary for mobile robot navigation, such as localization, path planning
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and collision avoidance.

2.1. The Mapping Problem

To build a map, is to take a number of sensor readings, a sensor reading being a

discrete-time sample, and integrate them into a map. This is not as straight forward

as it might sound as there are many reasons why robotic mapping is a hard problem.

• Sensor Noise. Laser and stereovision are sensitive to differences in light-

ing, some surfaces does not reflect sound well enough to be sensed by sonar.

• Sensor integration. To integrate sensor information into a maps repre-

sentation many objects has to be considered.

• Localization errors. To build maps the robots pose, that is the robots

position and direction, has to be know.

• Dynamic environments. In reality environment are dynamic not static,

and the mapping leads to many difficulties.

• High computational complexity. Time complexity is also a concern as

robotic mapping algorithms are supposed to work in real time.

2.2. Techniques for Building OGMs

The first OGM grid map algorithm was introduced by [14], its basic idea is repre-

sents the environment you want to map with a grid, each cell of the grid is assigned

a probability of being occupied by an obstacle. This algorithm was implemented

and a number of experiments were conducted to investigate how it would perform

given different types of sensor noise [4][5][6][15]. In these cases, the environment

is discretized into a regular OGM. Some irregular OGM may be used in [7][53].

In [7], the resulting model incorporates both a compact geometrical representation

of the environment and a topological map of the spatial relationships between its

obstacle free areas. The great advantage of these methods is that they can directly

use sensor data without the need for feature extraction, often either computation-

ally expensive or brittle. In [53], an method of building X-disparity gird map with

stereovision to solve the problem that the independent object cannot be detected

because of discontinuous occupied data in traditional X-Z gird map.

Nowadays many efforts in mobile robotics are directed to develop some kind

of ”uncertainty calculi” techniques for recovering spatial information from obtained

sensor data. In the literature, three different uncertainty calculi techniques for build-

ing OGMs of an unknown environment based on sensor information are discussed.

These techniques are based on Bayesian theory (probabilistic approach), Demp-

ster Shafer theory of evidence (evidence theoretic approach), and fuzzy set theory

(possibility approach). The probabilistic approach is the most widely found in mo-

bile robotic literature [8][14][15][16][24]. The Bayesian method rules the greatest

part of the work related to the probabilistic sensor fusion in building OGMs. This

attraction stems from the property of the Bayes’ updating rule which facilitates



4 Zheyuan Lu, Zhencheng Hu, Keiichi Uchimura

recursive and incremental schemes [10]. However, in order to avoid huge calculation

processes, one must assume that the cell states are independent. It has been ob-

served that this assumption may induce large errors in the presence of even a slight

degree of dependence between the random variables, this is exactly the case for

map building, since the occupied cells are not evenly distributed, but concentrated

in clusters (obstacles). As a consequence, the convergence of the Bayesian updating

procedure towards and acceptable characterization of the occupancy grid requires

a large number of measures.

The articles [15][16]describe algorithms for acquiring OGMs with mobile robots,

which rely on the probabilistic approach. These algorithms employ the expectation

maximization (EM) algorithm for searching maps that maximize the likelihood

of the sensor measurements. The approach presented in [15]relies on a statistical

formulation of the mapping problem using forward models. Experimental results

are presented, which are obtained using a RWI B21 robot equipped with 24 sonar

sensors. The disadvantages of this approach are an apparent increased sensitivity

to changes in the environment, and a need to go through the data multiple times,

which prohibits its real-time application. Moreover, in [17], it is pointed out that

the Embased techniques suffer from a high computational complexity. Besides, EM

is not guaranteed to converge to a global optimum.

The articles [9]presents a novel application of the theory of evidence for map

building. Compared with probabilistic methods, this method is different with the

Bayes approach by allowing support for more than one proposition at a time, rather

than a single hypothesis. It is interval based, as defined by the upper and lower

probability bounds, allowing lack of data (ignorance) to be modelled adequately.

This model no longer requires full description of conditional (or prior) probabilities

and small incremental evidence can be adequately incorporated. Also, it allows to

quantify the undistributed probability masses, thus making assessment about the

quality of the posterior probabilities. The structure of 2D map is independent of

the method and can be implemented by other representaions (grid, quadtrees).

In the articles [12], fuzzy logic concepts are used to introduce a tool useful for

robot perception as well as for planning. A map of the environment is defined as

the fuzzy set of unsafe points, whose membership function quantifies the possibility

for each point to belong to an obstacle. The computation of this set is based on

a sensor model and makes use of intermediate sets generated from range measures

and aggregated by means of fuzzy set operators.

2.3. Comparative Analysis of Building OGMs

The well known techniques of OGMs building were experimented and comparisons

were performed in [10][11]. It was shown that the possibilistic approach may pro-

duce the most suitable OGMs thanks to its robustness with respect to outliers. The

probabilistic and the evidence theoretic approaches produce good results in cer-

tain cases, but their performances with respect to outliers are very poor. Moreover,
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The building algorithm of the probabilistic approach is the fastest and has min-

imum memory consumption. The processing time for the evidence theoretic and

possibilistic approaches are approximately 1.5 times higher than the probabilistic

approach. The experimental results indicated that the method based on fuzzy logic

is more robust with respect to the occurrence of false reflections in the measuring

process [13].

3. Estimation Approaches of SLAM

In this section we discuss the localization estimation of SLAM with different sensors.

Camera is one of the most common sensor used in formations, due to its advan-

tages of large FOV and lower cost, and stereovision also can further provide depth

information. recently, active sensors such as sonar and laser have been widely used.

For the main reasons of rich information and higher accuracy. We will be present-

ing different SLAM estimation approaches, can be divided into Feature-to-Feature,

Point-to-Feature, Point-to-Point and other approaches.

3.1. Feature-to-Feature approaches

Feature-to-Feature matching approaches should have the shortest run-time, since

by these approaches hundreds of range points are reduced to dozens of features.

For most indoor applications, line segments [46], corners [34]and other simple ge-

ometrical features are rich and easy to detect. [35]picked a site that is similar to

indoor environments and employed feature-to-feature approaches to construct an

urban map successfully. [36]used intensity (reflectance) of laser signal and geomet-

rical primitives to define and detect features. Their approaches are still limited to

some specific environments or conditions.

Monocular cameras are in widespread use for SLAM, as they are simple and low

power sensors that allows to estimate the bearing of interest points and, by means

of camera motion and triangulation, the whole 3D structure of the environment

[54]. Much work in monocular visual SLAM focuses on using point feature:

In their work, practical real-time monocular SLAM was first demonstrated by

Davison [18], who uses the EKF, a mainstay of SLAM literature. He resolved the

problem of real-time operation by careful maintenance of the map to ensure that it

is sparse but sufficient, and by using the map uncertainty to guide feature match-

ing. More recently, Pupilli et al. [19]have demonstrated real-time camera tracking

using a particle filter, which provides a good robustness, but theirs is predominantly

a tracking system; its mapping ability is currently rudimentary, which restricts its

range of applications. Davison et al. [54], using an EKF to perform a real-time 6 DoF

SLAM, used a non-parametric approach to initialize the feature depth and bounded

the maximum feature depth to about 5m. Unfortunately, this delayed use can cause

a loss of information. To avoid this delay and to exploit low-parallax features, Sol’a

et al. [55]proposed to maintain several depth hypotheses combined in a Gaussian
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Sum Filter, to cover the distribution along the whole ray to the feature. An alter-

native solution for both undelayed initialization and depth uncertainty modeling

was introduced in [56]and [20]. They showed that the use of inverse depth param-

eterizations make the observation model nearly linear (at least for small camera

displacements), while reducing both non-Gaussian-ness of depth measurement and

EKF linearization. In this way, it is possible to model the uncertainty as Gaussian

and use EKF filtering, without delay. In [57]Clemente et al. demonstrated that a

different solution to filter inconsistencies is to use a Hierarchical map approach that,

combined with the Joint Compatibility test, allows to perform a mapping of a large

loop.

Line feature (or edge feature) are common in many environments and are ar-

guably better features to track than points. Described just by a step change in

intensity (which does mean that they lack discrimination), they are trivially stable

under a wide range of viewing angles, and a number of measurements can be made

along their length to localize them accurately. As a result, many camera-tracking

systems have used line features [2][58]. Bosse et al. [48]use a single omnidirectional

camera to detect and track parallel lines, both with reasonable results. Eade et

al. [58]use a single camera to detect and track edges, and SLAM estimated with

particle filter approach.

Point and line features are complementary in a camera localisation system: point

features provide good discrimination, but are view-dependent, while line features

are robust to viewing changes, but are more fragile. This idea has been studied

recently by [22], who bootstrap line-tracking (using a prior accurately-known three

dimensional model) with detected point features. They shows that monocular track-

ing with the fusion of point features and line features, and model-building with both

types of feature, can be performed within a standard SLAM framework.

Stereovision has been employed for map building in decades, e.g., active stereo

approach with spot lighting [23], 3D mapping from stereo range data with pla-

nar modeling assumption [24], and 3D SLAM based on feature point matching

[25][26][27]. The most popular approach in recent years is the feature-point based

one, in which the camera motion is estimated with feature-point matching between

consecutive frames, and 3D point clouds are generated based on the estimated cam-

era motion. As mentioned, however, the SLAM process is unstable in non-textured

environments, where sufficient corner-like features cannot be extracted. Since many

man-made environments are nontextured, the importance of alternative feature

forms such as lines is indicated in [28][51]. In [49], Nister et al. dealed with the

case of a stereovision but they also provided a monocular solution implementing

a SLAM algorithm that takes advantage of the 5-point algorithm and RANSAC

robust estimation.

Lines have also been used for some time in SLAM systems. In perhaps the

earliest work in visual SLAM using lines, Ayache et al. [31]used a stereo pair of cal-

ibrated cameras to directly extract the three-dimensional location of line segments

and filtered these within an EKF SLAM framework. More recently, Dailey et al.
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[32]described the application of ”FastSLAM” to the problem of estimating a map

from observations of 3D line segments using a trinocular stereo camera rig. In [30],

Tomono computes 3D points from the edge points detected in a stereo image pair,

and then estimates the camera motion by matching the next stereo image with the

3D points. The proposed method estimates camera poses and builds detailed 3D

maps robustly by aligning edge points between frames using the (Iterative Closest

Points) ICP algorithm.

3.2. Point-to-Feature approaches

Point-to-Feature approaches, such as one of the earliest by [37], the points of a scan

are matched to features such as lines. The line features can be part of a prede-

fined map. Features can be more abstract as in [38], where features are Gaussian

distributions with their mean and variance calculated from scan points falling into

cells of a grid. Basically, Feature-to-Feature approaches try to use less information

to represent the raw data in order to speed up algorithms. If features cannot be

detected robustly and contain some uncertainties, the whole performance of the

approaches will decrease. On the contrary, Point-to-Point based approaches do not

have these disadvantages; instead, they use all the raw data.

3.3. Point-to-Point approaches

Examples of Point-to-Point matching approaches are the following: iterative closest

point (ICP), iterative matching range point (IMRP) and the popular iterative dual

correspondence (IDC). ICP algorithm is one of the most successful and popular

algorithms. The basic idea of ICP is that using a closest-point rule to initial guess

of their relative pose, and then solving the Point-to-Point least-squares problem

to compute their relative pose. Finally the relative pose is updated and the whole

process iterates until the result is satisfying. Since ICP introduced by [39], many

variants have been proposed on the basic ICP concept. In the [40]proposed ICP,

where for each point of the current scan, the point with the smallest Euclidean

distance in the reference scan been selected. IMPR was proposed by [41], where

corresponding points are selected by choosing a point which has the matching range

from the center of the reference scan’s coordinate system. IDC also proposed by [41],

combines ICP and IMRP by using the ICP to calculate translation and IMPR to

calculate rotation. The mentioned point to point methods can find the correct pose

of the current scan in one step provided the correct associations are chosen. Since

the correct associations are unknown, several iterations are performed. Matching

may not always converge to the correct pose, since they can get stuck in a local

minima. In [42], Diosi presented a novel method for 2D laser scan matching called

Polar Scan Matching (PSM). This method avoids searching for point associations

by simply matching points with the same bearing. This association rule enables the

construction of an algorithm faster than the iterative closest point (ICP).
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3.4. Other approaches

probabilistic approach of Lider SLAM estimation is treated as a maximum likelihood

estimation problem. Thrun et al. [44][45]have demonstrated their probabilistic ap-

proach in museum environment. Another Lidar SLAM estimation method has been

done for example by minimizing an energy function [43], using local registration

and global correlation [46]and using FastSLAM [47]. A Kalman filter implemen-

tation can be found in [48]. Based on correspondence establishment, categorized

various SLAM estimation methods showed in Table 1.

4. Implementation of Lidar SLAMs

In this section, three kinds of approaches were implemented in C under Windows

(Celeron(R) CPU 3.0GHz), to estimate SLAM in dynamic outdoor environments.

The experimental real range data were gathered by a RIEGL laser scanner, running

at 15Hz, with an angle resolution of 0.1 degree.

Generally, in order to perform SLAM in dynamic outdoor environments, a pre-

cise vehicle motion is essential. When good vehicle locations are estimated, by in-

tegrating laser measurements we are able to build a consistent global OGM of the

vehicle, and achieve SLAM estimation. For the two-dimensional OGM, robot mo-

tion from pose (X,Z, 0) to pose (X ′, Z ′, α) consists of translation Tx,Tz along X-,

Z-axes and rotation α about Y-axe. The kinematics equations can be described by[
X ′

Z ′

]
=

[
cosα sinα

− sinα cosα

] [
X

Z

]
+

[
Tx

Tz

]
(1)

where (a,b,c,d) are motion parameters by a = cosα, b = sinα, c = Tx, d = Tz.

In our works, We implemented three kind of experiment approaches to estimated

motion parameters and SLAM. These approaches are Probability edge matching

approach, Maximum measurement probability approach and RANSAC approach.

In our OGM representation, the vehicle environment is divided into a two-

dimensional cell with a real value in [0,1] indicating the probability that the cell is

occupied by an obstacle or not. Here we apply Bayesian Update scheme (refer for

detail section 2) that is the widely used in mobile robotic literature, to provides an

recursive formula to update the grid map. The resolution of OGM (25m×40m)is 8

cm each cell.

4.1. Probability edge matching approach

In our test, after building the OGM with Bayesian theory method, the process is

started by grouping all the measures of a scan, into several clusters: the readings

are subdivided into sets of neighbor points, taking the proximity between each two

consecutive points of the scan into account. A cluster is hence, a set of measures

close enough to each other, which probably belong to the same object.

A simply clustering filter is adopted to remove outliers (small objects which

maybe are moving objects) and find meaningful edge features in local OGM. When
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Approach System Sensor Comments

F-T-F
[2] Monocular vanishing points and 3D lines to recover map-

ping on a 946 meter path
[32] Monocular resolved the problem of real-time operation
[22] Monocular bootstrap line-tracking with detected point

features
[19] Monocular EKF based, first practical real-time monocular

SLAM
[20] Monocular combined particle filtering for localisation with

Kalman filtering for mapping
[14] Stereovision 3D mapping from stereo range data with pla-

nar modeling assumption
[31] Stereovision used stereovision to directly extract the 3D

location of line segments and filtered these
within an EKF SLAM

[27] Stereovision 3D SLAM based on feature point matching
[32] Stereovision estimating a map from observation of 3D line

segments using a trinocular stereovision
[50] Stereovision build 3D maps robustly by aligning edge points

between frames using the ICP algorithm
[51] Stereovision build 3D maps by line features
[46] Lidar using local registration and global correlation

used line segments for feature matching
[36] Lidar used intensity of laser signal and geometrical

primitives to define and detect features
[35] Lidar employed feature-to-feature approaches to

construct an urban map successfully
[34] Lidar used corners for feature

P-T-F
[52] Lidar utilizes Euclidean invariant features to match

an input scan with reference scans without an
initial alignment

[37] Lidar scan points matched to features like lines
[38] Lidar features are Gaussian distributions with their

mean and variance calculated

P-T-P
[49] Stereovision used 5-point RANSAC and bundle adjustment

to recover 3D map
[41] Lidar based on matching points with tangent direc-

tions in two scans to compute the relative pose
of two scans

[40] Lidar used ICP for each point of the current scan,
with the smallest euclidean distance in the ref-
erence scan been selected

Others
[44] Lidar used combination of maximum likelihood with

posterior estimation
[45] Lidar estimate of the vehicle pose with the measure-

ment likelihood that is nearly unimproved

Table 1. Comparison of SLAM Estimation Method. F-T-F=Feature to Feature, P-T-F=Point to

Feature, P-T-P=Point to Point
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edge features have been established in each local OGM, a image process technology

of pattern matching is used for edge matching between two consecutive local OGM,

and estimate motion parameters. The resulting pose is then used to generate a

global OGM. This approach is similar to [33]. The total computational time is

about 70-100 ms.

4.2. Estimation maximum likelihood approach

We used an approach of matching problem as a maximum likelihood problem to

estimate SLAM (quite similar to [45]approach). Given an underlying vehicle dy-

namics constraint, the current scan’s pose is corrected by comparing with the local

OGM constructed from all observations in the past. By this way, we can reduce

the ambiguity and weak constraint especially in outdoor environment and when the

vehicle moves at high speeds.

To find the current scan’s pose of maximum corrected, hill climbing strategy can

be used but may suffer from a local maximum. The resulting pose will be the pose

at which the measurement probability achieves a maximum value. The resulting

pose is then used to generate a global OGM. Because of the inherent discretization

of the grid, the approach turns out to work very well. In practice, with a grid map

resolution of 8 cm, it is to generate enough pose samples to obtain a good estimate

of the vehicle pose with the measurement likelihood that is nearly unimproved even

with more samples. The total computational time is about 40-80 ms.

4.3. RANSAC approach

In this test, the process is also started by clustering that is described in the above.

After the clustering process, line fitting is used to detect start points, end points

and break points for each cluster. During the clustering and line fitting processes, no

effort is made to adjust the lines to the most common objects that can be found. For

that reason, the segmentation can be very faithful regarding to the measure points,

however not corresponding to the related objects. This problem arises specially for

targets like walls or big obstacles with smaller ones in between them and the laser

scanner, resulting in the division of the big one in two or more object. In order to

avoid those problems, the Broken lines algorithm is proposed, that is the detection

of walls or other big obstacles partially occluded by smaller objects in front of them,

can be partially hidden in one of the invisible areas. Afterwards, checking for end

point and start point of behind objects in last cluster and next cluster. Joining them

that not exceed a given threshold.

The correspondences between features identified in two successive frames are

found by comparing the region (the angle is not exceed 5 degree and distance is not

exceed 2 meters). For a feature in the landmark set of the first frame, we assume

that the features in the region of the second frame are its corresponding point. The

resulting set of point correspondences is used as input for the RANSAC algorithm.

The total computational time is about 20-50 ms.
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An overview of the algorithm is shown in follow: Repeat the following steps until

stop condition satisfied:

• Choose a random subset of two set of corresponding points and calculate

and by least-squares algorithm.

• Compute the consensus set by applying the calculated rotation and transla-

tion to all points of and then computing the distance to the corresponding

points of set , add points whose distance is below a certain threshold.

• Save the consensus set if its size is bigger than a certain number.

Stop condition: iteration number is over N, or, the consensus set size is larger than

a pre-defined threshold. If at least one consensus set is found, use the one with the

most elements and calculate from these points the rotation and translation . If no

consensus set is found, the algorithm outputs nothing.

4.4. Comparative Analysis of SLAM results

(a) Frame 139 (b) Frame 324

Fig. 1. Comparison SLAM results with three kind of method

Figure 1 shows two camera images in frame 139 and 324. In frame 139, our

vehicle was moving in a straightaway, and two pedestrians were ready for across

the crossing from right to left. From frame 324, our vehicle was moving and turning

right slightly to avoid two pedestrians. In this scene, there are also other walking

pedestrians.

Figure 2 shows the estimated SLAM results by three test methods. Since most of

objects were static, our SLAM results show not significant difference. However the

vehicle path, we can see, RANSAC method shows the best performance, because

another method were very sensitive to the dynamic objects. In figure 3, since many

dynamic objects (walking pedestrians) exist, the RANSAC results were much better

than another methods.
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(a) edge matching (b) probability (c) RANSAC

Fig. 2. SLAM built from Frame 139

(a) edge matching (b) probability (c) RANSAC

Fig. 3. SLAM built from frame 324



SLAM Estimation in Dynamic Outdoor Environments 13

5. Conclusions

This paper reviews a number of promising approaches and provides an overview of

recent developments in the domain of SLAM, which aims at building a consistent

map of the environment and at the same time determine the location of moving

robot within this map. In this paper, we classify SLAM by the processes (occupancy

grid mapping and localization estimation), sensors (visual SLAM, Lidar SLAM

and SLAM by sensor fusion) and uncertainty calculation (probabilistic, evidence

theoretic and possibilistic SLAMs). In this paper, we proposed a possibilistic SLAM

with RANSAC estimation, which shows better performance in a noisy environment

to build the occupancy grid maps in our experiment.
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