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Abstract—We present a replication-based and self-recovery-
based approach, replica backup, that realizes both continuous
and highly-available data stream processing over local area
networks. In our approach, we use process-pairs mechanism in
which peer operators run in parallel and independently so that
each downstream operator can use whichever data arrives first.
To further realize continuously stable communication among
operators and improve the robustness of system, we devise
automatical recovery mechanism that overcomes the limitation
of one-off recovery mechanism. In this paper, we first outline the
basic design and framework associating with our self-recovery
technique. Next, we develop central leader election algorithm
(CLEA) that can choose a new operator according with the
placement of candidates. This operator placement algorithm that
directly measures the latency among operators aims to balance
the cost of data stream processing and latency guarantee. Finally,
we compare our replica backup method with previous high-
available technique through experiments on network simulator
ns-3 to demonstrate the utility of our work.

I. INTRODUCTION

Nowadays, there has been an increasing interest in high
volume data and continuous data stream with low latency on
distributed stream-processing systems. In such systems, data
streams are processed in or near real-time for a variety of
purposes, such as network monitoring, intrusion detection,
real-time analysis and customized e-commerce applications.
In those applications domain, continuous and highly-available
data stream processing with low latency is critical for dealing
with real-world events.

In distributed stream processing systems (DSPSs), the fail-
ure of a single server can block data stream processing or
cause the loss of a large amount of transient information.
DSPSs, therefore, must incorporate a fast and high-availability
mechanism with low latency in spite of server failure.

As a response, several data stream processing research
prototypes have appeared in [1], [2], [3], [4] which aim at
continuous and highly-available dataflow. Because the recov-
ery mechanism results in redirecting input data stream during
the failover, they are dissatisfied with the applications that are
mentioned above.

To overcome the limitations of previous techniques, we pro-
pose an approach using the process-pairs mechanism. In our
approach, there is no notion of primary operator or secondary

operator over local area networks. Both of peer operators
run independently and send in parallel output tuples to each
downstream operator so that it can use whichever data arrives
first, similar to [5]. Meanwhile, in order to achieve continuous
and highly-available data stream processing over local area
networks, we also design a system that can automatically
choose a new operator to replace the failure one, when an
operator fails. The system is then able to tolerate another
failure without introducing extra delay.

Previous researches [6], [7], [8], [9] have showed operator
placement affects the performance of distributed stream pro-
cessing applications that could reveal the fundamental trade-
off between bandwidth efficiency and result latency. Inspired
by [10], for performing node selection based on network
location over wide area networks, therefore, we take the
placement of operator into consideration in our data stream
processing system over local area networks. We will show the
details in Section II.

Our solution involves the following subproblems.
1) Recovery Mechanism: We need a recovery mechanism

that realizes continuous and highly-available data stream pro-
cessing over local area networks.

2) Backup Placement Decision: We need an algorithm that
automatically finds a new appropriate operator after an existing
operator is out of work. Our operator placement algorithm
strives to balance the cost of data stream processing and
latency guarantee.

3) Duplicate Tuples: In our system, each operator receives
input tuples from two upstream operators. For the sake of
producing correct results and reducing the operator processing
time, it is necessary to eliminate the duplicate tuples from
upstream operators.

The remainder of this paper is organized as follows. In
Section II, we describe the backup model and how we devise
a self-recovery mechanism to achieve continuous and highly-
available data stream processing, backup placement decision
to balance the cost of data stream processing and latency
guarantee, and a duplicate filter to produce correct results and
reduce processing time. In Section III, we demonstrate the
utility of our work through comparing our approach, replica
backup, with a previous method and measuring effect of
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Fig. 1. Example of data stream processing system

average server delay, effect of heart-beat interval rate, impact
of CLEA and recovery time for random selection and CLEA
selection. In Section IV, we present the differences between
our approach and previous approaches. In Section V, we
summarize the contribution of our research and put forward
what we should do in future work.

II. THE BACKUP MODEL

In this section, we describe the system model how we realize
self-recovery, continuous and highly-available data stream pro-
cessing. We first present the assumptions. Secondly, to improve
the robustness of system, we devise a self-recovery mechanism
to overcome the limitation of one-off recovery mechanism.
Then, we come up with backup placement decision using the
central leader election algorithm (CLEA) to balance the cost
of data stream processing and latency guarantee. Finally, we
describe how we design a duplicate filter for producing correct
results and reducing processing time.

A. Assumptions

1) System Configuration: We assume a small-scale area
network or local area network as the substrate for data stream
processing. There are 10-20 servers that are grouped into
clusters. For simplicity, we assume those servers are filter
operators that have been embedded in them, respectively, and
have the same and enough capability to process data stream.

2) Communication: We assume that servers are connected
with a fast, reliable, order-preserving and robust message
delivery protocol network as TCP.

3) Failure Model: We assume there is a fail-stop
server/network failure. The network failure that isolates server
clusters is not supposed to happen in local area networks. We
do not consider Byzantine failures [11].

B. A Self-Recovery Mechanism

Generally, rollback recovery mechanism consumes appro-
priate resources so that it is suitable to be applied for limited-
resource environments. However, it introduces extra delay
due to redirecting input data stream during the failover [2].
Because the low latency and real-time processing is critical
for some kinds of data stream processing applications, it is

___________________________________________________________

1 selecting a new replica operator O

2 begin

3 for each operator oi which is not connected to stream S do

4 diRu← ping.latency (oi,Ru)

5 diR ← ping.latency (oi,R )

6 diRd← ping.latency (oi,Rd)

7 average.latency.di← (diRu + diR+ diRd )/3

8 end for

9 O← {average.latency.di }

10 end

___________________________________________________________

Algorithm 1. Backup placement decision

i
argmin

insufficient for us to use the mechanism to achieve continuous
and highly-available data stream processing. Otherwise, the
most of research works put much value on one-off recovery
so that it could not afford to handle with once more failure.
For example, if the primary operator is out of work, the
secondary operator will take over it and continuously process
the data stream. However, if a failure happens again, namely,
the secondary operator is broken, it will stall the data stream
processing, and as a result, the downstream operator cannot
receive input tuples from upstream. Hence, in our approach,
we propose using self-recovery mechanism to overcome the
difficulties.

As shown in Figure 1, streams are represented as solid
line arrows while operators are represented as circles in the
boxes. Operator Ru is said to be upstream of operator R,
and operator Rd is said to be downstream of operator R.
In this figure, query network is distributed across six nodes,
Ru, R,Rd, R

′
u, R

′ and R′
d in which R′

u, R
′ and R′

d are peers
of Ru, R and Rd, respectively. We associate operator R with
operator R′ and they are in charge of each other. To detect a
failure, they periodically send keep-alive requests (heart-beat
message) to each other and assume that one of them failed
if a few consecutive responses do not return within a timeout
period. When one of the operators detects the failure of its
peer, the operator that works well will inform its upstream
operator to select a new and appropriate operator to replace the
failure one with respect to the central leader election algorithm
(CLEA) (introduced in the following Subsection) in which
the new operator is not part of the data stream processing.
For example, as shown in Figure 2, once detecting operator
R’s failure, operator R′ continuously processes input tuples
and sends output tuples to each downstream while informing
upstream R′

u to choose a new operator instead of R from
R1, R2, R3, R4, R5 and R6.

C. Backup Placement Decision

Generally, on the one hand, the distance between two opera-
tors is shortest path so that the data stream processing is more
faster than others. On the other hand, the distance between peer
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Fig. 2. Example of self-recovery mechanism

operators affects the detection time of operator’s failure. To
balance the above two aspects, we take the placement of failure
one’s upstream operator, failure one’s peer operator and failure
one’s downstream operator into consideration. We call such a
backup placement decision as central leader election algorithm
(CLEA) described in Algorithm 1. Our algorithm is introduced
by adapting the discussions in [10] to our target environments.
As shown in Figure 2, upstream operator R′

u decides upon the
placement of a new operator based on two criteria: one is the
operators which have not been used in the stream processing
are candidates, such as R1, R2, R3, R4, R5 and R6. The other
is these candidates directly measure the latency from them
to the targets (failure one’s upstream Ru, failure one’s peer
R′ and failure one’s downstream Rd), respectively. It aims
to balance the cost of data stream processing and latency
guarantee.

For instance, when an upstream operator R′
u re-

ceives a request to find an operator among the tar-
gets Ru, R

′ and Rd, it informs the free operators
R1, R2, R3, R4, R5 and R6 to directly measure the latency
{d1Ru , d1R′ , d1Rd

, ..., d6Ru , d6R′ , d6Rd
} between themselves

and the targets, respectively, and compute the average la-
tency average.latency.di = (diRu + diR + diRd

)/3, re-
spectively. Then these candidates respectively report the av-
erage latency average.latency.di to upstream operator R′

u

for choosing a new operator that has minimal average latency,
argmin{average.latency.di}.

D. A Duplicate Filter

In our framework, each operator receives input tuples from
two upstream operators. For producing correct results and
reducing processing time, we eliminate the duplicate tuples
from upstream operators. Our filter algorithm is similar to [5]
and is described in Algorithm 2. Because the environments
of our approach and [5] are different, we take tuple id into
account while they need to take punctuation and timestamp
into consideration.

TABLE I. PARAMETERS AND THEIR DEFAULT VALUES

Parameter Meaning Default

λ input tuple arrival rate (tuples/s) 1000

Tuple size of a tuple (bytes) 50

Tuple_id size of a tuple_id (bytes) 8

Network bandwidth (Mbps) 16

D average server delay (ms) 10

T queue-trimming interval (ms) 25

H heart-beat interval (ms) 100

___________________________________________________________ 

1 eliminating duplicate tuples from upstream operators 

2 begin 

3 whenever tuple T arrives from upstream operators do

4 if tuple_id of T > max_tuple_id then

5 output(T);

6 max_tuple_id ← tuple_id of T;

7 else

8 discard(T); 

9 end 

___________________________________________________________ 

Algorithm 2. Duplicate filter 

III. EXPERIMENTAL EVALUATION

In this section, we present the results that substantiate
the utility of our work that consists of some advantage
and disadvantage. In Section III-A, we describe how we set
up the experiments and simulations. In Section III-B, we
compare our technique with upstream backup for continuous
and highly-available data stream processing to prove why our
approach has good performance. In Sections III-C and III-
D, we demonstrate how average server delay and heart-beat
interval rate effect interval time/tuple for replica backup and
upstream backup during the failover, respectively, which are
on benefit of continuous data stream processing. In Section III-
E, we compare the network costs of using random algorithm
selection and using central leader election algorithm (CLEA).
We show CLEA selection balance the cost of data stream
processing and latency guarantee. In Section III-F, we also
compare CLEA selection with random selection for the re-
covery time.

A. Setup

The experiments run on a machine with an Intel(R)
Core(TM)2 Duo CPU 3.33GHz and 4.00GB main memory
underlying Ubuntu 9.10. In our experiments, we created 10
nodes that represent operators in network simulator ns-3
[12], using C++ language. To compare our technique with
upstream backup under an identical condition, we used two
same input streams that run at 1000 tuples/sec on average.
To send tuples and invoke remote procedures, we used TCP
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Fig. 3. Comparing for continuous and highly-available stream processing

sockets. Table I summarizes the main simulation parameters.
We set such parameters on the basis of paper [2]. In paper
[2], [13] they have proven that the relation between recovery
time and bandwidth overhead as the communication interval
varies. Therefore, we discuss the tunable parameters: average
server delay and heart-beat interval rate and prove how they
affect interval time/tuple during the failover in data stream
processing.

B. Comparison of Techniques

In this experiment, because the upstream backup method
can be implemented most easily among the three methods
discussed in [2], we compared our replication-based and self-
recovery-based approach, replica backup, with the method for
simplicity.

We simulated the experiment in the architecture illustrated
in Figure 2 in 1 minute. We set the same server delay, 10
ms, among nodes. We first crashed operator R at 20 sec, then
we crashed operator R′ at 40 sec. As shown in Figure 3, the
triangle labeled “replica backup” shows when sever failures
happened in 20 sec or 40 sec there are no effects on data
stream processing in which Interval time/tuple keeps about 1
ms. The reason is when operator R was out of work at 20
sec, downstream operators Rd and R′

d could receive the input
tuples from operator R′ so that it did not introduce extra delay
of redirecting input tuples. When operator R′ was broken at
40 sec, downstream operators Rd and R′

d could also receive
the input tuples from the new operator that had been selected
to take the place of the failure operator, R, before.

The line labeled “upstream backup” shows the discontin-
uous and high delay of redirecting input data stream. In
this technique, the primary operator logs their outputs and
sends data to downstream, however, the secondary operator
keeps idle. Once a primary operator fails, the idle backup
takes the place of the failure one by reprocessing the tuples
from its upstream’s log that is the latest records of failure
operator. When we crashed operator R at 20 sec, upstream
backup introduced extra delay of redirecting input over 70
ms. Otherwise, after we crashed operator R′ at 40 sec, the
downstream operator did not produce any output because it
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no longer received input tuples from upstream operators R′

and R that had broken at 20 sec showed in Figure 3.
Consequently, using our replication-based and self-

recovery-based approach, replica backup, in data stream pro-
cessing system is more stable and robust than using upstream
backup.

C. Effect of Average Server Delay

We simulated this experiment in the architecture illustrated
in Figure 2 in 1 minute. We set the same server delay among
nodes, i.e. 5 ms, 10 ms, 15 ms, 20 ms, and 25 ms, respectively.
We only crashed the operator R at 30 sec. Figure 4 shows
the relation between interval time/tuple and average server
delay during the failover. As the average server delay varies
from 5, to 10, 15, 20, and 25 ms, replica backup is the clear
winner with stable interval time/tuple about 1 ms because each
downstream operator could receive input tuples from operator
R′. However, due to redirecting input tuples time, interval
time/tuple of upstream backup was in proportion to the average
server distance during the failover.

D. Effect of Heart-Beat Interval Rate

In this experiment, we wanted to compare the effect of
heart-beat interval for interval time/tuple during the failover.
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We also simulated the experiment in the architecture illustrated
in Figure 2 in 1 minute and crashed the operator R at 30
sec. We set the same server delay, 10 ms, among nodes. As
illustrated in Figure 5, as the heart-beat interval varies from
1, to 5, 10, 50, 100, and 150 ms, replica backup has a better
performance than upstream backup because the peer operators
run independently and in parallel, and as a result, there were
no effects on data stream processing. In contrast, because of
redirecting input data stream and resending the tuples from its
upstream’s log during the failover, upstream backup introduced
extra delay. Interval time/tuple of upstream backup was in
proportion to the average server delay during the failover.

E. Impact of CLEA

As described in Section II-C, we used the central leader
election algorithm (CLEA) in backup placement decision
that chooses a new operator to take over the failure one
aiming to balance the cost of data stream processing and
latency guarantee. In this experiment, we used the architecture
illustrated in Figure 2 in 1 minute and crashed operator R at
30 sec. To select a new node that has minimal average latency,
we set the different server delay among candidates.

In our framework, we use the following formula to calculate
network cost that is the same with [5], networkcost(S) =
rate(S) ∗ latency(S) in which rate(S) denotes the data rate
of stream S and latency(S) donates the network latency of
stream S. We got latencies through ping among operators. We
tested how much network of labeled “random” and “CLEA”
selection cost as the average server delay varies from 5.6,
to 11.3, 17.0, 22.7, 34.0, 45.3, and 56.7 ms, respectively.
As shown in Figure 6, randomly choosing a new operator
consumed more network cost than using CLEA, and the
network cost of using random selection was also increasing
faster than using CLEA, because CLEA selection always chose
the shortest path to transmit data. Using CLEA in backup
placement decision, we can balance the cost of data stream
processing and latency guarantee.
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F. Comparison of Recovery Time

Although our proposal, replica backup, has many advan-
tages that have been mentioned above, there is also a dis-
advantage. We simulated the experiment in the architecture
illustrated in Figure 2 in 1 minute. To select a new node that
has minimal average latency, we also set the different server
delay among candidates. We crashed operator R at 30 sec.
The recovery time was defined as from upstream operator R′

u

received the backup notify to a new operator received the input
tuples from upstream operator.

In Figure 7, the square labeled “CLEA” and rhombus labeled
“random” selection respectively represent how the recovery
time varied, as the average server delay changed from 5.6, to
11.3, 17, 22.7, and 28.3 ms. Because of choosing time (Lines
3-9 in Algorithm 1), CLEA selection has a higher recovery
time than random selection over 0.4 sec.

IV. RELATED WORK

Providing continuous and highly-available in data stream
processing has been widely researched in distributed systems.
There are two general classifications of failover model. One
is rollback recovery mechanism. The other is state-machine
recovery mechanism. Conventional rollback recovery proto-
cols are categorized into passive standby, upstream backup
and active standby. The recovery mechanisms were used in
[2], [4] in which they all employ the process-pairs approach
of replicated computation in the notion of a primary and
secondary. In those techniques, a primary operator periodically
sends heart-beat message to the secondary operator to detect
the server failure. If the primary operator is out of work,
the secondary operator will take over the operation of the
failed one. Thus, such implementation introduces extra delay
of redirecting input data stream.

Approaches in [1], [3] apply state-machine recovery mech-
anism in which all the replicas run in parallel but receive data
from only one of the upstream. All the replicas also are “up-
to-date”. Thus, server failure stalls the processing only during
the failover.

The previous paper [5] introduces multiple replication-based
method in data stream processing over wide area networks



in which there have rich network resources and partitions
are more frequent. Their approach also collects garbage and
revives replicas to cope with the dynamics of the environment.
If failures or local congestions occur, however, the surviving
replicas can experience unexpected delays. For solving this
problem, they use reviving garbage-collected replicas. Be-
cause multiple replicas participate in data flow and garbage-
collecting/reviving replicas are used in data stream processing,
this method uses more resources than our approach and is
unsuitable to be applied in limited-environments.

To the best of our knowledge, conventional rollback re-
covery mechanism and state-machine recovery mechanism
introduce extra delay during the failover and just can support
one-off failure of system. In our approach, the peer operators
run in parallel and independently. If one server failed, the peer
operator can receive input tuples and send output tuples to
downstream operator while notifying its upstream to select
a new operator to replace the failure one. Thus, the data
stream processing is continuous. In addition, the system can
support once more server failure after automatically recovery.
Hence, our self-recovery solution improves continuous and
high-availability for data stream processing over local area
networks.

V. CONCLUSION

In this paper, we argued that the distributed and data flow
nature of continuous and high-available data stream processing
applications raises novel challenges and opportunities over
local area networks. We introduced a replication-based and
self-recovery-based approach, replica backup, that can deal
with both high interval time/tuple during the failover and
continuous fail-stop failures. The central notion behind the
technique is to replicate operator and let them work in par-
allel and independently while automatically recovering server
failure. In this way, each downstream operator in the system
can use whichever data arrives first from upstream operators
to improve the continuous of dataflow. It also can improve
the robustness of system through automatically recovering.
The system, therefore, naturally achieves the continuous and
highly-available data stream processing. During the course of
data stream processing, we also devised a duplicate filter for
producing correct results and reducing processing time.

Based on this replication and self-recovery framework, we
also took the placement of operator into consideration. We
introduced the central leader election algorithm (CLEA) to
choose a new operator replacing the failure one. We used
CLEA to balance the cost of data stream processing and
latency guarantee.

Through simulations, we demonstrated the approach that
we introduced, replica backup, is better than upstream backup
for continuous and highly-available data stream processing.
We investigated how the average server delay and heart-beat
interval effect the interval time and which method has more
stable performance. Finally, we tested how much network cost
and showed randomly choosing a new operator has lower

performance in terms of network cost and average server delay
but has lower recovery time than using CLEA selection.

We currently have a basic framework that can provide
continuous and highly-available data stream processing over
local area networks. In future, we will extend our system and
take network load into consideration. We plan to study the
interaction between high availability and load balancing and
detect how it effects the data stream processing.
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