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Abstract 
1-Allyl-3-butylimidazolium bromide ionic liquid [AyBIm]Br was prepared and used for the 

modification of mercaptopropyl-functionalized silica through surface radical chain-transfer addition. 
The obtained ionic liquid-modified silica (SiImBr) was characterized by elemental analysis, infrared 
spectroscopy, NMR spectroscopy, and thermogravimetric analysis. The selective retention 
behaviours of polycyclic aromatic hydrocarbons (PAHs) including some positional isomers were 
investigated using SiImBr as a stationary phase in reversed-phase liquid chromatography. The 
results showed that SiImBr presented multiple interactions including hydrophobic, π-π, and 
ion-dipole interactions during the separation of PAHs and dipolar compounds. However, it is 
proposed that π-π and ion-dipole interactions play important roles in the separation of PAHs and 
dipolar compounds. These results indicate that the ionic liquid-modified silica stationary phase is 
promising for future applications. A commercially available monomeric octadecylated silica (ODS) 
column and a custom-made poly(styrene)-grafted silica (Sil-Stn) column were used as references. 

 
Keywords: Ionic liquid-modified silica; HPLC; PAHs; Ion-dipole interaction. 
1. Introduction 

Advances in column technologies have contributed to the development of high-performance 
liquid chromatography (HPLC) as a modern analytical technique [1]. Most reversed-phase HPLC 
applications are carried out with octadecylated silica (ODS) columns. However, new stationary 
phases are still emerging and have been studied in recent years [2,3]. Chemical modification of 
silica packing materials is still a popular method that is used to achieve novel solute selectivity in 
HPLC [4]. In our earlier study, polyoctadecylacrylate-grafted silica (Sil-ODAn) as a lipid 
membrane-analogous stationary phase showed unique separation behaviours with 
ordered-to-disordered phase transitions. With this phase, high selectivity towards PAHs was 
observed in the crystalline state [5,6]. Poly(4-vinylpyridine)-modified silica (Sil-VPn) not only 
reduces undesirable silanol effects against basic compounds in HPLC [7] but also shows unique 
shape-selective separation behaviours for PAHs in both the reverse and the normal phases [8].  

On the other hand, room-temperature ionic liquids (ILs) [9], which are known as molten salts, are 
usually composed of a relatively large organic cation (e.g. imidazolium, pyridium) and a small 
inorganic anion (e.g. Cl-, Br-, BF4

-). Because of their useful and desirable physicochemical 
properties such as low melting point, low volatility, and high dissolvability, ILs have been widely 
studied as novel solvents or materials in organic synthesis [10], catalysis [11], and separation 
science [12]. ILs were also immobilized on silica and other supports and then used as a recycled 
catalyst [13], a solid-state electrolyte [14], an extractant for solid phase extraction [15], and an 
additive for a lubricant [16].  
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Recently, IL-modified silicas have attracted considerable attention from chromatographic 
workers [17-29]. In 2004, IL-modified silicas were first used as stationary phases in HPLC for the 
separation of alkaloids [17]. Effective separations were ascribed to both the hydrophobicity and the 
ionic property of the phases. Imidazolium-based ILs were covalently bonded on silicas via n-alkyl 
chains, and the retention characteristics of these stationary phases were systematically evaluated by 
the linear solvation free energy relationship (LSER) method developed by Stalcup et al. [18-20]. 
Colón et al. [21] synthesized two alkylimidazolium-modified silica stationary phases using 
trimethoxysilane ‘ionosilane’ derivatives of ILs; they used these phases for separating aromatic 
carboxylic acids. On the other hand, we prepared anion-exchange phases based on 
N-methylimidazolium- and imidazolium-functionalized silica [23,24] for the separation of inorganic 
and organic anions with strong anion-exchange interaction; we also prepared two zwitterionic 
stationary phases based on sulfonated imidazolium for the simultaneous separation of anions and 
cations [25,26], and it was observed that some bases and vitamins were also separated successfully 
[25]. 

Although multiple interactions of IL-modified silica phases have been pointed out by Stalcup et 
al. [18-20], Colón et al. [21] and our group [17,23-25] etc., considerable work still needs to be done, 
including conducting extensive studies on the retention mechanism and the application of 
IL-modified silica phases. In our previous study [26], a 1-allyl-3-butylimidazolium bromide 
IL-modified silica stationary phase (SiImBr) was prepared by using the synthesis procedure shown 
Fig. 1. However, SiImBr was used only as a reference column that presented strong anion-exchange 
interactions when used to separate inorganic anions. In this study, SiImBr was prepared again using 
a modified method, characterized in detail, and used to separate PAHs containing positional isomers 
through multiple interactions such as hydrophobic, π-π, and ion-dipole interactions between 
imidazolium and the analytes. 

 
2. Experimental 
2.1. Materials 

1-Allylimidazole (99%) was purchased from Alfa Aesar (Lancs, England). 1-Bromobutane 
(Cica-Reagent) was purchased from Kanto Chemicals (Tokyo, Japan). 
3-Mercaptopropyltrimethoxysilane (MPS) was purchased from Azmax (Chiba, Japan). 
Azobisisobutyronitrile (AIBN) was obtained form Nacalai tesque, Inc. (Kyoto, Japan) and purified 
by recrystallization from methanol before use. Porous silica particles 120-S5 (diameter 5 μm, pore 
size 120 Å, specific surface area 300 m2 g−1) were obtained from YMC (Kyoto, Japan). All PAHs, 
alkylbenzenes, and other positional isomers were commercially available and used without any 
purification. 

 
2.2. Preparation of stationary phase 

SiImBr was prepared by a surface radical chain-transfer reaction according to a method modified 
from our previous work [26]. Intermediate products were prepared as follows: MPS-modified silica 
was prepared according to a published procedure [30], and [AyBIm]Br was prepared in the 
following manner. To 1-allylimidazole (10.8 g, 0.1mol) in a dry 250 mL flask was added an excess 
of 1-butylbromide (16.4 g, 0.12 mol). The mixture was stirred at room temperature for two days. 
The obtained [AyBIm]Br was washed with diethyl ether several times and dried under vacuum, 
giving a light yellow viscous liquid: yield 99%; 1H NMR (CD3Cl, 400 MHz, ppm): δ 10.37 (1H, s), 
7.61 (1H, s), 7.53 (1H, s), 6.06 (1H, m), 5.48 (2H, m), 5.07 (2H, d), 4.38 (2H, t), 1.94 (2H, m), 1.42 
(2H, m), 0.98 (3H, t).  
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 [AyBIm]Br was grafted onto MPS-modified silica through a surface radical chain-transfer 
reaction as shown in Fig. 1. MPS-modified silica (3.0 g) was added to a 100 mL three-neck 
round-bottomed container. [AyBIm]Br (3.0 g) dissolved in 30 mL of acetonitrile and 0.03 g of 
AIBN was added into the container. The mixture was stirred at 60 ◦C for 6 h. The precipitates were 
filtered and washed with acetonitrile, methanol, and diethyl ether. The obtained SiImBr was packed 
into a column and characterized after being dried under vacuum. 

 
2.3 Characterization 

Elemental analyses were carried out on a Yanaco CHN Corder MT-6 apparatus (YANACO Co., 
Ltd., Kyoto, Japan). Diffuse reflectance infrared Fourier transformation (DRIFT) spectra were 
obtained on a FT/IR–4100 (JASCO Co., Ltd, Tokyo, Japan) in the range of 4000–400 cm−1. 
Thermogravimetric analysis was performed on a Seiko Exstar 6000 TG/DTA 6200 thermal analyzer 
(Seiko Instruments Inc., Chiba, Japan) in static air from 35 to 800 ◦C with a heating rate of 10 ◦C 
min−1. Solid-state 13C NMR spectra were measured using a Varian Unity Inova AS400 (Varian, 
California, U.S.A.) at a static magnetic field of 9.4 T with a Varian 7 mm VT CP/MAS probe. 1H 
NMR spectra for [AyBIm]Br were recorded by a JEOLJNM-LA400 instrument (JEOL, Tokyo, 
Japan).  

 
2.4 Chromatographic conditions 

The SiImBr stationary phase was packed into a stainless-steel column (150 × 4.6 mm I.D.). Two 
reference columns were monomeric ODS (Inertsil ODS-3, 250 × 4.6 mm I.D., GL Science, Tokyo, 
Japan) and home-made poly(styrene)-grafted silica (Sil-Stn) (250 × 4.6 mm I.D.), respectively [7]. 
HPLC-graded methanol and Millipore water were used as components of the mobile phase. All 
samples were directly dissolved in methanol. The chromatographic system (JASCO, Tokyo, Japan) 
consisted of a LC-NetII/ADC communication device, a DG-2080-53 3 Line degasser, a PU-2080 
Plus Intelligent HPLC pump, a CO-2065 Plus column oven, a UV-2075 Plus Intelligent UV/vis 
detector, and a Rheodyne injector with a 20 μl sample loop. All chromatographic data were obtained 
by a JASCO ChromNAV Chromatography Data System. The column temperature was controlled at 
25 ◦C. The flow-rate was 1.0 mL min-1, the detection wavelength was UV 254 nm, and the injection 
volume was 5 μL. The retention time of D2O was used as the void volume (t0) marker (The 
absorption for D2O was measured at 400 nm, which is actually considered as the injection shock). 
The retention factor (k) of an analyte was calculated according to the equation: k = (tR-t0)/t0, where 
tR is the retention time of the analyte. The separation factor (α) is the ratio of the retention factors 
for the two solutes being analyzed. The water/1-octanol partition coefficient (log Po/w), usually used 
to represent molecular hydrophobicity, was determined from the retention factor with the ODS 
column stated above as log Po/w = 3.759 + 4.207 log k (r = 0.99997), according to the procedure 
described in our previous work [31]. The structures, properties, and log Po/w values for 
alkylbenzenes and PAHs studied in this work are listed in the supporting information (Table S1). 

 
3. Results and discussion 
3.1. Preparation and characterization of SiImBr 

1-Allyl-3-butylimidazolium IL was synthesized and then covalently bonded onto MPS-modified 
silica with AIBN as a radical initiator. This is confirmed from the results of the elemental analysis, 
which are described below. 

The degrees of surface coverage for MPS-modified silica and SiImBr were calculated from the 
following equations [25]:  
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MPS-modified silica (μmol m−2)= %
36 (1 % % )

C
C H S× − − ×

=3.42       (1) 

SiImBr (μmol m−2)= %
28 1 % % % % )

N
C H N Br S× − − − − ×（

=1.66         (2) 

where %C, %H and %N represent the percentages of carbon, hydrogen, and nitrogen respectively. 
The elemental contents for MPS-modified silica and SiImBr were C 3.52%, H 1.28% and C 8.24%, 
H 1.75%, N 1.24%, respectively. The %Br (which is 3.54 here) is calculated from the %N in 
relation to the stoichiometric ratio (%N: %Br = 28: 80), and S is the specific surface area of the 
silica support (300 m2 g−1). The amounts of mercaptopropyl and imidazolium moieties attached to 
the silica surface can thus be calculated as 3.42 μmol m−2 for MPS-modified silica and 1.66 μmol 
m−2 for SiImBr. From these results, it is concluded that this reaction is an addition reaction and not a 
polymerization reaction. This may be due to the fact that this allyl IL is less-reactive for 
polymerization [32].  

Infrared spectrometry is one of the useful tools to identify the chemical modifications of 
compounds. Small differences in wave numbers and in the intensities of the absorption bands are 
observed in the spectra of MPS-modified silica and SiImBr as shown in the supporting information 
(Fig. S1a). In the spectrum for the SiImBr surface, the peak at 2966 cm−1 is assigned to the C–H 
stretching of the tetrahedral carbon and the peak at 1557 cm−1 is attributed the characteristic 
frequency of the imidazolium groups, which confirms the anchoring of the organic molecule onto 
the silica surface [33].  

Thermogravimetric curves are usually used to determine thermal stability and to confirm the 
amount of immobilized compounds. The weight loss observed between 200 and 600 ◦C can be 
associated with the loss of the organic groups attached to the silica surface. As shown in the 
supporting information (Fig. S1b), MPS-modified silica presented a mass loss of about 6.4% from 
200 ◦C to 600 ◦C. After covalently bonding with 1-allyl-3-butylimidazolium IL, SiImBr showed a 
mass loss of about 15.3%, which indicated that the organic content greatly increased. These mass 
losses are consistent with the immobilized amounts estimated by the elemental analyses. 

Solid-state NMR spectroscopy is another powerful tool to evaluate the chemical composition and 
conformational properties of chemically modified surfaces. The solid-state 13C NMR spectrum for 
SiImBr was acquired as shown in Fig. 2. Two important signals related to the imidazolium group 
bonded on the modified silica were observed at 122 and 135 ppm. Signals attributable to the 
carbons of mercaptopropyl and alkyl groups could also be identified from the spectrum.  
 
3.2. Evaluation of retention mode 

It is known that conventional ODS or other alkylated organic stationary phases can recognize the 
hydrophobicity of solutes in HPLC, which is measured by the selectivity of the stationary phase for 
the methylene group. This reflects the possibility that the phase may be able to separate two 
molecules that differ only in methylene group, e.g., amylbenzene and butylbenzene or ethylbenzene 
and toluene. The retention mode as well as the extent of hydrophobic interactions among the solutes 
and the packing materials in HPLC can be determined by retention studies using alkylbenzenes as 
solutes [5]. Fig. 3 shows the relationship between log k and log Po/w for SiImBr, Sil-Stn and ODS. It 
was observed that SiImBr showed higher retention for PAHs than for alkylbenzenes. For instance, 
the log Po/w of naphthacene (5.71) is much smaller than decylbenzene (7.36), but the log k value of 
naphthacene (0.30) is clearly higher than decylbenzene (0.13). A similar selectivity to PAHs and 
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alkylbenzenes was also found in Sil-Stn, but for ODS, log k vs. log Po/w plots for alkylbenzenes and 
PAHs were almost on the same line.  

The retention mode was further evaluated using the Tanaka test mixture, which included uracil, 
caffeine, phenol, butylbenzene, amylbenzene, o-terphenyl, and triphenylene. Fig. 4 shows the 
chromatograms for SiImBr, Sil-Stn, and ODS columns. It can be seen that SiImBr presents a special 
selectivity compared to Sil-Stn and ODS columns. First, uracil and caffeine cannot be separated as 
basic compounds with SiImBr in these conditions due to the strong electrostatic repulsioxn from the 
imidazolium of SiImBr, however caffeine was even eluted after phenol with Sil-Stn. Second, 
butylbenzene and amylbenzene were not completely separated. With increasing methanol content, 
the retention of hydrophobic solutes decreased correspondingly as shown in the supporting 
information (Fig. S2). Third, the retention order for amylbenzene and o-terphenyl in SiImBr was the 
same as that in Sil-Stn, but different from that in ODS. This is likely due to the fact that both the 
imidazolium of SiImBr and the phenyl of Sil-Stn contain aromatic rings which can present π-π 
interactions to PAHs. At the same time, good selectivity for o-terphenyl and triphenylene was 
observed in SiImBr, indicating that SiImBr showed good ability to recognize planarity, as will be 
discussed later.  
 
3.3. π–π interaction 

As shown in Table 1, compared with Sil-Stn and ODS, SiImBr presents low retention but similar 
selectivity for PAHs. This suggests that SiImBr provides specific interactive sites for PAHs which 
can recognize aromaticity through imidazolium–π interactions. The separation of benzene, 
naphthalene, anthracene, and naphthacene in SiImBr, Sil-Stn and ODS columns, as well as the effect 
of methanol in SiImBr, are shown in the supporting information (Fig. S3).  

To evaluate the planarity recognition capability of ODS phases, Tanaka et al. [34] and Jinno et al. 
[35] introduced the selectivity for o-terphenyl (F=9, L/B = 1.11) and triphenylene (F=9, L/B = 1.12) 
as the probes. The F number is a molecular size descriptor proposed by Hurtubise et al. [36]. It is 
defined as follows: F = (number of double bonds) + (number of primary and secondary carbons) − 
0.5 (number of nonaromatic rings). The selectivity for two-dimensional shape has been further 
studied with a molecular shape descriptor, defined as the length-to-breadth (L/B) ratio and proposed 
by Wise et al. [37] and Kaliszan et al. [38]. Since triphenylene and o-terphenyl possess the same 
number of carbons and π-electrons but different molecular planarity in their structures, the 
separation factor between them has been used as a good indicator to evaluate the selectivity for 
molecular-planarity [39]. As shown in Fig. 4 and Table 1, we observed that SiImBr 
(αtriphenylene/o-terphenyl = 3.89) shows a remarkably enhanced ability to recognize molecular-planarity 
compared to Sil-Stn (αtriphenylene/o-terphenyl = 2.04) and ODS (αtriphenylene/o-terphenyl = 1.57). Data from 
additional sample sets including phenanthrene/cis-stilbene and fluorene/diphenylmethane confirmed 
this planarity recognition ability of SiImBr, as shown in Table 1. 

The ability to recognize planarity is important in the separation of PAHs with geometric isomers. 
A mixture including benzene, cis-stilbene, trans-stilbene, p-terphenyl, pyrene, chrysene, 
benzo[a]pyrene and 1,2:3,4-dibenzanthracene were separated with SiImBr, Sil-Stn and ODS 
columns as shown in Fig. 5. In this case, the greatest challenge is to separate the probe compounds 
of cis-stilbene and trans-stilbene. However, we observed that SiImBr (αtrans-/cis-stilbene = 1.68) showed 
clearly higher selectivity compared with Sil-Stn (αtrans-/cis-stilbene = 1.16) and ODS (αtrans-/cis-stilbene = 
1.08). Another important difference between these separations is that the selectivity for p-terphenyl 
and pyrene was completely different for SiImBr compared with Sil-Stn and ODS. The retention of 
pyrene on SiImBr was longer than that of p-terphenyl (αpyrene/p-terphenyl = 1.43), but a reversed order 
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and smaller selectivity were observed in Sil-Stn (αpyrene/p-terphenyl = 0.82) and ODS (αpyrene/p-terphenyl = 
0.87). The order of retention on Sil-Stn and ODS can be explained by the fact that the 
hydrophobicity of p-terphenyl (log Po/w = 5.15) is stronger than that of pyrene (log Po/w = 4.88) [40], 
and therefore the specificity of SiImBr should be attributed to non-hydrophobic effects such as π-π 
interactions.  

 
3.4. Ion-dipole interaction 

The SiImBr phase was also investigated in the separation of various positional isomers. The 
retention and separation factors for different isomers on SiImBr, Sil-Stn and ODS are shown in 
Table 2. We observed that SiImBr showed high selectivity for isomers with electron-withdrawing 
groups such as dinitrobenzenes and dinitropyrenes, but low selectivity for those with 
electron-donating groups. SiImBr always showed a higher retention factor for o-dinitrobenzene, but 
Sil-Stn and ODS did not show such selectivity. Chromatograms for the separation of three kinds of 
mixtures (p-, m- and o-dinitrobenzene; 2- and 1-chloronaphthalene; 1,5- and 1,3-dinitronaphthalene) 
using SiImBr and ODS are shown in the supporting information (Fig. S4). These results indicate 
that the selectivity for isomers with electron-withdrawing groups in SiImBr cannot be explained by 
hydrophobic or π-π interactions. It should be noted that the dipoles of o- and p-dinitrobenzenes are 
7.80 and 0.02, and thus the difference corresponds to 7.78. These facts imply that in SiImBr, the 
difference of dipoles is important for isomer selectivity. Ion-dipole interaction is an attractive force 
that results from the electrostatic attraction between an ion and a neutral molecule with a dipole. 
Therefore, we suggest that the ion-dipole interaction between imidazolium and dipolar compounds 
could bring about positive effects in the separation of dipolar isomers using SiImBr.  

 
4. Conclusions 

Previously, we found that the SiImBr phase shows strong anion-exchange interactions in the 
separation of inorganic and organic anions [26]. In this paper, we found SiImBr is less sensitive to 
the hydrophobicity of samples, or only has weak hydrophobic interactions with neutral samples 
compared to Sil-Stn and ODS. However, SiImBr is more sensitive to aromaticity than 
hydrophobicity. These phenomena lead to the suggestion that IL-modified silica stationary phase 
(SiImBr) is similar to a phenyl phase such as Sil-Stn. And SiImBr shows better planarity recognition 
than Sil-Stn. Another interest is that SiImBr is also sensitive for the dipoles of samples with 
ion-dipole interactions, especially for nitro-group-containing substances. In conclusion, the 
IL-modified silica stationary phase is like a phenyl phase in the separation of hydrophobic 
compounds such as alkylbenzenes and PAHs, but still possesses some special characteristics such as 
anion-exchange and ion-dipole interactions compared to conventional ODS and phenyl phases. For 
these reasons, its applicability may be expanded. 
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Figure Captions: 
Fig. 1. Synthesis of ionic liquid-modified silica stationary phase (SiImBr). 
Fig. 2. Solid-state 13C NMR spectrum of SiImBr. 
Fig. 3. The relationships of log k and log Po/w for SiImBr (red line), Sil-Stn (blue line), and ODS 
(green line) stationary phases. Mobile phase: SiImBr, 60% CH3OH; Sil-Stn, 80% CH3OH; ODS, 
90% CH3OH. Elutes: including ehtylbenzene (1), butylbenzene (2), hexylbenzene (3), octylbenzene 
(4), decylbenzene (5), dodecylbenzene (6), benzene (7), naphthalene (8), anthracene (9), and 
naphthacene (10). Flow-rate: 1.0 mL min-1. Detection: UV 254 nm. Column temperature: 25 ◦C. 
Injection volume: 5 μL. 
Fig. 4. Chromatograms for the separation of Tanaka test mixture including uracil (1), caffeine (2), 
phenol (3), butylbenzene (4), amylbenzene (5), o-terphenyl (6), and triphenylene (7). Stationary 
phase: (a) SiImBr, (b) Sil-Stn, (c) ODS. Mobile phase: (a) 50% CH3OH, (b) 80% CH3OH, and (c) 
90% CH3OH. Other chromatographic conditions were the same as in Fig. 3. 
Fig. 5. Chromatograms for the separation of benzene (1), cis-stilbene (2), trans-stilbene (3), 
p-terphenyl (4), pyrene (5), chrysene (6), benzo[a]pyrene (7) and 1,2:3,4-dibenzanthracene (8). 
Stationary phase: (a) SiImBr, (b) Sil-Stn, (c) ODS. Mobile phase: (a) 60% CH3OH, (b) 80% CH3OH, 
and (c) 90% CH3OH. Other chromatographic conditions are the same as in Fig. 3. 
 
Table 1. Retention and separation factors of PAHs for SiImBr, Sil-Stn and ODS.a  

SiImBr Sil-Stn ODS 
PAHs Structure 

k α k α k α 
   

Benzene  0.17 0.37 0.62 

2.46 2.19 1.81 

Naphthalene  0.42 0.82 1.13 

2.21 2.47 2.01 

Anthracene  0.93 2.03 2.28 

2.15 2.53 2.17 
Naphthacene  2.01

 
5.12 

 
4.94

 

o-Terphenyl 
 

0.66 2.14 2.56 

Triphenylene 
 

2.56

3.89 

4.36

2.04

4.02 

1.57 

cis-Stilbene 
 

0.41 1.34 1.77 

Phenanthrene 
 

0.75
1.84 

1.68
1.25

1.91 
1.08 

Diphenylmethane  0.38 0.89 1.44

Fluorene  0.54
1.44

1.21
1.36

1.82
1.26 
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a Mobile phases: 60% CH3OH for SiImBr, 80% CH3OH for Sil-Stn, 90% CH3OH for ODS.  
  
Table 2. Retention and separation factors of position isomers for SiImBr, Sil-Stn and ODS. 

SiImBr Sil-Stn  ODS 
Isomers 

k α k c α k c α 

p-Dinitrobenzene 0.42a  (1) 0.29 (1) 0.47 (1)

m-Dinitrobenzene 0.55 a  1.33 0.37 1.25 0.58 1.25 

o-Dinitrobenzene 1.36 a  3.26 0.29 1.00 0.37 0.79 

p-Dichlorobenzene 1.43 a  (1) 0.51 (1) 3.26 (1)

m-Dichlorobenzene 1.67 a  1.16 0.54 1.06 3.94 1.21 

o-Dichlorobenzene 2.00 a  1.39 0.51 1.00 3.26 1.00 

2-Chloronaphthalene 1.63 b  (1) 0.96 (1) 5.07 (1) 

1-Chloronaphthalene 1.85 b  1.14 0.99 1.03 5.45 1.08 

1,4-Diacetylbenzene 0.33 b  (1) 0.22 (1) 0.30 (1) 

1,3-Diacetylbenzene 0.35 b  1.06 0.22 1.00 0.29 0.97 

1,2-Diacetylbenzene 0.35 b  1.06 0.15 0.70 0.17 0.56 

p-Cresol 0.39 b  (1) 0.09 (1) 0.39 (1) 

m-Cresol 0.45 b  1.15 0.09 1.00 0.38 0.98 

o-Cresol 0.46 b  1.20 0.11 1.21 0.44 1.12 

p-Xylene 0.57 b  (1) 0.45 (1) 2.57 (1) 

m-Xylene 0.58 b  1.02 0.46 1.02 2.56 1.00 

o-Xylene 0.59 b  1.03 0.45 1.00 2.36 0.92 

p-Nitrotoluene 0.48 b  (1) 0.38 (1) 1.02 (1) 

m-Nitrotoluene 0.49 b  1.02 0.42 1.10 1.11 1.08 

o-Nitrotoluene 0.50 b  1.04 0.40 1.05 0.96 0.93 

5-Amino-2-naphthol 1.37 b  (1) 0.11 (1) 0.09 (1) 

6-Amino-2-naphthol 1.47 b  1.08 0.13 1.17 0.08 0.90 

8-Amino-2-naphthol 1.55 b  1.13 0.15 1.44 0.19 2.03 

1,5-Dinitronaphthalene 0.14 c  (1) 0.90 (1) 1.38 (1) 

1,3-Dinitronaphthalene 0.81 c  5.63 0.99 1.10 1.87 1.35 

Mobile phase: a 20% CH3OH; b 40% CH3OH; c 80% CH3OH. 
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