

「コンクリートのひび割れ抵抗性の評価に関する研究」

村 上 聖

Study on Estimation of Cracking Resistance of Concrete

Kiyoshi MURAKAMI*

1.序 論

コンクリートへの破壊力学の適用は、1961年の Kaplan による線形破壊力学のコンクリートへの適用妥 当性に関する研究報告"を契機として、これまでにそ れに類する実験的研究は数多く行われてきた。しかし、 最近ではコンクリートへの線形破壊力学の適用限界が 次第に認識されるに及んで、金属の場合と同様に用い る供試体寸法にかなり厳しい制約を受けることが言わ れている。このようなコンクリートの線形破壊力学か らの逸脱は、破壊靱性試験において切欠き先端前方の マイクロクラックの累進的発生に起因するものである。 コンクリートの場合には、その高度の非均質性により マイクロクラックの累積発生過程を伴う非線形領域 (破壞過程域, fracture process zone とも呼ばれる) は一般に無視できないほどの大きさにまで発達するこ とが、アコースティック、エミッション法により観測 されている"。図1は、コンクリートの切欠き先端から のひび割れ進展過程の特徴を概念的に示したものであ る。その図は、破断面を質通する主ひび割れ先端前方 の幅の狭い領域で集中的に不連続マイクロクラックの 発生を伴う破壊過程域が発達し、またマイクロクラッ クが主ひび割れに取り込まれる過程でへアー状の微細 な表面ひび割れが発生する様相を示している。このよ うに、コンクリートのひび割れ進展過程の特徴が、損 傷の局所集中化に見いだせることに狩目すれば、細長

昭和61年 9 月29日受付

• 助手 工博 建築学教室

い損傷領域の進展を仮想のき裂面にその開口に抵抗す る力が作用するモデルで近似した結合カモデル (cohesive force model) のコンクリートへの適用性が注目 される^{a)-a)}. 一般に,損傷レベルは変形集中の程度に依 存していると考えられるので,結合力を仮想き裂面間 距離の関数として導入するモデルが妥当である。

本研究では,結合力モデルを利用してコンクリート のひび割れ抵抗性を間接的に評価する手法を提案し, その応用として骨材のクラックアレスター作用および 繊維補強効果の定量化を試みる.

2. 評価方法

まず本解析の基礎となる Dugdale モデルについて 述べる。次に,結合力を仮想き裂の開口変位の関数と して導入する場合に,等価な Dugdale モデルによる逐 次計算手法を説明し,最後に実験により求められる荷 **重ーき裂口変位(crack mouth displacement)曲線か ら破壊過程域内部の構成法則を推定し破壊靱性を評価 する間接的方法を提案する。**

2.1 Dugdale モデル解析

Dugdale モデルの場合には,結合力を開口変位によ らず一定の降伏強度,すなわち塑性域内部で完全弾塑 性構成法則を仮定しているので,その解析は線形破壊 力学で扱える⁹.以下に,本実験において利用したノッ チ付はりの中点曲げ載荷(スパン・商さ比=3.0)につ いて,その解析方法を述べる.

図2に示すように、ノッチ先端からの細長い塑性域 の進展を仮想のき裂面ωに一様の降伏強度σμが作用

図2 Dugdale モデル解析方法

するモデル a で近似する. そのとき, モデル a の応力 や変位場は,外力のみが作用するモデル b と仮想き裂 面に降伏強度のみが作用するモデル c の応力や変位 場を線形弾性的に重ね合わせることにより計算される. ただし,モデル a において仮想き裂先端での応力の連 続条件から,重ね合わせにあたってモデル b および c におけるき裂先端の応力の特異項は互いに打ち消し合 わなければならない.ここで,き裂先端の応力の特異 性は応力拡大係数により表示されるので、モデル b お よび c の応力拡大係数を等置することにより、降伏強 度に対する外力の比と仮想き裂長さとの間に一意の関 係が得られる。また、モデル a におけるき裂先端開口 変位 φ およびき裂口変位 φ は、モデル b および c に おいて対応する変位を与えられた外力条件の下で重ね 合わせることにより求められる。

以上のようにして得られた解析結果を図3に示す. ただし、応力拡大係数およびき裂開口変位の解析には 間接境界要案法を利用した^{10,11)}.また,後の解析に便利 なように,公称曲げ応力度 σ_b ,き裂先端開口変位 ϕ お よびき裂口変位 ϕ は,それぞれ無次元パラメーター $Y = \sigma_b/\sigma_y, X = (E \cdot \phi)/(\sigma_y \cdot W), Z = (E \cdot \phi)/(\sigma_y \cdot W)$ で表わされている.

2.2 等価な Dugdale モデルによる逐次解析

結合力を開口変位の関数として導入する場合には厳 密には非線形解析を行わなければならない。ここでは 任意の結合カー開口変位関係に対して同じJ 積分値 を与えるような等価な Dugdale モデルを逐次設定す る近似計算手法を提案する。

- 結合力 σ を開口変位 φ の関数として与える。
- ② 開口変位の値を仮定して、同一の J 税分値を与え るような等価降伏強度 ou を求め、Dugdale モデル を設定する。例えば、図4に示すように結合力-開

図4 与えられた結合力一開口変位関係

ロ変位関係が与えられたとする.ここで,結合カー 開口変位曲線下の面積は J 積分値を表わしている ので,同一の J 積分値を与えるような等価降伏強度 を求めるということは,換言すれば開口変位が O か ら仮定した値 A までの曲線下の面積(図の斜線部分 の面積)に等しい長方形のストレスプロックに置き 換えることを意味している.

a/W	ω/W	Ŷ	X	Z
0.1	0.105 0.1225 0.1225 0.1225 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.1205 0.125	0.616 0.8358 0.9189 1.2379 1.3452 1.5539 1.5539 1.7817 1.8967 2.03077 2.1355	$\begin{array}{c} 0.114\\ 0.239\\ 0.3864\\ 0.5779\\ 1.0499\\ 1.354\\ 3.5799\\ 1.35687\\ 4.6890\\ 10.980\\ 10.980\\ 17.18\\ 35.36\\ 17.36\\ 17.36\\ 15.36\\ 10.980$	$\begin{array}{c} 0.387\\ 0.602\\ 0.8103\\ 1.316\\ 1.6499\\ 2.5603\\ 2.5503\\ 3.098663\\ 5.799\\ 11.541\\ 5.5799\\ 11.541\\ 28.50\\ 61.50\\ 11.50\\ 28.50\\ 11.50\\ 28.50\\ 11.50\\$
0.3	$\begin{array}{c} 0.05\\ 0.10\\ 0.15\\ 0.25\\ 0.35\\ 0.45\\ 0.555\\ 0.65\\ 0.65\\ 0.65\\ \end{array}$	0.362 0.513 0.629 0.729 0.818 0.902 0.981 1.057 1.128 1.128 1.268 1.326 1.381	0.126 0.280 0.480 0.733 1.478 2.054 2.866 3.950 5.711 8.524 14.39 33.48	0.805 1.253 1.700 2.206 2.8029 3.523 5.851 7.621 10.24 14.27 24.00 54.56
0.5	$\begin{array}{c} 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.30 \\ 0.35 \\ 0.40 \\ 0.45 \end{array}$	$\begin{array}{c} 0.210\\ 0.301\\ 0.373\\ 0.436\\ 0.494\\ 0.550\\ 0.600\\ 0.645\\ 0.681\\ \end{array}$	$\begin{array}{c} \textbf{0.133}\\ \textbf{0.314}\\ \textbf{0.578}\\ \textbf{0.956}\\ \textbf{1.523}\\ \textbf{2.440}\\ \textbf{4.000}\\ \textbf{7.333}\\ \textbf{16.86} \end{array}$	$\begin{array}{r} 1.330\\ 2.130\\ 3.008\\ 4.107\\ 5.612\\ 7.880\\ 11.35\\ 18.23\\ 39.00 \end{array}$

図3 Dugdale モデル解析結果

- ③ 上記のようにして得られた等価降伏強度 σ_ν と 仮定した開口変位 φ の値から,前述の無次元パラメ ーター X=(E・φ)/(σ_ν・W)の値を計算する.ただ し,縦弾性係数 E およびはりせい W は既知であ る.

従って,上記ステップ②~④を反復計算することに よって,与えられた結合力-開口変位に対して荷重-き裂口変位曲線が求められる。

図5は、3種類の簡単な結合力-開口変位関係を仮 定して計算された荷重-き裂口変位曲線と、モルタル について測定された実験結果との比較を示したもので ある。各モデルの構成関数中のパラメーター(ϕ_{max} な ど)は、ここでは相対ノッチ深さ a/W = 0.3の供試体 に関する最大荷重の測定値と計算値がほぼ一致するよ うに定めた.この場合には,モデル3の構成法則が実 酸結果を良く説明しているようであるが,構成法則の 推定には試行錯誤を伴う.一方,破壊過程域の構成法 則を直接実験的に求めることは,破壊過程域が局所的 であることから困難である。既往の研究では,破壊過 程域の構成法則として直接引張試験から求められた応 力ーひずみ関係が利用されている.しかし,直接引張 試験による応力ーひずみ関係は,ひずみ軟化域での主 ひび割れ進展に伴う実質的な耐荷断面の減少が考慮さ れていない,公称応力ーひずみ表示に基づく多分に見 かけの巨視的現象であり,局所的な破壊過程域内部の 構成法則の股定に対して適切な情報を提供するもので はないと思われる。

2.3 破壊過程域の構成法則の推定

ここでは、前述の解析の逆解法により,実験的に求 められる荷重-き裂口変位曲線から破壊過程域の構成 法則(結合力-開口変位関係)を推定し,破壊靱性を

図5 荷重一き裂口変位曲線に関する 計算値と測定値との比較

間接的に評価する手法を提案する。

- 仮想き裂長さωの値を仮定して、図3から対応する無次元パラメーターX、Y、Zの値を求める。
- いま、得られた X, Y, Zの値をそれぞれ α, β, γとする、すなわち、

 $X = (E \cdot \phi) / (\sigma_y \cdot W) = \alpha, \quad Y = \sigma_b / \sigma_y = B,$ $Z = (E \cdot \phi) / (\sigma_y \cdot W) = \gamma$ ここで,スパン・高さ比=3.0の中点曲げ載荷につい て,公称曲げ応力度は $\sigma_b = 9P / 2BW$ (ただし,P:荷

重, B:はり幅, W:はりせい) だから,

$$P = \frac{2BW}{9} \sigma_b = \frac{2BW}{9} B\sigma_y$$

上式に $\sigma_y = (E \cdot \phi) / (\gamma \cdot W)$ を代入して,

$$P = \frac{2B\beta E}{9\gamma}$$

上式において B, E, β , γ は既知量であるから, 荷重 P とき裂口変位 ϕ との間に直接関係が成り立 つ.

③ 図6に示すように、測定された荷重-き裂口変位 曲線と、上記のように仮定した仮想き裂長さに対し

図6 破壊過程域の構成法則の推定

て確定する直線との交点が対応する解を与え、その ときの荷重値から等価降伏強度 σ_y および開口変位 ϕ が一窓的に求められ、J 積分値は $J = \sigma_y \cdot \phi$ として 計算される。以上のようにして、仮想き裂長さの各 増分で求められる J 積分および開口変位の増分 ΔJ および $\Delta \phi$ から、開口変位 $\phi \sim \phi + \Delta \phi$ の間で作用す る平均の結合力は $\sigma = \Delta J / \Delta \phi$ として計算され、図7 に示すように結合力一開口変位関係が矩形近似で求 められる。

図7 推定された結合カー開口変位関係

3. 実験方法

本実験では, 載荷装置や供試体作製が簡便であり, またひび割れ制御も比較的容易であることから, 破壊 靱性試験として寸法100×100×400mmのノッチ付はり の中点曲げ载荷 (スパン・高さ比=3.0)を利用した. ノッチは,厚さ1.0mmのアクリル板をコンクリートを打 ち込む前に鋼製型枠側面に接着しておき, コンクリー トが硬化した後にアクリル板を引き抜くことにより設 けた. ノッチの深さは, はりせいに対する比で0.1, 0.3, 0.5の3種類とした. 荷重と, ノッチ屑口にナイ フエッジを介して取り付けたクリップゲージの変位 (き裂口変位)との関係は, X-Y レコーダによって

自動記録した。また、荷重ーき裂口変位曲線において

表1 使用材料

セメント	普通ポルトランド
細骨材	大井川産砂 表乾比重=2.62 最大寸法=5mm F. M.=2.85
粗骨材	大井川産砂利 表乾比重=2.65 最大寸法=10mm (F.M.6.00) 15mm (F.M.6.50) 20mm (F.M.6.60)
鋼繊維	市販のせん断ファイバー 寸法=0.5×0.5×30mm

表2 使用調合

最大耐力点以降の下降域の計測は,不安定破壊を生じ ないように X−Y レコーダのペン先速度を眺めなが ら荷重試験機の油圧を調節して除荷・載荷を繰り返す 方法¹³⁾により行った.使用材料および関合は,それぞれ 表1および2に示すとおりであり,供試体は材令28日 後(20℃水中發生) 湿潤状態で試験に供した.

4. 結果および考察

4.1 骨材のクラックアレスター作用の定量化.

図8は、本手法による評価過程を最大骨材寸法を一 例に示したものである。図8-1は荷重-き裂口変位 曲線の測定値を、図8-2は推定された結合力-開口 変位関係を、図8-3は図8-1中に〇印で示す位置 で評価された J 積分およびき裂先端開口変位の値を それぞれ示す。図8-3から、結合力が作用する限界 の開口変位値に対応する主ひび割れ発生点の近傍で評 価された J 積分値は、多少のばらつきはあるものの一 定の限界値をとることがわかる。従って、以下の考察 ではひび割れ抵抗性の指標として主ひび割れ発生点で 評価された J 積分およびき裂先端開口変位の値を採 用する。ただし J 積分はひび割れが単位面積だけ進展 するのに必要なエネルギー量であり、き裂先端開口変 位は材料の局所的な伸び能力を表す指標である。

まず, 水セメント比がコンクリートのひび割れ抵抗 性に及ぼす影響について調べる。図9は, 水セメント 比=40, 50, 60%のプレーンコンクリートに関して主

シリー	X	調合	引張強度 Kgf/cm	静弾性係数 ×10⁵Kgf/cm [®]
氷セメント比	40%	C:S:G=1:2.14:2.89 (重量比) 粗骨材最大寸法=15mm 材令(日)=28	35.9	3.61
	50%		30.8	3.31
	60%		28.6	3.07
粗骨材体頵率	0.2	水セメント比=50% C:S=1:2.14(重量比) 粗骨材最大寸法=15mm 材令(日)=28	31.0	2.85
	0.4		30.3	3.36
	0.5		29.6	3.07
骨材设大寸法	5mm	水セメント比=50% C:S:G=1:2.14:2.89 (重址比) 材令(日)=28	32.0	2.34
	10mm		30.2	2.86
	15mm		28.2	3.13
	20mm		27.3	2.75
鋼繊維体積率	0%	水セメント比=50% C:S:G=1:2.14:1.08 (重量比) 粗骨材最大寸法=15mm 材令(日)=28	31.0	2.85
	0.5%		33.9	2.73
	1.0%		38.2	3.08
	1.5%		47.0	2.52

C:セメント、S:細骨材、G:粗骨材

図8-3 評価された」積分およびき裂先端開口変位値

ひび割れ発生点で評価された J 積分およびき裂先端 開口変位の値を示す。この図から、き裂先端開口変位 値は、大きなばらつきはあるものの水セメント比の違 いによる差に明確な傾向が認められないのに対して、 J 積分値は水セメント比の減少により増加しているこ とがわかる。このことから、水セメント比の減少によ る強度の増加が骨材-マトリックス界面の付着ひび割 れの発生に伴うエネルギー吸収作用を高め、主ひび割 れ進展抵抗性に有効に働いていることが推察される。

次に、骨材寸法がコンクリートのひび割れ抵抗性に 及ぼす影響について調べる。図10は、最大骨材寸法= 5、10、15、20mmのプレーンコンクリートに関して主 ひび割れ発生点で評価された J 積分およびき裂先端 開口変位の値を示す。この図から、最大骨材寸法が大 きくなるほどき裂先端開口変位値は顕著に増加すると ともに、J 積分値も増大していることがわかる。一方母 大骨材寸法が増加するにつれて強度は低下することか ら、この場合にはひび割れ面に介在する骨材のプリッ ジングによるひび割れ開口抵抗が、主ひび割れ進展抵 抗性を高めていることが推察される。このことは、図 7-2に示す結合力-開口変位関係の形状からもうか がい知ることができ、最大骨材寸法が大きくなるほど 結合力の低下はゆるやかになっている。

最後に、粗骨材混入型がコンクリートのひび割れ抵 抗性に及ぼす影響について闘べる。図11は、粗骨材体 積率=0,20,40,50%のプレーンコンクリートに関し て主ひび割れ発生点で評価された J 積分およびき裂 先端開口変位の値を示す。この図から、最大骨材寸法

-(18)-

-(19)-

の場合と同様の傾向がみられる。ただし、粗骨材の混 入量が過度になると、骨材-マトリックス界面の付着 ひび割れの橋かけが容易に生じ、主ひび割れに合体し やすくなるために、J 積分およびき裂先端開口変位の 値はともに大きく低下している。

以上の結果から、骨材のクラックアレスター作用に は、骨材-マトリックス界面の付着ひび割れ発生に伴 うエネルギー吸収作用およびひび割れ面での骨材のプ リッジング効果によるひび割れ開口抵抗があり、前者 に関しては水セメント比が、後者に関しては骨材寸法 や粗骨材混入量がそれぞれ強く影響しているものと考 えられる。

4.2 繊維補強効果の定量化

図12は、繊維体歓率=0.5, 1.0, 1.5%の鋼繊維補強 コンクリートおよびマトリックスと同一調合のプレー ンコンクリートに関して測定された荷重-き裂口変位 曲線を相対ノッチ深さ=0.3について示す。同図中の● 〇△□印は、本手法において測定値との一致を調べた 選点を表わす。また、推定された結合力-開口変位関 係を図13に示す。前述のように、結合力-開口変位曲 線下の面積は J 積分値を表わしているので、鋼繊維の 混入によりひび割れ抵抗性が著しく改善されることが わかる。また、プレーンコンクリートにおける結合力 の作用する限界の開口変位値に対応する点で、鋼繊維 補強コンクリートにおいてマトリックスひび割れが発 生するものと考えれば、図12において矢印で示す位置 でマトリックスひび割れが生じていることになる。

さらに、図13に示す結合力-開口変位関係において マトリックスおよび繊維によるひび割れ抵抗性への寄 与に線形の加算性があると仮定して、マトリックスお

よび繊維によるひび割れ開口抵抗を分離して示すと, 図14のようになる.この図から,コンクリートのよう な脆性マトリックスに対する繊維補強メカニズムの特 徴をみることができる.すなわち,開口変位の小さい うちはその開口抵抗はほとんどマトリックスにより負 担されるが,開口変位が増加するにつれて繊維の負担 するひび割れ開口抵抗の比率が急速に増大し,マトリ ックスひび割れ発生点近傍でほぼそのピークに達した 後,ひび割れ面をブリッジしている繊維の引き抜けや 破断により次第にその開口抵抗を低下させてゆくこと が推察される.また,繊維体税率が増加するほど,繊

図13 推定された結合力一開口変位関係

-(20)--

図14 マトリックスおよび繊維による ひび割れ開口抵抗曲線

維によるひび割れ開口抵抗曲線の立ち上がり勾配が大 きくなり、それに伴ってピーク点の開口抵抗力も上昇 すること、さらにそれ以降の開口抵抗力の低下もゆる やかになることがわかる。

5.結 論

本研究では、破壊靱性試験により実験的に求められ る荷重-き裂口変位曲線から、マイクロクラックの累 進的発生を伴う破壊過程域内部の構成法則を推定し、 その領域の損傷レベルや破壊靱性を間接的に評価する 手法を提案し、その手法の応用として骨材のクラック アレスター作用ならびに繊維補強効果の定量化を試み た。その結果として、骨材のクラックアレスター作用 に及ぼす調合因子の影響ならびに、コンクリートのよ うな脆性マトリックスに対する繊維補強機構や繊維混 入によるひび割れ抵抗性の改善効果が定量化された。

最後に、本論文は筆者が学位論文としてとりまとめ た内容の一部であり、御便宜をたまわりました工学部 建築学科三井宜之教授、御指導をいただきました東京 大学工学部岸谷孝一教授および大分大学工学部平居孝 之教授に深く感謝致します。

参考文献

1) M. F. Kaplan; Crack Propagation and the

Fracture of Concrete, Jour. ACI, Vol. 58, No. 5, 1961.

- 2) 岡田清,小柳治,六郷恵哲:コンクリートの曲げ 引張破壊過程に関するエネルギー的考察,土木学 会論文報告集,第285号,1979.
- 3) A. Hillerborg, M. Modeer, P. E. Petersson; Analysis of Crack Formation and Crack Growth in Concrete by means of Fracture Mechanics and Finite Elements, Cement and Concrete Research, Vol. 6, 1976.
- 4) Z. P. Bazant, B. H. Oh; Crack Band Theory for Fracture of Concrete, Materials and Structures (RILEM), Vol. 16, No. 93,1983.
- K. Visalvanich, A. E. Naaman ; Fracture Model for Fiber Reinforced Concrete, Jour. ACI, Mar-Apr., 1983.
- M. Wecharatana, S. P. Shah; Predictions of Nonlinear Fracture Process Zone in Concrete, Proc. ASCE, Vol. 109, No. EM5, 1983.
- J. G. Rots, P. Nauta, G. M. A. Kusters, J. Blaauwendraad; Smeared Crack Approach and Fracture Localization, HERON, Vol. 30, No. 1, 1985.
- K. Gylltoft; A Fracture Mechanics Model for Fatigue in Concrete, Materials and Structures (RILEM), Vol. 17, No. 97, 1984.
- 9) 岡村弘之著;線形破壞力学入門,培風館,1976.
- K. Kishitani, T. Hirai, K. Murakami; J-integral Calculations with Boundary Elements, Proc. of 5th International Conference on Boundary Elements, Hiroshima, 1983. 11.
- 11) K. Kishitani, T. Hirai, K. Murakami ; J-integral Method in Analysis of Stress Intensity Factor Using Boundary Elements, Jour. of the Fac. of Eng., the Univ. of Tokyo (B), Vol. 37, No. 3, 1984.
- 12) 小柳治, 六郷恵哲, 内田裕市; コンクリートの破 壊現象の安定性とその計測, コンクリート工学(論 文), Vol. 20, No. 6, 1982.
- 13) 村上聖:コンクリートのひび割れ抵抗性の評価に 関する破壊力学的研究,東京大学博士論文, 1986.5.