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Numerical Analysis of Viscoelastic Flow Based on FENE-P Model

using High-order Accuracy Finite Difference Method

Yonghua CHENG*1, Mizue MUNEKATA*2,

Kazuyoshi MATSUZAKI*2 and Hideki OHBA*3

1. Introduction

It has been known for almost half a century that,

solutions of a slight additive of long-chain high

-molecular-weight polymer to a turbulent
Newtonian solvent can cause significant friction

drag reduction in pipe or channel flow. This dis

covery was first recognized by Toms and termed
Toms phenomenon1'. It means, with the dilute
polymer solutions, a lower pressure gradient is
needed to maintain a higher flow rate. This effect

is considered very usefully and effectively in the
fluid transportation engineering area. A striking

feature of Toms phenomenon is that it can occur
even at very low concentrations and attain up to

70% drag reduction.

A vast of investigations has been encouraged on
studies about the drag reduction mechanism of

Toms phenomenon. These can be roughly divided
into three approaches2'. The first of them is con

centrating on the behavior of polymer molecules in
various model flows. The second is including
mainly the effects of polymers on the flow turbu

lent statistics, with examining the mean velocity
profile, velocity fluctuation and so on. The last

one is conducted to the study in coherent turbulent
structure with polymer additives. The several

conclusions have been made clear3'"5'.

The available experimental information would
be used in interpreting and developing theoretical

ideas for the mechanism of drag reduction. The

basic explanations for the Toms phenomenon were

proposed as6' (1) Effective slip (increasing of buffer
layer close to wall); (2) Anisotropic viscosity (for

example elongation viscosity); and (3) Visco-elas-

ticity. However, why and how the factors above

can act between the polymer and turbulent flow,

further induce reduction of friction drag? It might

be conducted that, a viscoelastic flows, with both

properties of a viscous liquid and an elastic solid,

possess a partial memory characterized by a relax

ation time. This relaxational effect (elastic mem

ory) enhances macromolecular resistance and then
causes the drag reduction6'. In other way, it was
proposed that, the change of turbulent structure is
based on the change of redistribution in pressure

-strain correlation near the vicinity of wall5'. It is

hard to capture the details containing such complex
properties because the direct experiment is so diffi
cult.

With the high speed development in computer

technology, computational fluid dynamics (CFD)
has become more important and direct numerical
simulation (DNS) responding to turbulent flows

could be possible7'. It has also been desired to
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perform the numerical simulation to the viscoelas

tic flow and further, to realize the mechanism of

drag reduction in polymer additives. In the non

-Newtonian flow computations, the constitutive
equation modeling non-Newtonian characteristics

is necessary and it has been considered difficult to

get a stable computation8'. Nevertheless, several
applications of numerical simulation schemes to

viscoelastic flow have been conducted. Den Toon-

der et al.9' investigated a pipe turbulent flow by
using an elongation viscosity model comparing

with the Maxwell model to describe the effect of

polymers on a pipe flow and evaluated that prefer
ably anisotropic enhanced extensional viscosity of

a polymer solution act a critical role in drag reduc

tion. More recently, Kajisima et al.1" presented a
bead-spring-dashpot model applying to a channel

flow and considered with this approach, the micro
motions of molecules could be followed. But a

relatively more parameters must be assumed and it
is hard to control. Since FENE-P (finite extension

nonlinear elastic-Peterlin) model has been

introduced1", the numerical simulation of polymer

molecule becomes more vigorous. Based on this
model, Massah at el.l2> focused on the behavior of
polymer-molecule and calculated the additional

stress from the constitutive equation, resulted that
increasing of the eddy structure scale near the wall
leads increasing buffer layer border and then

damps the friction drag. Chiba et al.13' applied
Brownian dynamics simulation of FENE modeling

rheological behaviors of dilute polymer solution,
and obtained the distributions about relaxation

time and other model parameters. But in the

researches mentioned above, one-way influence in

polymer from the turbulent flow are considered,
and modification of turbulent structure from poly

mer is not touched. Surehkmar et al.14' addressed

FENE-P model to the turbulent channel flow by

means of DNS method. The onset of drag reduc

tion, general turbulent statistics, the streak struc
ture and energy spectrum are computed and
compared between Newtonian and non-Newtonian
flows. However, in order to ascertain a stable
numerical integration of constitutive equation, an

artificial stress diffusive term was conducted addi

tionally. The explanation about this artificial

diffusive is too lacking. Besides, since DNS

method is limited with its periodic boundary condi
tion, it is hard to implement complex flow field
computations to solve application problems in cur

rent fluid engineering area.

This work is to develop the FENE-P model by
using a high-order accuracy finite difference

method15'. We performed an effective numerical
simulation scheme with the upwind difference

method, to solve the polymer additive solution in

the channel flow. In constitutive equation, the 3rd

-order accurate upwind difference scheme was

applied and steady resolution was achieved.

2. Mechanical model of polymer mole

cules

An actual polymer molecule is an extremely

complex mechanical system differing from the

lower molecules with great diversity in structure,

molecular weight distribution and large number of

internal degrees of freedom. Investigating the
detailed motions of this complicated system and

their properties would be prohibitively difficult. It

is considerably necessary to use simplified models

to represent molecules in order to minimize the

mathematical complications. The crude "dumb

bell" chain models were introduced earliest, in

which bead-rod and bead-spring chain were used to

represent chainlike macromolecules1". Although
more complex models accounting chain branching

or other effects were developed later, it was neces

sary to use considerably simpler models in order to

do the mathematics and numerical work for obtain

ing the useful results with description of ma-

cromolecular configurations and the associated

rheological properties. The simpler models have
contributed greatly to our understanding of poly

mer rheology and fluid dynamics.
Let us get a view in the simpler and useful chain

models in fluid dynamics. Fig. 1 shows a freely
jointed bead-rod chain model formed from N beads
of mass m and friction coefficient £ connected by
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Fig. 1 The freely jointed bead-rod chain model

N-l rigid, massless rods. This model possesses a

number of important features in formulating a
kinetic theory for rheological behavior of a
polymeric liquid. It has a large number of internal

degrees of freedom; it can be oriented, stretched,

and deformed; it has a constant contour length.
The second chain model is shown in Fig. 2 named
freely joined bead-spring chain with spring connec

tions instead of rods. Each bead is presumed to
experience a drag force as it moves through the
flow field, and the drag could be described by using

Stokes' law. This model is considerably simpler to

handle and more flexible to implement than the

bead-rod chain model, because it exists no internal

constraints and contains many kinds of elastic

characteristic by choice of the spring force law.

One considers the very simplified models that N

is set equal to 2, named the dumbbell models. Fig.
3 shows an elastic dumbbell model. This dumbbell

model is only very crude representations of poly
mer molecules. It certainly does not have enough
internal degrees of freedom. However, by using

this dumbbell model, it is possible to perform

kinetic theory derivations and calculations for

rheological properties, then further to get con

stitutive equations, and finally to solve some useful

Fig. 2 The freely jointed bead-spring chain model

Fig. 3 The elastic dumbbell model

flow problems. All of these can be done with a
limited amount of mathematical effort. In other

words, we can control the entire procedure from

molecular model to fluid dynamics. In turn, the

analytical results for dumbbell models can be used

also to check computational simulation procedures

in molecular dynamics and Brownian dynamics.

All of above, the elastic dumbbell models have

been proven to be particularly popular in develop

ing an elementary between macromolecular

motions and rheological phenomena. This model

is orientable and stretchable, and these two prop

erties are essential for the qualitative description of

steady-state rheological properties. On the other

hand, the spring force law can enable us to obtain
a wide analytical solution to various polymer fluid

dynamics problems.

By using an elastic dumbbell model, the con

nector force between bead-to-bead is, in generally,
given by following law.

Flc)=/(Q2)Q (1)

Here, / is a scale function of Q2= Q •Q, while Q =

T2—n is the bead-to-bead (or end-to-end) vector,

n and r2 are the bead position vectors. Based on

the choice of the spring force law, we can get many

kinds of elastic dumbbell models as mentioned

above. The most simplified model is named Hoo-
kean-dumbbell model, in which f(Q2)=H and H is
a spring constant independent of the bead-to-bead

vector. As we can image, the distinct disadvan

tage of Hookean dumbbell model is that spring can
be stretched out to any length infinitely. It pre

dicts a constant value for steady shear viscosity

and infinite elongational viscosity at a finite elon-
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gation rate. So the Hookean dumbbell model is
limited in application. One of the improved

models from Hookean model is named FENE

model by introducing a nonlinear connector force
and having a configuration-dependent "spring con

stant" given by

H
/(Q2)-\-Q2/Q2, (2)

Where Qp is the maximum extension (Q £ Qp). An
upper limited length Qp constraints these finitely
extendable nonlinear elastic connectors.

3. Governing equations

3.1 Basic equations

The basic equations describing such these incom
pressible flows are given by the momentum equa
tion and continuity equation.

dV
r dt

v-v=o

+ pV-VV=-Vp+V-T (3)

(4)

In these equations, V is the velocity vector, p is the
density of solution, p is the pressure and r is the
deviatoric stress tensor. This stress tensor r is

given by the sum of two terms, which first term is
due to the Newtonian solvent and the second term

can be considered as the polymer contribution

t—Tn + tp (5)

For Newtonian contribution tn, viscous con

stitutive equation is well known as

tn=2t),D (6)

Here D is the rate-of-strain tensor, which is the

symmertric part of the velocity gradient Z)=(VV
+VVr)/2, and J}a is the solvent viscosity. For
polymer contribution t>, a constitutive equation
depending on the elastic dumbbell model must be
supplied. We discuss it in the next section.
3.2 Constitutive equations

In non-Newtonian flow simulations, the develop

ment of a constitutive equation for the stress ten

(46:

sor, in general, is satisfied in following ways: (1)
The equation is chosen empirically to fit experi

mental data as well as possible. (2) Continuum

mechanics can be used to generate "reduced equa

tions" appropriate for specific classes of flows. (3)
Molecular theory can lead to a constitutive equa

tion in terms of parameters of the mechanical

model. Basing on these rules, in this work,
because the contribution to the stress tensor is

realized as elastic dumbbells, we can develop the

constutive equation from kinetic theory with FENE
-P model. As discussed before, we choose this

model because it contains the basic characteristics

of streching, orientation, and finite extensibility
seen in polymer molecules, yet it has relatively
simple mathmatical expressions.
In this method, z> value can be derived from two

terms of averages in the momentum fluxes genarat-
ed by spring tension (the first term of following
equation) and bead motion (the second term)

Tp=-n<QFlc)> + nKTS (7)

Here K is Boltzmann's constant and T is the

absolute temperature, while n is the number of
polymer molecules in a unit of volume and 8 is unit
tensor. The angular brackets < > denote a config
uration-space average. By substituting connector
force of the FENE model with equation (1) and (2),

we can get expression.

>=->KHT^or)+nKT8 (8)

However, this equation can not be used directively
to get a constitutive equation because the configu
ration-space average value can not be easily
evaluated by ensemble average approach. There
fore, we must approximate the average value with
following way which is first suggested by Peterlin16'
and then be renamed FENE model to FENE-P

model

/ QQ A g £<gg> (9)
\i-GVGb2/ \-<Q2/Q?> (9)

where e is a constant which improve the approxi-
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mation. Thus, the polymer contribution to the
stress tensor in equation (8) can be alternatively
expressed by using C=<QQ>(H/KT). This C is
defined as a conformation tensor and it is symmet

ric and positive definitely.

nKT{\-r2/L2-) (10)

Where

r2= Q2H/KT=trace{ C)=G, + C*+ CM

is dimensionless and explanized as a ratio of the
elastic spring energy to the thermal energy. L is
the maximum value of r(r^L). To determine the
constant e, we illustrate the process of a equilib
rium unit isotropic tensor C=8. At this process

the shear stress contribution z> should be zero. So

we can easily get value e=l—3/L2 with C=8,tp=

0 from equation (10). The shear stress t> can be
then written to:

TP=-nKT(f(r2)C-8)

and

Xr2)=£=fr

(11)

(12)

Bird et al. also introduced another stress tensor

expression which named Giesekus form by deriving
from "diffusion equation" (Ref. [11], Page 88).

TP=Jf<QQhu (13)

Here friction coefficient £ definitely connected

with the relaxation time A, which is defined as

relation A=£/4H and characterize a partial mem
ory of viscoelastic solution81,1". a<n denotes the
upper-convected derivative for arbitrary tensor a

expressed as

aw^a+V'Va-iVVy-a-a-VV (14)

We can alternatively express equation (13) as fol
lowing form by introducing Aand C.

Tp=nKTACv (15)

Comparing equation (11) and (15), we can get fol
lowing constitutive equation to calculate conforma
tion tensor C.

-^•C+V'VC-(VV)T'C-C'VV=-^r2^~8 (16)
In order to evaluate u» value from equation (11), it
is necessary to consider eliminating nKT. The
upper-convected Maxwell model could be
applied17'.

AtP(d+tp=2j}pD (17)

Where i}p is a polymer viscosity named from a
polymeric contribution to the total shear viscosity.
By substituting equation (11) and (15) into the first
term and the second term in equation (17), respec
tively, we can be given

-AnKT{f(r2)C(i)-8w}+AnKTQi)=27ipD (18)

Since this equation must also be satisfied in the
equilibrium unit isotropic state with C=8 and
/(r2)=l conditions, so following relation can be
obtained.

AnKT8w=2vpD (19)

Then because of 8W=-2D"\ relation nKT=

—t),/A must be derived. Thus equation (11) becomes

tP=Jf{f(r2)C-8) (20)

All of above, equation (1), (2), (16) and (20) consti

tute the governing equations for the viscoelastic
flow and subsequently can be solved numerically.

4. Numerical procedure

The flow geometry and the coordinate system
are shown in Fig. 4. The simulation is carried out
in a domain of 6Ahx2hx3.2h in the mean

streamwise x, the wall-normal y and the spanwise

z directions, respectively, with h channel half
-width. A constant pressure drop gradient along
with the channel streamwise direction is imposed
externally. It is customary to make the governing

(47)
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3.2h
6.4h

Flow

Fig. 4 The channel flow and coordinate

equations dimensionless by using the friction veloc
ity uT,channel half-width h and kinetic viscosity v.

In the viscoelastic solution, however, a zero-shear

kinematic diffusivity Uo is denoted as a scale
parameter instead of v. This zero-shear
kinematic diffusivity is defined by uo=Vo/p, with
total zero-shear viscosity vo and density p. The
zero-shear viscosity includes solvent viscosity and
polymer viscosity vo=Vs+Vp- The polymer shear
stress tp is made dimensionless with 7jPuT2/vo. The
basic equation (3) then can be written in following
dimensionless expression

dVl+y*.VV* =-Vp*\ ?' w,,V2r*-fJZL-VTf*
3t pvo Uxh PVq

Symbol * indicate the dimensionless quantities.
Let us eliminate symbol * to simply express equa
tions in later discussion. We denote Reynolds

number as Re=uTh/uo and the ratio parameter of
solvent viscosity ys to total zero-shear viscosity jjo

as IS=t)s/t}o. Then the above equation can be
expressed by following equation without * symbol.

-^+F.VV=-Vp+^V2V+(W)Vt,(21)

With the same approach, equation (16) and (20) can
also be rewritten in dimensionless expressions by

jrC+V^C-(VVV-C-C'VV=-/^~e8 (22)
Tp =

f(r2)C-8
We

(23)

Where We=AuT2/i>o is the Weissenbery number
defined as the product of the polymer relaxation

time and a characteristic shear rate.

To solve the basic equation (21), the high-order

accuracy finite difference method15' based on the
fractional step scheme18' is employed, and this

scheme is expressed by

-^^=^23A"-16An-'+5A"-2)+-^-V2(V+ V)
W+1=-^-V- V
y«+i_ y

At
= -Vp (24)

Where A represents the sum of the convective term
and polymer stress contribution term: A= —V*V
V+(l —fiW'Tp. The time marching method with
the 3rd-order Admas-Bashforth method for A term

and the Crank-Nicolson method for viscous term is

performed here. The spatial derivatives are ap

proximated using the 4th-oredr centered finite dif
ference for Poisson equation, the 6th-oreder center
ed finite difference for the viscous term and the 5th

-order upwind finite difference scheme for the

convective terms. The 5th-order upwind finite

difference scheme is given from Rai et al.19' by

du\ _ un.3-9ui+2+A5ut+\-45ut-\+9Ui-2-iti-a
dxii

•U(
60Ax

+

\-UH3+6uM-15ut+i+2QUi—15Ui-i+6iii-2-u<-3
60Ax

(25)

(48)
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To solve the constitutive equation (22), the 2nd
-order accurate Admas-Bashforth explicit method
is applied.

C+1=C+^{ZBn -B"-1)

Here

(26)

To ascertain a stable numerical integration of the
evolution equations, the 3rd-order accurate upwind
finite difference method20' is considered in spatial
derivative of F-VC term.

(,dc \ -cn.2+8ci+i-8ci-t + Ci-2 •
\udx)rUl 12Ax +

\u,\ Cj+2—4cm+6cj—4c,-i + ci-2
4Ax

(27)

Other spatial derivatives are approximated using
4th-order accurate centered finite difference

method.

5. Computational conditions

The periodic boundary conditions are used for all
of the computational variables in the streamwise x

and spanwis z directions because fully developed
turbulent channel flow is homogeneous in those
directions and the computational domain is chosen
to include the largest eddies in the flow. In y

direction, the non-slip boundary conditions for
velocity and the Neumann boundary conditions for
pressure are applied on the channel walls. For the

conformation tensor, the boundary conditions are
supplied by integrating the constitutive equation
directly as the solid boundaries.

(Cn+1)Wau=(Cn)wau+&t>Bn (28)

With

w--* (irL=°; (irL=°
Since high order accurate finite difference is used, a

seven-point stencil for 5th-order upwind scheme

and 6lh-order centered scheme is conducted and two

fictitious grid points outside of a boundary are
required for velocity boundary condition. In this
work, the principal of mirror image is applied as a

special treatment on the wall boundaries.

As initial conditions, the velocity and pressure
are considered using the database corresponding to
the fully turbulent Newtonian channel flow. For

the conformation tensor, Following Sureshkumar
at el.14', using the average velocity U(y) computed
by the initial velocity, the assumption of a one
-directional shear flow (x-direction) with the veloc

ity profile given by U(y) is introduced. Based on
the constitutive equation (22), with assumptions:
5/5/=0, d/dx=0, 5/52=0, v=w=0, the conforma
tion tensor components can be evaluated.

Cn~T(yj[1+-F^m-dy-) J'

C22~C33~T(yT
ro - We dU,

C 13= C 23= 0

Here,

tKy} 2sinh(£/3)

With

_ 42 We dU
^>= I—*-.
<6=sinh-,(3V3/2)

In order to conduct relations of F(y), Cl(y) and <j>,

f(r2) function is used. This procedure yields the
conformation tensor components evaluated using
the mean shear flow assumption.
The computation is carried out with 64 x 65 x 64

grid points in x, y and z directions, respectively.
The grid spacing in the streamwise and spanwise
directions are equal spacing with the grid resolu
tion respectively Ax+=18 and A2+=9 in wall units.

Non-uniform meshes are used in the wall-normal

direction generating with tanh function distribution

and Ay+=0.45—13.9 grid spacing. We choose the

(29)
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Reynolds number Re as 180, the weissenberg num

ber We as 50, and L value as 10. This Reynolds

number corresponds to about 3300 mean Reynolds
number based on mean velocity. It has been

proven that, experimentally, the drag reduction in
dilute polymer solution had been observed at higher
Reynolds number corresponding to 8900 or higher.
In order to compensate this lower Reynolds number

we applied, the ratio value # is set to 0.9, to simu

late a more elastic behavior of flow to capture the

drag reduction effectively.

6. Results and discussions

6.1 Mean velocity profile

In Fig. 5 the non-dimensional mean velocity
profiles are illustrated as a function of wall dis
tance scaled by y*=yuT/u for Newtonian flow and
y+z=yuT/uo for viscoelastic flow. The functions,

given by u+=y+ (with y+<5) and u+=2.5\n(y+)
+5.5 (with y+>30), are generally believed to

describe the mean streamwise velocity profile of
the Newtonian turbulent flow. The regions y+<5,

5<y*<30 and y+>30 are called the viscous sub
layer, buffer layer and logarithmic layer, respec

tively. We would like to indicate that, in this
computation, the Newtonian data do not follow the
logarithmic law well, this is because the grid num

ber we used here is much fewer than those of Kim

et al.7'. In this Fig., it can be seen that, the vis
coelastic velocity profile obtained by FENE-P

20

i

15

10

u+ = 2.5ln(y)+7

_u =2.5ln(yJ+5.5 \

Newtonian
Viscoelastic

' • •!••••

Fig. 5 The mean velocity profile

model almost completely follows the Newtonian
data within viscous sublayer y+<5. In the logar
ithmic layer, however, the viscoelastic profile is

shifted upward with an approximate relation u+=

2.51n(#+)+7, comparing to the Newtonian flow
case. This absolutely confirms an increment of

flow rate and reduction of friction drag by polymer
additive. Since the intercept distance between the

sublayer and logarithmic layer is increased for the

viscoelastic flow (about y+:«5~40) comparing to
Newtonian case (y+«5~30), the buffer layer is

considered to be extended in the case of viscoelastic

flow. It has been interpreted, the effect of the

polymer additive is to thicken the buffer layer so
that a mean velocity arises in the center of channel

for same wall stress. In other words, a lower wall

stress is required for the same maximum velocity

and so drag reduction occurs.

6.2 Velocity fluctuations

Fig. 6 shows the non-dimensional root mean

square (r.m.s) profiles of velocity fluctuations in x,

y and z direction components against y* in the wall
region. As can be seen, there is not any significant
difference between two flow cases in the center of

channel. However, in the buffer layer, the vis

coelastic r.m.s profile is increased for the
streamwise component, and decreased for both of

the wall-normal and spanwise components as

compared to the Newtonian results. These

changes in turbulence intensities have also been
experimentally confirmed. It demonstrates that

3.0-

Newtonian

Viscoelastic

0 50

Fig. 6 Root-square of velocity fluctuation

ioo y

(50)
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the turbulence structure is not generally suppressed

by introduce of polymer additive. In fact, the

turbulent structure is modified due to the resistance

of polymer molecule in the wall region. Unfortu

nately, in this work, the location shift of maximum

r.m.s value in x component is not shown clearly.
This may be attributed to the fewer grid number, as

same as discussed in the Newtonian mean velocity

distribution, which does not completely follow the
logarithmic law.

6.3 Shear stress

Fig. 7 illustrates the Reynolds shear stress (turbu
lent stress) —u'*v'* and sum of shear stress

contributed from both of Reynolds shear stress
component and purely viscous component:

—u'+v* + dU/dy+ for two flow cases as a function

of y/h. The symmetry of these profiles about the
channel centerline demonstrates that the total aver

aging time and statistical sample are adequate. In
the fully developed turbulent channel flow, the total
of the shear stress would be distributed as a

straight line 1—y/h to balance the downstream
mean pressure gradient when the flow reaches an

equilibrium state. As shown from this Fig., in
Newtonian fluid, the sum shear stress decreases

almost following linear line 1—y/h and shows that
the average turbulent shear stress profile has
attained the equilibrium shape. Nevertheless, for

viscoelastic case, it was found clearly, Reynolds
stress —u'*v'+ is suppressed comparing to
Newtonian case because of polymer additive.

1
5

++dU/dy
-

\_ -urv' N.

Newtonian

Viscoelastic

i

-7-

•1
0 \ y/h 2
Fig. 7 The shear stress of two flows

Therefore, the sum stress does not add up to a

linear dependence on y/h. This fact has been also
observed in experiments and attributed to the neg

lected viscoelastic contribution in this sum stress.

Accurately, in the viscoelastic flow, the total shear

stress has to be decomposed into three contribu
tions from Reynolds shear stress S», purely viscous
Sv and viscoelastic force Sp, respectively. For
fully developed viscoelastic turbulent flow, the

total of the shear stress must obey the balance:

Stotat=Sn + Sv + Sp=l-y/h (30)

This viscoelastic contribution Sp can be evaluated

by the component value tpu of stress tensor rP.

Based on the governing equation (21), this balance
relation thus is given by

-~urvT+0-^r+(l-ff)Tp12=l-y/h,dU
(31)

Fig. 8 shows these three contributions and total
shear stress of viscoelastic flow. It has been seen,

the profile of the total shear stress decreases nearly
linearly with y/h. The viscoelastic contribution
Sp to total shear stress is a small positive value and
completely compensated the deficient observed in
Fig. 7. It also implies an equilibrium state is
achieved for viscoelastic turbulent fluid flow.

6.4 Vorticity fluctuations

The vorticity are defined by

dv dw. dw du du dv /00v
Wz=lz—dy-> w"=l^-dz-' *'=-^-&r (32)

0 0.5 y/h 1.0

Fig. 8 The shear stress of viscoelastic flow

(51)
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The r.m.s profiles of vorticity fluctuations normal
ized by u2t/v are illustrated in Fig. 9 as a function
of y/h. It has been known, ca^x.rms and <Q*x.ma

components attain their maximums at the wall,
away from the wall, the three components of vor
ticity fluctuations become small and identical, in

spite of larger differences near the wall. There are
almost no differences of the vorticity fluctuations

between Newtonian and viscoelastic flows in the

wall-normal and spanwise components over all
flow. But in streamwise component, the viscoelas

tic <o+x.rvu decreases in comparison with Newtonian
flow. Fig. 10 shows the deficiency in the intensity
of the streamwise vorticity fluctuations made
dimensionless with ut/h against y* in the wall
region to observe clearly. The streamwise voticity

0 1 y/h 2

Fig. 9 Root-mean-square of vorticity fluctuation
vs y/h

25 -

-1 ' 1 • l

- Newtonian
- Viscoelastic
- / •» X. >v
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Fig. 10 Root-mean-square of streamwise vor
ticity fluctuation vs y*

fluctuations for both the Newtonian and the vis

coelastic flows attain their local minimums at

about y+a=5 and then attain their local maximums

near y+*20 (no location shift is shown in this

computed results). It was explained that, this

behavior is under of the influence of streamwise

vortices in the wall region. It has been reasoned

that7', the locations of the local maximum corre

sponds to the average locations of the center of the

streamwise vortices and the local minimum corre

sponds to the average locations of the edge of the
streamwise vortices in the wall region. The signif

icant intensity reduction in viscoelastic flow at the
region between the local minimum to the local
maximum implies a reduction in the intensity of the
wall eddies14'. The inhibition of near-wall eddies

may hamper the turbulence production and be
proposed as a possible mechanism of drag reduc
tion in the viscoelastic flow.

Sureshkumar et al.14' introduced a measure of

extension E to consider the term representing the

vortex stretching/squeezing mechanism, because it
was connected as the production with vorticity and
suggested as an possible inhibition of drag reduc
tion mechanism. We evaluate the extension of

vorcity using analogous equation given by

£(!/) = \D-<4 (33)

Where IM=2a>/ denotes the norm of an arbitrary
vector o>. E is evaluated in average values and its

profile is shown in Fig. 11 as function of y+. As
shown, in the case of the viscoelastic flow, the

measure of extension is reduced partially in the

buffer layer comparing to Newtonian flow. It
means a lower vortex stretching is existed when
polymer molecule is introduced to the Newtonian

flow.

6.5 Correlation of velocity fluctuation and

streak spacing

The correlation coefficient of the streamwise

velocity fluctuation at two-points separated in the

spanwise direction is computed by

(52)
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Fig. 11 The measure of extension

This correlation profile is illustrated in Fig. 12 at
y+=10.24 plane in buffer layer as a function of
spanwise spacing Az+(Az+=AzuT/v). For both of
the Newtonian and viscoelastic flows, the correla

tion coefficients start with a maximum at Az*=0

and then become negative and reach a minimum.

The locations at which this minimum occurred

provides an estimate of the mean separation

between the high and low speed fluid, and mean
spacing between the streaks in the buffer layer
should be roughly evaluated as twice of the dis

tance between spanwise spacing of maximum and
minimum location7'. As presented in Fig. 12, the
streak spacing for Newtonian flow is about 108.6

1.0

5 0.5

I
I o

°-0.5
0 100 200 Az+

Fig. 12 Span correlation of streamwise velocity
fluctuation

A

1 1— 1 •••'• '

y+=10.24

v Newonian

\\
\ \

- \ *».

Viscoelastic

—

i.i.
•

(A2+«=54.3) while the streak spacing of viscoelastic
flow is about 128 (Az+»64). It indicates the intro
duction of the polymer conducts the increasing in

streak spacing. This is also in qualitatively good
agreement with the database of experiments.

6.6 Meansure of the molecule extension

The eigenvalue of the average conformation
tensor, trace (C) is sought as a measure of the

molecular extension, since it expresses the deforma

tion of the molecules represented in the FENE-P

model and in turn gives rise to the polymer shear

stress contribution. The trace (C) profile obtained

in fully developed viscoelastic turbulent flow is
presented in Fig. 13 as a function of y+. As we can
see from here, the molecular extension is much

higher near the wall y+£10 and then monotonically
decreases towards the channel center line. It

implies that, the extension flow near the wall plays
a important role in drag reduction. This is

because an extensional flow is suitable to leading
high molecular extension and thus leading to exten
sional viscosity.

7. Conclusions

In this work, we successfully developed the high
-order accuracy finite difference method to the

viscoelastic turbulent channel flow, by using the
dumbbell FENE-P model simulating the polymer

chains. The several characteristics have been

evaluated and the polymer additive effects obser-
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Fig. 13 The trace of conformation tensor C

(53)



392 Numerical Analysis of Viscoelastic Flow Y. CHENG, M. MUNEKATA, K. MATSUZAKI and H. OHBA

ved experimentally have been realized and captur
ed numerically. By comparing between the
Newtonian and viscoelastic flows, the following

points have become clear.

1) In the viscoelastic turbulent flow, we obtained

the results of that, the upward shift of mean veloc
ity profile in the logarithmic region, enhanced
streamwise velocity fluctuation with decreased
wall-normal/spanwise velocity fluctuations, de
creased Reynolds shear stress, and increased streak

spacing. All of these effects are in good qualita
tive agreement with the results obtained by the
measurements and computations in the previous

investigations.

2) The intensity of the streamwise vorticity fluc

tuation within the buffer layer is suppressed in

viscoelastic flow. The extension of this vorticity

fluctuation also shows a lower activity in the buffer

layer. Nevertheless, the molecular extension mea
sured as the trace of conformation tensor is

attained a larger value near the wall. The connec

tion between drag reduction and extensional prop
erties might be proposed from here.
3) It has been demonstrated that, the high-order

accuracy finite difference method could be applied

for the viscoelastic flow by using FENE-P model

without an artifficial diffusive term. The advan

tage of the computational scheme we used here is
more remarkable in applications to viscoelastic

flow simulations in complex flow geometry than

spectrum method did.

References

1) Virk, P. S. et al., The Toms phenomenon:
turbulent pipe flow of dilute polymer solu
tions, J. Fluid Mech., (1967), vol. 30, pp. 305

-328.

2) Wei, T. and Willmarth, W. W., Modifying
turbulent structure with drag-reducing poly
mer additives in turbulent channel flows, J.

Fluid Mech., (1992), vol. 245, pp. 619-641.

3) Rudd, M. J., Velocity measurements made
with a laser dopplermeter on the turbulent

pipe flow of dilute polymer solution, J. Fluid

Mech. (1972), vol. 51, pp. 673-685.

4) Luchik, T. S. and Tiederman, W. G., Turbu
lent structure in low-concentration drag
-reducing channel flows, J. Fluid Mech. (1988),
vol. 190, pp. 241-263.

5) Walker, D. T. and Tiederman, W. G., Turbu

lent structure in a channel flow with polymer

injection at the wall, J. Fluid Mech. (1990), vol.

210, pp. 377-403.

6) Bird, R. B. et al., Dynamics of Polymeric
Fluids, vol. 1, (1987), Wiley, New York.

7) Kim, J. et al., Turbulence statistics in fully
developed channel flow at low Reynolds num

ber, J. Fluid Mech. (1987), vol. 177, pp. 133-166.

8) Wedgewood, L. and Bird, R. B., From Molecu
lar Models to the Solution of Flow Problems,

Ind. Eng. Chem. Res. (1988), vol. 27, pp. 1313
-1320.

9) Den Toonder, J. M. J. et al., Drag reduction by
polymer additives in a turbulent pipe flow:

numerical and laboratory experiments, J.

Fluid Mech. (1997), vol. 337, pp. 193-231.

10) Kajishima, T. and Miyake, Y., Drag Reduc
tion by Polymer Additives in Turbulent Chan
nel Flow Simulated by Discrete-Element

Models, Trans. JSME, B (1998), vol. 64-627,

pp. 110-117. In Japanese.

11) Bird, R. B. et al., Dynamics of Polymeric
Liquids, vol. 2, (2nd ed.), (1987), John Wiley &
Sons.

12) Massah, H. et al., Added stresses because of

the presence of FENE-P bead-spring chains in

a random velocity field, J. Fluid Mech. (1997),

vol. 337, pp. 67-101.

13) Chiba, K. et al., The Society of Rheology,
Japan (1999), vol. 27, pp. 31-42, In Japanese.

14) Sureshkumar, R. et al., Direct numerical simu

lation of the turbulent channel flow of a

polymer solution, Phys. Fluids (1997), vol. 9-3,

pp. 743-755.

15) Matsuzaki, K. et al., A Study on Numerical
Analysis Method of Incompressible Flows
Using High-Order Accuracy Finite Difference
Method, Trnas. JSME, B (1998), vol. 64-627,
pp. 4-10, In Japanese.

(54)



#*^I3* fi48# 2 ^ wmw—n) 393

16) Peterlin, A. Streaming Birefringence of Soft
Linear Macromolecules with Finite Chain 19)

Length, Polymer (1961), vol. 2, pp. 257-264.

17) Nakamura, K. Non-Newtonian Fluid
Mechanics, (1997), CARONA publishing Co.,
LTD., In Japanese. 20)

18) Kim, J. and Moin, P., Application of a Frac
tional-Step Method to Incompressible Navier

-Stokes Equations, J. of Computational

(55)

Physics (1985), vol. 59, pp. 308-323.

Rai, M. M. and Moin, P., Direct Simulations of
Turbulent Flow Using Finite-Difference

Schemes, J of Computational Physiscs, (1991),
vol. 96, pp. 15-53.

Kawamura, T. and Kuwahara, K., Direct

Simulation of a Turbulent Inner Flow by

Finite-Difference Method, AIAA-85-0376,

(1985), pp. 1-10.


	表題

	1. Introduction
	2. Mechanical model of polymer molecules
	3. Governing equations
	3.1 Basic equations
	3.2 Constitutive equations

	4. Numerical procedure
	5. Computational conditions
	6. Results and discussions
	6.1 Mean velocity profile
	6.2 Velocity fluctuations
	6.3 Shear stress
	6.4 Vorticity fluctuations
	6.5 Correlation of velocity fluctuation and streak spacing
	6.6 Meansure of the molecule extension

	7. Conclusions
	References

