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Abstract 

The ubiquitin-proteasome system plays a critical role in selective protein degradation and 

regulates almost all cellular events such as cell cycle progression, signal transduction, cell 

death, immune responses, metabolism, protein quality control, development, and neuronal 

function. The recent approval of bortezomib, a synthetic proteasome inhibitor, for the 

treatment of relapsed multiple myeloma has opened the way to the discovery of drugs 

targeting the proteasome and ubiquitinating and deubiquitinating enzymes as well as the 

delivery system. To date, various synthetic and natural products have been reported to inhibit 

the components of the ubiquitin-proteasome system. Here, we review natural products 

targeting the ubiquitin-proteasome system as well as synthetic compounds with potent 

inhibitory effects.  

 

Keywords: natural products, ubiquitin, proteasome, cancer therapy, drug discovery, targeted 

therapy. 
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The Ubiquitin-proteasome System 

 

Regulated protein degradation via the ubiquitin-proteasome system (Fig. 1) is an essential 

aspect of cell signaling pathways, functioning from cell-cycle control and transcription to 

development [1-3]. In the ubiquitin-proteasome system, the client proteins are ubiquitinated 

by the ubiquitin system and degraded by the 26S proteasome in an ATP-dependent manner. 

Ubiquitin is composed of 76 amino acids and attaches to a client protein (ubiquitination) prior 

to degradation. In the ubiquitin system, ubiquitination requires the sequential actions of three 

enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and 

ubiquitin-protein ligase (E3), which results in the formation of the polyubiquitin chain. Then, 

the polyubiquitin chain, tagged to the client protein, is recognized by the 26S proteasome, an 

intracellular high-molecular weight protease subunit complex [1-6]. The 26S proteasome 

consists of two subcomplexes, the 20S core particle (also known as the 20S proteasome) and 

the 19S regulatory particle (Fig. 1), and the protein portion of a client protein is degraded by 

the proteolytic active sites in a cavity of the 20S proteasome. The 20S proteasome is 

classified as a threonine protease that contains two pairs of three different catalytic sites. The 

β1, β2, and β5 subunits contain catalytic sites with caspase-like, trypsin-like, and 

chymotrypsin-like activities, respectively. These activities are capable of hydrolyzing proteins 

into oligopeptides. The level of the 26S proteasome is increased especially in tumor cells. 

Therefore, it is reasonable to develop specific compounds targeting proteasome-mediated 

proteolytic degradation for cancer treatment.  

The recent approval of bortezomib, a synthetic proteasome inhibitor, for the treatment of 

relapsed multiple myeloma has opened the way to the discovery of drugs targeting the 

ubiquitin-proteasome system consisting of the proteasome, ubiquitinating enzymes, the 

delivery system, and deubiquitinating enzymes (see below). To date, various natural and 
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synthetic products have been reported to inhibit the components of the ubiquitin-proteasome 

system. In this review, we focused on recent progress concerning natural products targeting 

the ubiquitin-proteasome system as well as synthetic compounds with potent inhibitory 

effects. 

 

 

Targeting the 20S Proteasome 

 

Inhibitory mechanisms of proteasome inhibitors 

Proteasome inhibitors show anti-tumor activity against various tumor cells that are resistant to 

conventional chemotherapeutic agents. Structurally-diverse proteasome inhibitors have been 

developed by chemical synthesis and also by searching natural sources and chemical libraries 

as drugs for the clinical treatment of cancer and also as molecular tools for the investigation 

of cellular events. To date, various synthetic peptides including MG132 (Z-Leu-Leu-Leu-al, 

1) (Fig. 2) [7] and bortezomib (PS-341, Velcade®, 2) (Fig. 3) [8, 9], and natural products 

including salinosporamide A (NPI-0052, 3) (Fig. 4) [10] have been reported to inhibit 

proteasomal activity. Bortezomib (2), a synthetic proteasome inhibitor developed by 

Millennium Pharmaceuticals, Inc., was approved for myeloma therapy in the United States in 

2003, which strongly indicates that the proteasome would be a novel target for cancer 

treatment [11]. Salinosporamide A (3), isolated from the culture of a marine actinomycete, 

was found to be more effective than 2 and is now under clinical trials. Several proteasome 

inhibitors have been developed and are classified into five groups, peptide aldehydes, peptide 

boronates, β-lactones, epoxyketones, and macrocyclic vinyl ketones, on the basis of inhibitory 

mechanisms. 
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Proteasome inhibitors: peptide aldehydes (Fig. 2) 

Peptide aldehydes, the first proteasome inhibitors [7, 12], are the most widely used as 

molecular tools for the investigation of various cellular events. Generally, peptide aldehydes 

act against serine and cysteine proteases. The aldehyde functional group of the inhibitor is 

readily attacked by a hydroxyl or thiol group at the active site of the protease. In the case of 

the proteasome, the N-terminal threonine residue at its active site carries out a nucleophilic 

attack on the aldehyde moiety of the inhibitor and then a covalent hemiacetal adduct is 

formed between the inhibitor and the threonine residue of the proteasome (Fig. 2). The 

formation of the covalent adduct is mediated by a reversible reaction under physiological 

conditions, and aldehyde inhibitors are rapidly oxidized into inactive acids in cells and 

transported out of the cell by the multi-drug resistance (MDR) carrier system. Therefore, in 

experiments with cultured cells, effects of aldehyde inhibitors can be rapidly reversed by 

removal of the inhibitors. Although MG132 (1) is a potent and selective inhibitor of the 

chymotrypsin-like activity of the proteasome, it is not suitable for use as a therapeutic agent.  

Tyropeptin A (4) was isolated from the culture broth of Kitasatospora sp. [13, 14] and 

contains an aldehyde moiety at the C-terminal. This compound inhibits the chymotrypsin-like 

and trypsin-like activities of the proteasome with IC50 values of 0.1 and 1.5 µg/mL, 

respectively, but scarcely inhibits the caspase-like activity. In rat pheochromocytoma (PC12) 

cells, 4 induced neurite outgrowth, and this compound is thought to be capable of permeating 

cells and inhibiting intracellular proteasomal activity [15]. Momose et al. designed and 

synthesized several derivatives of 4 [16]. Among them, TP-104 (5) is 20-fold more potent 

than 4 in terms of its inhibitory effect on the chymotrypsin-like activity of the mammalian 

20S proteasome, while TP-110 (6) specifically inhibits the chymotrypsin-like but not the 

trypsin-like or caspase-like activity of the proteasome. 

Fellutamide B (7) was originally isolated from the marine-derived Penicillium fellutanum as a 
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cytotoxic compound [17] and found to induce the release of nerve growth factor (NGF) from 

fibroblasts and glial-derived cells [18]. Because of its structural similarity with 1, 7 was tested 

for inhibitory activity against the proteasome and found to potently inhibit the 

chymotrypsin-like activity with an IC50 value of 9.4 nM along with the trypsin-like and 

caspase-like activities albeit less potently with IC50 values of 2.0 and 1.2 µM, respectively 

[19]. In addition, 7 increased NGF gene transcription [19]. Therefore, it can be inferred that 7 

exerts neurotrophic activity through stabilization of a short-lived unidentified transcription 

factor that upregulates NGF gene expression. 

 

Proteasome inhibitors: peptide boronates (Fig. 3) 

The development of a proteasome inhibitor suitable for therapeutic use without the defects of 

MG132 (1) led to the introduction of boronic acid as a functional group. Although boronic 

acid-containing inhibitors bind with the hydroxyl group of the N-terminal threonine residue in 

the proteasome via a non-covalent bond, their inhibitory potency and selectivity towards the 

proteasome are excellent in comparison with other proteasome inhibitors. Since the boron 

atom is able to receive the oxygen lone pair of the N-terminal threonine residue of the 

proteasome, inhibitors containing boronate can form a stable tetrahedral intermediate (Fig. 3). 

Although peptide aldehydes are readily oxidized into inactive acids, boronates are not 

inactivated by oxidation and are not rapidly removed from the cell by the MDR system. In 

2003, bortezomib (2), a synthetic boronate-containing inhibitor, was first approved by the 

FDA for treating relapsed multiple myelomas [20, 21]. This inhibitor selectively inhibits the 

proteasome in a reversible manner and induces apoptosis of malignant cells through the 

inhibition of NF-κB signaling and stabilization of proapoptotic proteins. Clinical trials show 

promising results for the combination of 2 and DNA cross-linking agents in the treatment of 

myeloma and ovarian cancer [22]. 
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CEP-18770 (8), a synthetic boronate derivative, is an orally active proteasome inhibitor [23], 

which inhibits the chymotrypsin-like activity of the proteasome at a low-nanomolar 

concentration. This inhibitor exhibits concentration-dependent induction of apoptotic cell 

death in human multiple myeloma and tumor-derived cell lines, and exhibits a more favorable 

cytotoxicity profile toward normal human endothelial cells, bone marrow progenitors, and 

bone marrow-derived stromal cells than 2 [24]. Recently, it has been reported that 8 enhances 

the anti-myeloma activity of 2 and melphalan in the xenograft models [25]. The in vitro and 

in vivo antitumor and anticlastogenic pharmacologic profiles of 8 and its reduced cytotoxicity 

against a variety of normal human cell lineages compared with tumor cells provide the 

rationale for further studies evaluating its preclinical and clinical efficacies in multiple 

myeloma and other hematologic malignancies. At present, 8 is undergoing phase I and II 

trials. 

 

Proteasome inhibitors: β-lactones (Fig. 4) 

Lactacystin (9) (Fig. 4), the first natural proteasome inhibitor, was originally isolated from the 

culture broth of Streptomyces sp. as an inducer of neurite outgrowth in a murine 

neuroblastoma cell line, Neuro-2a [26, 27]. Subsequently, this inhibitor was found to inhibit 

proteasomal activity by binding with the N-terminal threonine residue in the proteasome via a 

stable covalent bond (Fig. 4) [28]. The active component of 9 is clasto-lactacystin β-lactone 

(omuralide, 10), which is derived from 9 by elimination of the N-acetyl cysteine moiety to 

form a lactone ring [29, 30]. The co-crystallization of 9 with the proteasome revealed that the 

side chain residues of 10 are closely related to the selectivity of the inhibitor. PS-519 (11), 

which has a n-propyl group instead of the methyl group found in omuralide, is the most 

clinically advanced lactacystin analog [31] and has been used in a clinical trial to treat acute 

stroke. 
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Salinosporamide A (3) was isolated from the culture of a marine bacterium of the new genus 

Salinispora tropica [10, 32] and showed strong cytotoxic activity against HCT-116 human 

colon carcinoma. Because of its structural similarity to 10, 3 was tested for inhibitory activity 

against the proteasome and found to inhibit the chymotrypsin-like activity 35 times more 

potently than 10. The deschloro derivative, salinosporamide B (12), is ten times less potent, 

suggesting that the chloro substituent in 3 is important for its inhibitory ability [33]. Several 

potent salinosporamide analogs have been chemically synthesized, bioengineered, and 

isolated from microorganisms. Antiprotealide (13), which was originally synthesized as a 

molecualr hybrid of 3 and 10 [34], was recently isolated from a large-scale fermentation of 

the bacterium [35]. Fluorosalinosporamide (14), a fluoro analog, was biosynthesized and 

showed reversible binding ability toward the proteasome with an IC50 value of 1.5 nM (The 

value of salinosporamide A is 0.7 nM.) [36]. Cinnabaramide A (15), an analog with a 

structural difference in the alkyl side chain, was isolated from a terrestrial streptomycete and 

showed inhibition with an IC50 value of 1 nM [37]. Although bortezomib (2) inhibits most 

strongly the chymotrypsin-like activity and moderately the caspase-like activity of the 

proteasome [38-40], 3 inhibits most strongly the chymotrypsin-like activity and moderately 

the trypsin-like activity of the proteasome [40]. A phase I study with 3 is currently proceeding.  

Although 2 is effective for the treatment of relapsed or reflactory multiple myeloma, its 

prolonged use can be associated with toxicity and the development of drug resistance. 

Importantly, 3 overcomes resistance to conventional treatment and 2 [41, 42]. In vivo studies 

using human multiple myeloma xenografts revealed that 3 shows well tolerated/prolonged 

survival and reduces tumor recurrence [42]. In addition, 3 was a more effective proapoptotic 

agent than 2 in isolated chronic lymphocytic leukemia cells [43], and the combination of 3 

and a histone deacetylase inhibitor, MS-275 or valproic acid, induced greater cell death than 

did the combination of 2 and these inhibitors [44]. It should be noted that 3 is orally 
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bioavailable and cytotoxic to multiple myeloma cells with reduced toxicity against normal 

cells compared to 2. Furthermore, in vivo studies with a human plasmacytoma xenograft 

mouse model showed that a low dose combination of 3 and 2 is well tolerated and triggers 

synergistic inhibition of tumor growth and chymotrypsin-like, caspase-like, and trypsin-like 

proteasomal activities in tumor cells [45]. Combination of 3 and lenalidomide (Revlimid®) 

induces synergistic anti-multiple myeloma activity in multiple myeloma cell lines or patient 

multiple myeloma cells [46], implying the preclinical rationale for clinical protocols 

evaluating lenalidomide together with 3 to improve patient outcome in multiple myeloma. 

The preclinical and clinical results with 3 strongly suggest that the discovery of 3 indicates 

the importance of metabolites from marine microorganisms for drug discovery and 

development [47]. 

Belactosins A (16) and C (17), which were isolated from a Streptomyces sp., contain the same 

β-lactone ring as 10 and inhibit the chymotrypsin-like activity of the proteasome in the same 

fashion as 10 [48, 49]. Derivatives of 16 with more potent inhibitory effects than 16 have 

been synthesized [50]. Homobelactosin C (18), a modified derivative, has an IC50 value in the 

low nanomolar range [51]. The structural data for the complex of the proteasome and 18 

provide an explanation for the involvement of immunoproteasome subunits in the generation 

of antigen, and open the way for the rational design of compounds that exclusively inhibit 

constitutive proteasomes or immunoproteasomes [51]. Recently, analogs of 17 were 

synthesized, and their inhibitory activity was investigated [52]. Among them, its two 

boronate-containing peptide analogs (19 and 20) showed significant inhibition of the 

chymotrypsin-like activity of the 20S proteasome with IC50 values of 0.28 and 0.51 µM, 

respectively. Furthermore, the development of potent proteasome inhibitors based on a 

stereochemical diversity-oriented strategy with 16 and its stereo- and regioisomers is 

underway [53]. 
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Proteasome inhibitors: epoxyketones (Fig. 5) 

The proteasome inhibitor epoxomicin (21) (Fig. 5) was originally isolated from an 

unidentified actinomycete strain and exhibited in vivo anti-tumor activity against B16 

melanoma [54]. This inhibitor contains an α,β-epoxyketone moiety that is involved in the 

formation of a morpholino adduct with the N-terminal threonine residue in the proteasome, 

which results in inactivation of the proteasome (Fig. 5) [55]. Although clinical studies with 

bortezomib (2) have validated the proteasome as a therapeutic target for the treatment of 

multiple myeloma and some forms of non-Hodgkin’s lymphoma [56], significant toxicity 

against normal cells has restricted the dosage. Furthermore, many patients have tumors that 

do not respond to 2 and others develop resistance. This has led to the need for other 

proteasome inhibitors with enhanced activity. Carfilzomib (PR-171, 22), which was derived 

from 21, is an irreversible proteasome inhibitor [57]. In multiple myeloma cells, 22 

specifically inhibits the chymotrypsin-like activities of the proteasome and 

immunoproteasome [58]. In comparison to 21, 22 exhibits greater selectivity toward the 

chymotrypsin-like activity of the proteasome and is active against 2-resistant multiple 

myeloma cell lines. Since 22 also overcomes resistance to conventional agents and acts 

synergistically with dexamethasone to enhance cell death, this compound is currently under 

evaluation in phase I clinical trials in patients with multiple myeloma and non-Hodgkin’s 

lymphoma. The first phase I study of 22 shows that the drug is well tolerated, and produces 

signals of activity in patients with multiple myeloma and that 22 did not produce any 

neuropathy [59]. These data support the further development of 22 in patients with 

hematologic malignancies. 

 

Proteasome inhibitors: macrocyclic vinyl ketones (Fig. 6) 
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Syringolin A (23) (Fig. 6) was originally isolated as a virulence factor of the plant pathogen 

Pseudomonas syringae pv. syringae [60] and found to induce a change in the gene expression 

profile similar to that in cells treated with proteasome inhibitors [61]. The crystal structure of 

the yeast proteasome in a complex with 23 revealed that the hydroxyl group of the catalytic 

threonine residue exhibits a Michael type 1,4-addition to the vinyl ketone moiety in the 

14-membered ring of 23 (Fig. 6) [61]. This is a new mode of inhibition, and 23 irreversibly 

inhibits all three types of proteasomal activity. Recently, synthetic and structural analyses of 

23 revealed critical determinants of the selectivity and potency of its inhibitory effect [62]. 

Furthermore, it was found that a rhodamine-tagged 23 selectively binds to and labels the 

active sites of the proteasome at therapeutic concentrations [63]. In the same fashion, 

glidobactin A (24), another microbial metabolite [64], inhibits the chymotrypsin- and 

trypsin-like activities of the proteasome and reacts with the threonine residues of the 

respective active sites [61]. Both 23 and 24 inhibit the proliferation and induce the apoptosis 

of malignant cells [61].  

 

Proteasome inhibitors: cyclic peptides (Fig. 7) 

TMC-95A (25) (Fig. 7) was isolated from a fermentation broth of Apiospora montagnei [65, 

66] by direct screening on the basis of inhibitory activity against the proteasome. This 

compound inhibits the chymotrypsin-like, trypsin-like, and caspase-like activities of the 

proteasome with IC50 values of 5.4, 200, and 60 nM, respectively. The co-crystallization of 25 

with the yeast proteasome revealed that 25 is bound to the core particle of the proteasome 

through specific hydrogen bonds and specifically blocks the proteasomal active sites 

non-covalently [67, 68]. In addition, 25 was found to induce neurite outgrowth in rat PC12 

cells [69]. 

Argyrin A (26) was originally isolated from the myxobacterium Archangium gephyra as an 
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immunosuppressive cyclic peptide [70] and identified as a small molecule capable of 

promoting the accumulation of p27kip1, a cyclin-dependent kinase inhibitor, in cancer cells by 

a high-throughput whole-cell assay [71]. It should be noted that the level of p27kip1, a tumor 

suppressor protein and a proteasome substrate, is often reduced in human cancer cells and that 

the expression of a degradation-resistant p27kip1 mutant reduced the number of intestinal 

adenomatous polyps that developed into invasive carcinomas. It was found that 26 inhibits 

most strongly the chymotrypsin-like activity, moderately the caspase-like activity, and weakly 

the trypsin-like activity of the proteasome [71].  

 

Other proteasome inhibitors (Fig. 8) 

Various proteasome inhibitors isolated from natural sources are shown in Fig. 8. Gliotoxin 

(27) is a fungal epipolythiodioxopiperazine toxin and contains a heterobicyclic structure with 

a disulfide bridge. This compound was originally identified as a potent inhibitor of NF-κB 

activation in T and B cells [72]. Additional studies showed that 27 inhibits the 

chymotrypsin-like activity of the proteasome and that the disulfide bridge is responsible for 

the inhibition [73].  

We performed a screening of marine organisms and marine-derived fungi based on the 

inhibition of the chymotrypsin-like activity of the proteasome and isolated agosterol 

derivatives (e.g., agosterol C (28)), polyhydroxysterols, from a marine sponge, 

Acanthodendrilla sp., as proteasome inhibitors [74]. Agosterols were originally isolated from 

the marine sponge Spongia sp. and found to reverse multi-drug resistance in tumor cells [75, 

76]. Among the agosterol derivatives, 28 most strongly inhibited the chymotrypsin-like 

activity of the proteasome with an IC50 value of 10 µg/mL. Interestingly, they differ in their 

inhibitory potency despite their structural similarity. We also isolated another proteasome 

inhibitor, secomycalolide A (29), together with known compounds, mycalolide A (30) and 
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30-hydroxymycalolide A (31), from a marine sponge of the genus Mycale [77]. Among the 

mycalolides, 29 has the most potent effect on the chymotrypsin-like activity of the 

proteasome with an IC50 value of 11 µg/mL. 

Extensive searches for proteasome inhibitors in plants and foods have been performed. 

Activity-guided fractionation of a chloroform-soluble extract of the leaves of Ormosia 

sumatrana led to the isolation of a new cerebroside, sumatranoside (32), as a proteasome 

inhibitor with an IC50 value of 30 µM [78]. Curcumin (33), the major active ingredient of 

turmeric (Curcuma longa) used in South Asian cuisine for centuries, markedly inhibited the 

chymotrypsin-like activity of a purified rabbit 20S proteasome with an IC50 value of 1.85 µM 

and also inhibited the cellular 26S proteasome [79]. Four dietary flavonoids, apigenin (34), 

kaempferol (35), quercetin (36), and myricetin (37), inhibited the chymotrypsin-like activity 

of the 26S proteasome in intact Jurkat T cells with IC50 values of 1, 11, 2, and 12 µM, 

respectively [80]. Genistein (38), a soy isoflavone [81], (-)-epi-gallocatechin gallate (EGCG) 

(39), a green tea polyphenol [82], withaferin A (40), a steroidal lactone from the medicinal 

plant “Indian Winter Cherry” (Withania somnifera) [83], and celastrol (41), a triterpene from 

the Chinese “Thunder of God Vine” (Tripterygium wilfordii) [84], also inhibited the 

chymotrypsin-like activity of a purified 20S proteasome with IC50 values of 26, 0.30, 4.5, and 

2.5 µM, respectively. 

 

 

Targeting the Ubiquitin System 

 

The ubiquitin-proteasome pathway consists of the ubiquitin system and the protein 

degradation system (the 26S proteasome) (see Fig. 1). The former contains the 

ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase 
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(E3), and catalyzes the ubiquitination of client proteins. In addition to inhibitors targeting the 

proteasome, various inhibitors of the ubiquitin system consisting of E1, E2 and E3 enzymes 

have been developed.  

 

Ubiquitin ligase (E3) inhibitors (Fig. 9) 

Among enzymes in the ubiquitin system, E3s are a large family that recognize huge numbers 

of client proteins and target them for degradation [85, 86]. They are classified into three major 

groups, the RING, HECT, and U-box families, on the basis of their domain structures and 

substrate recognition mechanisms. As E3 definitively determines which client proteins are 

ubiquitinated, a specific inhibitor against an E3 recognizing a key client protein could be a 

good lead for the treatment of diseases associated with degradation of the key client protein. 

Among many E3s, MDM2 (mouse double minute 2) or HDM2 (human double minute 2), a 

RING-type E3 for p53 protein, is frequently used as a target for inhibitor development [87]. 

Although HDM2 is normally expressed at a low level, it is over-expressed in a variety of 

human cancers. On the other hand, p53, a tumor suppressor, induces growth arrest and 

apoptosis upon activation by various stimuli such as DNA damage [88]. The crystal structure 

of the 109-residue amino-terminal domain of MDM2, which binds to a 15-residue 

transactivation domain peptide of p53, revealed that MDM2 has a deep hydrophobic cleft, to 

which the p53 peptide binds [89]. Therefore, targeting MDM2/HDM2 is a promising way to 

reactivate p53, inducing apoptosis in human cancer cells. For example, Nutlin-3 (42) (Fig. 9) 

was discovered by screening a chemical library as an MDM2 antagonist and found to 

suppress tumor progression in nude mice bearing subcutaneous human cancer xenografts [89]. 

The development of 42 strongly indicates that MDM2 antagonists would be promising 

candidates for leads in the treatment of cancer. Recently, it has been reported that the 

combination of 42 with bortezomib (2) mediates additive cytotoxicity against 2-sensitive 
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multuple myeloma cell lines and synergistic activity against epithelial carcinoma cell lines 

and that nongenotoxic activation of the p53 pathway using 42 can sensitize epithelial 

carcinoma cells to 2 in a manner that is not suppressed by microenvironmental interactions, 

i.e., even in the presence of stromal cells [90]. 

Chlorofusin (43), the first MDM2 antagonist from natural sources, was isolated from the 

culture of a Fusarium sp. with an IC50 value of 4.6 µM [91]. The absolute configuration of 

chlorofusin was determined by total synthesis [92, 93]. Furthermore, inhibition of 

MDM2-p53 binding was evaluated with seven chromophore diastereomers of 43 [94]. 

Biosynthesis of 43 was also investigated [95].  

By bioassay-guided isolation, (-)-hexylitaconic acid (44) was isolated from a culture of 

marine-derived fungus as an inhibitor of p53-HDM2 interaction [96]. Since 44 is unable to 

inhibit the interaction of p53 with COP1, another E3 of the HECT-type for p53, it can be 

inferred that 44 binds to HDM2 protein. Recently, the stereogenic center of 44 was 

determined to be R by vibrational circular dichroism (VCD) spectroscopy [97]. Its synthetic 

S-(+)-enatiomer also had an inhibitory effect on the p53-HDM2 interaction, which was 

comparable to that of the natural R-(-)-enatiomer (44) [97].  

The interaction of chalcones (e.g., chalcone C (45)) with the p53-MDM2 system was 

analyzed by NMR spectroscopy (1H-15N HSQC spectrum) [98], since chalcone derivatives 

were reported to inhibit tumorigenesis [99]. Chalcones were found to bind to a subsite of the 

p53-binding cleft of MDM2. On the other hand, RITA (46) was discovered by screening a 

chemical library as an inhibitor of p53-MDM2 interaction through its binding to p53 protein 

[100]. 

 

Ubiquitin-activating enzyme (E1) inhibitors (Fig. 10) 

Ubiquitin is first activated by the ubiquitin-activating enzyme (E1) in the 
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ubiquitin-proteasome system (Fig. 1). In the E1-mediated ubiquitin-activation process, 

ubiquitin and ATP bind to different sites in the E1 enzyme, and E1 catalyzes the formation of 

a ubiquitin–adenylate intermediate from ubiquitin and ATP, and subsequently the binding of 

ubiquitin to a cysteine residue at the E1 active site via a thiol ester linkage. Then, the 

high-energy intermediate of ubiquitin is transferred to the thiol group of the active cysteine 

residue in the ubiquitin-conjugating enzyme (E2) and then to the client proteins, mediated by 

ubiquitin ligase (E3) [1, 5]. Since E1 activity is thought to be essential for the 

ubiquitin-proteasome system, developing inhibitors against E1 is another possible route of 

drug development for the treatment of cancer. 

Two natural E1 inhibitors, panepophenanthrin (47) (Fig. 10) [101] and himeic acid A (48) 

[102], have been isolated from microorganisms. As the first natural E1 inhibitor, 47 was 

isolated from a mushroom strain, Panus rudis. This compound inhibits the formation of an 

E1-ubiquitin thioester intermediate with an IC50 value of 17 µg/mL. On the other hand, during 

the screening of extracts of marine organisms and marine-derived microorganisms, a culture 

of the fungus Aspergillus sp., isolated from the mussel Mytilus edulis galloprovincialis, 

showed strong E1 inhibitory activity, and bioassy-guided fractionation of the culture afforded 

48 as an E1 inhibitor [102]. This compound inhibited the formation of the E1-ubiquitin 

intermediate by 65% at a concentration of 50 µM and found to inhibit the binding of ubiquitin 

to the ubiquitin-binding site in the E1 enzyme. But, two congeners, himeic acids B (49) and C 

(50), were inactive even at 100 µM. As 48 cannot inhibit E1-like enzymes for other 

ubiquitin-like modifiers, at least, SUMO-1 and ISG15, this compound could be a specific 

inhibitor of the ubiquitin E1 enzyme.  

Recently, PYR-41 (51), a synthetic pyrazone derivative, was identified using a commercial 

screening library as a cell-permeable E1 inhibitor [103]. This compound blocks protein 

degradation and cytokine-induced activation of NF-κB, activates p53 in cells, and 
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preferentially kills cells transformed with wild-type p53. 

 

Ubiquitin-conjugating enzyme (E2) inhibitors (Fig. 11) 

Ubiquitination performs proteolytic and non-proteolytic functions [104, 105]. The lysine48 

(K48)-linked polyubiquitin chain is related to proteasome-dependent protein degradation, 

while the K63-linked chain plays non-proteolytic roles in various cellular events including 

signal transduction and DNA repair. The formation of the latter chain is catalyzed by a 

hetero-dimer formed by the ubiquitin E2 enzyme Ubc13 and an inactive ubiquitin-conjugating 

enzyme variant (Uev1A or Mms2) [106], and a functional difference between the two Ubc13 

complexes (Ubc13-Uev1A and Ubc13-Mms2 complexes) was suggested [107]. The report 

that the knockdown of Ubc13 led to an increase in p53 activity [108] led us to speculate that 

an inhibitor of Ubc13, that is, one preventing the formation of the Ubc13-Uev1A complex, 

would be a lead for an anti-cancer agent. Subsequently, we carried out a search for inhibitors 

of Ubc13-Uev1A interaction in natural resources and found leucettamol A (52) (Fig. 11) in 

the marine sponge Leucetta aff. microrhaphis [109]. Although 52 was originally reported as 

an antimicrobial compound with a racemic nature [110], it was recently found that 52 is chiral 

with the configuration 2R,3S,28S,29R, as revealed by deconvoluted exciton coupled circular 

dichroism (ECCD) spectroscopy [111]. Furthermore, the recent report that the association of 

p53 with Ubc13 on polysomes requires ongoing translation and results in p53 ubiquitination 

which interferes with its tetramerization [112] also supports the use of inhibitors of the 

formation of the Ubc13-Uev1A complex in anticancer therapy. 

 

In summary, targeting of the E1, E2, and E3 enzymes in the ubiquitin system offers promising 

prospects for drug discovery.  
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Targeting the Delivery System Connecting the Ubiquitin System to the Proteasome (Fig. 

12) 

 

As described above, the ubiquitin-proteasome system consists of two sub-systems, the 

ubiquitin system and the protein degradation system (the 26S proteasome). Recently, a third 

system, the so-called delivery system, was proposed to function in the delivery of 

ubiquitinated proteins to the 26S proteasome (see Fig. 1). The proteasome subunit Rpn10 

functions as an intrinsic ubiquitin receptor of the proteasome [113] and Rpn13 was recently 

found to be an additional intrinsic ubiquitin receptor [114, 115]. The delivery system 

consisting of intrinsic ubiquitin receptors Rpn10/Rpn13 and extrinsic ubiquitin receptors such 

as Rad23 and Dsk2 functions as the third system in the ubiquitin-proteasome pathway, 

although the mechanism for the discrimination of ubiquitinated client proteins by the 

respective ubiquitin receptors remains unclear [116, 117]. Therefore, specific rather than 

general targeting of the respective ubiquitin receptors could be an effective approach in the 

treatment of specific client protein-associated diseases.  

Girolline (53) (Fig. 12) was originally isolated as an antitumor compound from a marine 

sponge, but a phase I clinical study with this compound showed severe side effects in patients 

and no apparent antitumor activity [118]. We found that 53 induces G2/M cell cycle arrest in 

several tumor cell lines. In addition, ubiquitinated p53 but no other protein accumulated in 

cells treated with 53, but this compound does not inhibit proteasomal activity [119]. Although 

the exact target of 53 has not been identified, it was proposed that this compound inhibits the 

delivery of ubiquitinated p53 protein to the proteasome.  

Ubistatin (54) was discovered by searching a chemical library for an inhibitor of destruction 

box-dependent protein degradation [120]. It was found that 54 binds to the ubiquitin chain of 
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ubiquitinated proteins and inhibits ubiquitin-dependent proteolysis.  

Thus, compounds inhibiting the delivery system for ubiquitinated proteins could serve as 

novel inhibitors targeting the ubiquitin-proteasome system. 

 

 

Targeting Deubiquitinating Enzymes (Fig. 13) 

 

In the polyubiquitin chain, the C-terminal carboxyl group of one ubiquitin monomer is 

covalently linked with the ε-amino group of the lysine residue in another ubiquitin monomer 

or the client protein via an isopeptide bond. Upon degradation of the polyubiquitinated client 

protein by the proteasome, the polyubiquitin chain is recognized by intrinsic ubiquitin 

receptors of the 26S proteasome as well as extrinsic ubiquitin receptors in the third system 

and is converted to ubiquitin monomers by the actions of intrinsic and extrinsic 

deubiquitinating enzymes (DUBs) [121]. Thus, it is now known that deubiquitination 

mediated by the actions of various DUBs plays important regulatory roles in various cellular 

events [122].  

Prostaglandins (PGs) function as intracellular signal mediators in the regulation of a variety of 

physiological processes, including inflammation and immune responses. J series PGs (e.g., 

Δ12-PGJ2 (55)) (Fig. 13) with a unique exocyclic α,β-unsaturated ketone inhibit ubiquitin 

isopeptidase activity in the proteasome-mediated proteolytic pathway, while PGA1, PGB1, 

PGE2, and 15-keto-PGE2 are inactive [123]. The former J series PGs cause apoptosis, 

independently of p53-mediated gene transactivation. Punaglandins (e.g., punaglandin 4 (56)) 

isolated from the soft coral Telesto riisei are highly functional cyclopentadienone and 

cyclopentenone prostagalndins chlorinated at the endocyclic α-carbon position, and inhibit 

ubiquitin isopeptidase activity and exhibit antiproliferative effects more potently than J series 
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PGs [124]. Recently, a small-molecule inhibitor (HBX 41,108, a cyano-indenopyrazine 

derivative, 57) of USP7/HAUSP, a member of the ubiquitin-specific protease (USP) family of 

DUBs, was isolated by high-throughput screening [125]. It was found that the treatment of 

cancer cells with 57 results in the accumulation of p53 and that 57 inhibits cancer cell growth 

and induces apoptosis. This suggests that compounds inhibiting specific DUBs could act as 

novel anti-cancer drugs. Although drug discovery targeting DUBs is in its early stages, a 

better understanding of the DUBs with regard to their mechanisms of action and substrate 

recognition may enable the development of small-molecule inhibitors for effective anti-cancer 

treatment. 

 

 

Future Perspectives 

 

The ubiquitin-proteasome system controls a wide range of cellular events including cell cycle 

progression, and defects associated with this system result in various diseases including 

cancer and neurodegenerative disorders. Thus, the ubiquitin-proteasome system is emerging 

as a significant target in anticancer therapies. Bortezomib (2), a synthetic proteasome inhibitor, 

is already on the market for the treatment of patients with multiple myeloma and is also 

undergoing clinical trials for other cancers. In preclinical studies, 2 showed antitumor activity 

against a variety of solid tumors, including breast, gastric, colon, pancreas, and non-small 

lung cancers [126]. In addition, several natural and synthetic inhibitors targeting the 

proteasome, salinosporamide A (3), CEP-18770 (8), and carfilzomib (22), are also in clinical 

trials for cancers. Inhibitors targeting the ubiquitin system, the delivery system, and 

deubiquitinating enzymes are also candidates for anticancer drugs and several compounds are 

now undergoing preclinical and clinical trials for cancers. In 2004, Ciechanover, Hershko, and 
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Rose received the Nobel Prize in Chemistry for the discovery of ubiquitin-mediated protein 

degradation. Although the mechanisms and functions of the ubiquitin-proteasome system 

have been investigated extensively, a comprehensive understanding of the complex 

ubiquitin-proteasome system as well as the development of inhibitors of this system by 

searching natural sources and chemical libraries and also by chemical synthesis is needed to 

develop efficient anticancer drugs in the future.  
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Figure legends 

 

Fig. 1  Schematic diagram of the ubiquitin-proteasome system. This system consists of the 

ubiquitin system, the 26S proteasome, and the delivery system. Ub, ubiquitin; E1, 

Ub-activating enzyme; E2, Ub-conjugating enzyme; E3, Ub-protein ligase.  

 

Fig. 2  Structures of proteasome inhibitors containing peptide aldehydes and their inhibitory 

mechanism.  

 

Fig. 3  Structures of proteasome inhibitors containing peptide boronates and their inhibitory 

mechanism. Note that bortezomib (2) and CEP-18770 (8) are under evaluation in clinical 

trials for cancers. 

 

Fig. 4  Structures of proteasome inhibitors containing β-lactones and their analogs, and their 

inhibitory mechanism. Note that 19 and 20 lack β-lactones but contain boronates and that 

salinosporamide A (3) is in clinical trials for cancers.  

 

Fig. 5  Structures of proteasome inhibitors containing epoxyketones and their inhibitory 

mechanism. Note that carfilzomib (22) is in clinical trials for cancers.  

 

Fig. 6  Structures of proteasome inhibitors containing macrocyclic vinyl ketones and their 

inhibitory mechanism.  

 

Fig. 7  Structures of cyclic peptides as proteasome inhibitors.  
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Fig. 8  Structures of proteasome inhibitors other than six groups shown in Fig. 2-7.  

 

Fig. 9  Structures of ubiquitin ligase (E3) inhibitors.  

 

Fig. 10  Structures of ubiquitin-activating enzyme (E1) inhibitors.  

 

Fig. 11  Structure of a ubiquitin-conjugating enzyme (E2) inhibitor.  

 

Fig. 12  Structures of inhibitors targeting the delivery system connecting the ubiquitin 

system to the 26S proteasome.  

 

Fig. 13  Structures of deubiquitinating enzyme (DUB) inhibitors.  
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Fig. 13 
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