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Abstract

This paper considers two-input, two-output nonlinear adaptive model following con-
trol of a 3-DOF (degree-of-freedom) tandem rotor model helicopter. The control
performance is studied by real time implementation of the control algorithms in
an actual helicopter testbed. Since the decoupling matrix of the model helicopter is
singular, the system is not decouplable by static state feedback, and it is challenging
to design a feedback control system. Dynamics state feedback is applied. The con-
troller is designed using a nonlinear structure algorithm. Furthermore, a parameter
identification scheme is introduced in the closed-loop system to improve the control
performance. Three identification methods are discussed.

Key words: tandem-rotor helicopters, nonlinear control, model following control,
adaptive control, parameter identification

1 Introduction

Interests in designing feedback controllers for helicopters have increased over
the last ten years or so because unmanned helicopters can remove individuals
from dangerous tasks. The main difficulties in designing stable feedback con-
trollers for helicopters arise from the high nonlinearities, cross-couplings and
large uncertainty of dynamics of these aircraft. To date, various efforts have
been directed to the development of effective feedback control algorithms, from
classical control to advanced control, for helicopters. Among earlier works,
classical SISO (single-input single-output) techniques with a PI (proportional
and integral) controller are used widely (Kim & Shim, 2003). The SISO control
approaches have advantages of simple structure, straightforward design pro-
cedure and so on. It is, however, difficult to take into account of uncertainties
and couplings. Hence, attention has been focused on development of MIMO

Preprint submitted to Elsevier



(multi-input multi-output) control approaches. Among MIMO approaches, H-
infinity theory has been often adopted as it provides robust stability for plants
subject to uncertainties (Postlethwaite et al., 2005; Trentini & Pieper, 2001).
Sira-Ramirez et al. (1994) have applied dynamical sliding mode control to
the altitude stabilization of a nonlinear helicopter model in vertical flight.
Other MIMO control approaches for tracking are investigated by Koo & Sas-
try (1998), Dzul et al. (2002), Hu et al. (2004), Mahony & Hamel (2004),
Marconi & Naldi (2007), Chakrabortty et al. (2008). Adaptive control is also
known as one of the control strategies to overcome an uncertainty problem
(Krstic et al., 1995; Tao, 2003). Kutay et al. (2005) have presented experi-
mental results of a direct output feedback adaptive control method but their
method is applied to an SISO model which involves only the pitch angle of a
3-DOF laboratory helicopter.

In this paper, therefore, a two-input, two-output nonlinear model following
control problem of a 3-DOF tandem rotor helicopter is considered. The control
performance is studied by real time implementation of the control algorithms
in an actual helicopter testbed. The word ‘nonlinear model following control’
implies that the feedback controller causes the output of a controlled nonlinear
system to track the output of a reference model. The basic idea of controller
design is linearization of the input-output relationships of the system. A well-
known application example of input-output linearization is motion control of a
robot manipulator which is decouplable by static state feedback (Spong et al.,
1992). However, since the decoupling matrix of the model helicopter considered
is singular and the system is not decouplable by static state feedback, it is
challenging to design the feedback control system. Here, a nonlinear structure
algorithm (Isidori, 1995; Shima et al., 1997; Isurugi, 1990; Singh, 1981) is
used to design the controller. The feedback controller based on the nonlinear
structure algorithm is achieved by dynamic state feedback. Due to the fact that
it is difficult to find practical application examples of a nonlinear structure
algorithm in literature, the first main contribution of this paper is to show
feasibility of the nonlinear structure algorithm for a model helicopter which is
not decouplable by static state feedback.

When a simple model following controller based on the nonlinear structure
algorithm is designed, it is difficult to obtain a good control performance in
actual experiment mainly due to the parameter uncertainties. Fortunately, the
system dynamics of the model helicopter are linear with respect to unknown
parameters even though the system equations are nonlinear. Hence, first a
standard identification scheme is introduced in the feedback closed-loop, but
the experimental results show that the control performance is not improved
satisfactorily. The main reason for the poor results is that the estimated ve-
locity and acceleration signals are inaccurate. To obtain better performance,
this paper proposes the second identification scheme which requires neither
velocity nor acceleration signals. Further, the robustness problem to model
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uncertainties and external disturbances is also discussed.

2 System description

This paper considers a tandem rotor model helicopter of Quanser Consulting,
Inc. The configuration of the model helicopter experimental system is illus-
trated in Fig. 1. The helicopter body is mounted at the end of an arm and
is free to move about the elevation, pitch and horizontal travel axes. Thus
the helicopter has 3-DOF: the elevation ε, pitch θ and travel ϕ angles, all of
which are measured via optical encoders. The movement range of the elevation
ε and pitch θ angles is limited between around −1 [rad] and 1 [rad] due to
the hardware restriction. Two DC motors attached to propellers generate a
driving force proportional to the voltage output of a controller.

The system dynamics are expressed by the following highly nonlinear and
coupled state variable equations (Apkarian, 1998)

ẋp= f(xp) + [g1(xp), g2(xp)]up (1)

where

xp= [xp1, xp2, xp3, xp4, xp5, xp6]
T

= [ε, ε̇, θ, θ̇, ϕ, ϕ̇]T

up= [up1, up2]
T

up1=Vf + Vb, up2 = Vf − Vb

f(xp)=



ε̇

p1 cos ε+ p2 sin ε+ p3ε̇

θ̇

p5 cos θ + p6 sin θ + p7θ̇

ϕ̇

p9ϕ̇


g1(xp)= [0, p4 cos θ, 0, 0, 0, p10 sin θ]

T

g2(xp)= [0, 0, 0, p8, 0, 0]T

p1= [−(Mf +Mb)gLa +McgLc]/Jε
p2=−[(Mf +Mb)gLa tan δa +McgLc tan δc]/Jε
p3=−ηε/Jε, p4 = KmLa/Jε
p5=(−Mf +Mb)gLh/Jθ
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p6=−(Mf +Mb)gLh tan δh/Jθ
p7=−ηθ/Jθ, p8 = KmLh/Jθ
p9=−ηϕ/Jϕ, p10 = −KmLa/Jϕ

δa =tan−1{(Ld + Le)/La}
δc =tan−1(Ld/Lc)

δh=tan−1(Le/Lh)

The notation employed above is defined as follows:

Vf , Vb [V]: Voltage applied to the front motor, voltage applied to the rear
motor,
Mf , Mb [kg]: Mass of the front section of the helicopter, mass of the rear
section,
Mc [kg]: Mass of the counterbalance,
Ld, Lc, La, Le, Lh [m]: Distances OA, AB, AC, CD, DE=DF,
g [m/s2]: gravitational acceleration,
Jε, Jθ, Jϕ [kg·m2]: Moment of inertia about the elevation, pitch and travel
axes,
ηε, ηθ, ηϕ [kg·m2/s]: Coefficient of viscous friction about the elevation, pitch
and travel axes.
The forces of the front and rear rotors are assumed to be Ff=KmVf ,
Fb=KmVb [N], respectively, where Km [N/V] is a force constant.

It may be noted that all the parameters pi (i = 1 . . . 10) are constants.

For the problem of the control of the position of the model helicopter, two
angles, the elevation ε and the travel ϕ angles, are selected as the outputs
from the three detected signals of the three angles. Hence, one has

yp = [ε, ϕ]T (2)

Differentiating the output yp twice leads to the following decoupling matrix

Bu(x)=

 p4 cosxp3 0

p10 sin xp3 0

 (3)

which is obviously singular. Hence, the system is not decouplable by static
state feedback (Isidori, 1995; Shima et al., 1997).
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Fig. 1. Configuration of the model helicopter experimental system.

3 Control system design

In this section, a nonlinear model following control system is designed for the
3-DOF model helicopter described in the previous section.

3.1 Reference model

First, the reference model is given as

ẋM =AMxM +BMuM , yM = CMxM (4)

xM = [xM1, xM2, xM3, xM4, xM5, xM6, xM7, xM8]
T

= [εM , ε̇M , ε̈M , ε
(3)
M , ϕM , ϕ̇M , ϕ̈M , ϕ

(3)
M ]T

yM = [εM , ϕM ]T , uM = [uM1, uM2]
T

where

AM =

K1 0

0 K2

, BM =

 i 1 0

0 i 1

, CM =

 i 2T 0T

0T i 2
T


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Ki=



0 1 0 0

0 0 1 0

0 0 0 1

ki1 ki2 ki3 ki4


, i 1 =



0

0

0

1


, i 2 =



1

0

0

0


Since cross-coupling is one of the main difficulties in designing feedback con-
trollers for helicopters, the reference model is here given so as to achieve de-
coupling. The reference model has two more states than the plant so that the
feedback inputs do not include the derivatives of the reference inputs uM as
one can see in Subsection 3.2.

3.2 Model following control by the nonlinear structure algorithm

This subsection explains a model following controller design based on the
nonlinear structure algorithm.

From Eqs. (1) and (4), the augmented state equation is defined as follows.

ẋ= f(x) +G(x)u (5)

x= [xT
p , xT

M ]T , u = [uT
p , uT

M ]T

f(x)=

 f(xp)

AMxM

 , G(x) =

 g1(xp) g2(xp) O

0 0 BM


Here, a nonlinear structure algorithm is applied to design a model following
controller (Isidori, 1995; Shima et al., 1997; Isurugi, 1990; Singh, 1981). In the
nonlinear structure algorithm, elimination of one of inputs and differentiating
of the error equation are repeated until a nonsingular decoupling matrix is
obtained. New variables and parameters in the following algorithm are defined
below the input (13).

• Step 1

First, a tracking error vector is defined by

e =

 e1
e2

 =

 xM1 − xp1

xM5 − xp5

 (6)

Differentiating the tracking error (6) yields
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ė=
∂e

∂x
{f(x) +G(x)u}

=

−xp2 + xM2

−xp6 + xM6

 (7)

Since the inputs do not appear in Eq. (7), one proceeds to step 2.

• Step 2

Differentiating Eq. (7) leads to

ë=

 r1(x)

−p9xp6 + xM7

+ [Bu(x), Br(x)]u (8)

Bu(x)=

 −p4 cos xp3 0

−p10 sin xp3 0

 , Br(x) = O

From Eq. (8), the decoupling matrix Bu(x) is singular. Hence, this system is
not decouplable by static state feedback (Isidori, 1995; Shima et al., 1997).
According to the nonlinear structure algorithm, elimination of one of inputs
and differentiating of the error equation are repeated until a nonsingular de-
coupling matrix appears. Hence, by eliminating up1 from Eq. (8) under the
assumption of up1 ̸= 0, one obtains

ë2 = −p9xp6 + xM7 + p14 tanxp3(ë1 − r1(x)) (9)

• Step 3

Further differentiating Eq. (9) gives rise to

e
(3)
2 = p14 tanxp3 {d5(x)xp2 + p3(xM3 − r1(x))

+xM4 + e
(3)
1

}
− d4(x)r1(x)xp4 − p29xp6 + xM8

+ [p10 sin xp3(p3 − p9), 0, 0, 0]u (10)

As well as step 2, one eliminates up1 from Eqs. (8) and (10), and it is obtained
that

e
(3)
2 = p14 tanxp3 {p3xM3 − d5(x)− p3r1(x)

−xM4 + e
(3)
1 − p15ë1 + p15r1(x)

}
+xM8 − p29xx6 − d4(x)xp4r1(x) (11)
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• Step 4

It follows from the same operation as step 3 that

e
(4)
2 = r2(x) + [d1(x), d2(x), d3(x), 1]u (12)

From Eqs. (8) and (12), the system is input-output linearizable (Isidori, 1995;
Shima et al., 1997) and the model following input vector is determined as

up=R (x) + S (x)uM (13)

R (x)=
1

d2(x)p4 cosxp3

−d2(x) 0

d1(x) p4 cosxp3


ē1 − r1 (x)

ē2 − r2 (x)



S (x)=
−1

d2(x)p4 cosxp3

−d2(x) 0

d1(x) p4 cosxp3


 0 0

d3(x) 1



where

ē1=−σ12ė1 − σ11e1

ē2=−σ24e
(3)
2 − σ23ë2 − σ22ė2 − σ21e2

r1(x)=−p1 cosxp1 − p2 sin xp1 − p3xp2 + xM3

r2(x)= {−d5(x) (p9p14 tanxp3 + xp4d4(x))

−p14xp2 tanxp3 (p1 cosxp1 + p2 sinxp1)}xp2

+ {p3xp4d4(x) + p14 tanxp3(p3p9 − d5(x))}
(xM3 − r1(x)) + {p3 (xM3 − r1(x))

+(2xp4 tanxp3 − p15) (ë1 − r1(x))− xM4

+e
(3)
1 − xp2d5(x)

}
xp4d4(x) + (ë1 − r1(x))

(p5 cos xp3 + p6 sin xp3 + p7xp4) d4(x)

+ (xp4d4(x)− p14p15 tanxp3) e
(3)
1

+p14 tanxp3 (p15xM4 − k1xM1 − k2xM2

−k3xM3 − k4xM4)− xp4xM4d4(x)

+k5xM5 + k6xM6 + k7xM7 + k8xM8

+p14e
(4)
1 tanxp3 − p39xp6

d1 (x)=
(
p3p9 − d5(x)− p29

)
p10 sinxp3

+p3p4xp4d4(x) cos xp3

d2 (x)= p8d4(x) (ë1 − r1(x))
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d3 (x)=−p14 tanxp3

d4(x)=
p14

cos2 xp3

d5(x)= p1 sinxp1 − p2 cos xp1

e1=xM1 − xp1

ė1=xM2 − xp2

ë1=−σ12ė1 − σ11e1

e
(3)
1 =(σ2

12 − σ11)ė1 + σ12σ11e1

e
(4)
1 =(−σ3

12 + 2σ12σ11)ė1 − σ11(σ
2
12 − σ11)e1

e2=xM5 − xp5, ė2 = xM6 − xp6

ë2= p14 tanxp3 (ë1 − r1(x))− p9xp6 + xM7

e
(3)
2 = p14 tanxp3 {p3 (xM3 − r1(x))− xp2d5(x)

+e
(3)
1 + p15 (r1(x)− ë1)− xM4

}
+ xM8

+xp4d4(x) (ë1 − r1(x))− (p9) (p9xp6)

p14 =
p10
p4

p15 = p3 − p9

The input vector is always available since the term d2(x) cos xp3 does not
vanish for −π/2 < θ < π/2. The design parameters σij (i = 1, 2, j = 1, · · · , 4)
are selected so that the characteristic equations λ2 + σ12λ + σ11 = 0 and
λ4 + σ24λ

3 + σ23λ
2 + σ22λ+ σ21 = 0 are stable. Then, the closed-loop system

has the following error equations

ë1 + σ12ė1 + σ11e1 = 0 (14)

e
(4)
2 + σ24e

(3)
2 + σ23ë2 + σ22ė2 + σ21e2 = 0 (15)

and the plant outputs converge to the reference outputs. From Eqs. (8) and

(12), up1 and up2 appear first in ë1 and e
(4)
2 , respectively. Thus, there are no

zero dynamics and the system is minimum phase since the order of Eq. (1) is
six (Isidori, 1995; Shima et al., 1997). Further, one can see that the order of
the reference model should be eight so that the inputs (13) do not include the
derivatives of the reference inputs uM .

3.3 Velocity signals

Since the controller requires the angular velocity signals ε̇, θ̇ and ϕ̇, in the
experiment these signals are calculated numerically from the measured angular
positions by a discretized differentiator with the first-order filter
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Hl (z) =
α (1− z−1)

1− z−1 + αTs

(16)

which is derived by substituting s = (1− z−1)/Ts into the differentiator
Gl(s) = αs/(s+α), where z−1 is a one-step delay operator, Ts is the sampling
period and the design parameter α is a positive constant. Hence, for example,
one has

ε̇(k) ≈ 1

αTs + 1
[ε̇ (k − 1) + α {ε (k)− ε (k − 1)}] (17)

4 Parameter identification based on the differential equations

4.1 Parameter identification algorithm

It is difficult to obtain the desired control performance by applying the above
algorithm directly to the experimental system, since there are parameter un-
certainties in the model dynamics. However, it is straightforward to see that
the system dynamics (1) are linear with respect to unknown parameters, even
though the equations are nonlinear. It is therefore possible to introduce a
parameter identification scheme in the feedback control loop.

In the present study, the parameter identification scheme is designed in discrete-
time form using measured discrete-time signals. Hence, the estimated param-
eters are calculated recursively at every instant kT , where T is the updating
period of the parameters and k is a nonnegative integer. Henceforth T is
omitted for simplicity in the identification algorithm. Further, the indirect
identification method is here considered since the direct law needs much more
identification parameters and the structure of the identifier is very compli-
cated. Then, the dynamics of the model helicopter given by Eq. (1) can be
re-expressed as

w1(k)≡ ε̈(k) = ζT
1 v1(k), w2(k) ≡ θ̈(k) = ζT

2 v2(k)

w3(k)≡ ϕ̈(k) = ζT
3 v3(k) (18)

where

ζ1 = [p1, p2, p3, p4]
T

ζ2 = [p5, p6, p7, p8]
T , ζ3 = [p9, p10]

T

v1(k)= [v11(k), · · · , v14(k)]
T

v2(k)= [v21(k), · · · , v24(k)]
T , v3(k) = [v31(k), v32(k)]

T
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v11(k)= cos ε(k), v12(k) = sin ε(k), v13(k) = ε̇(k)

v14(k)=up1 cos θ(k), v21(k) = cos θ(k)

v22(k)= sin θ(k), v23(k) = θ̇(k), v24(k) = up2(k)

v31(k)= ϕ̇(k), v32(k) = up1 sin θ(k)

Defining the estimated parameter vectors corresponding to the vectors ζ1, ζ2,
ζ3 as ζ̂1(k), ζ̂2(k), ζ̂3(k), the estimated values of w1(k), w2(k), w3(k) are
obtained as

ŵi(k)= ζ̂
T

i (k)vi(k), i = 1, 2, 3 (19)

respectively. Along with the angular velocities, the angular accelerations w1(k) =
ε̈(k), w2(k) = θ̈(k), w3(k) = ϕ̈(k) are also obtained by numerical calculation
using a discretized differentiator.

The parameters are estimated using a recursive least squares algorithm as
follows.

ζ̂i(k)= ζ̂i(k − 1)

+
Pi(k − 1)vi(k − 1) [wi(k − 1)− ŵi(k − 1)]

λi(k − 1) + vT
i (k − 1)Pi(k − 1)vi(k − 1)

(20)

P−1
i (k)=λi(k − 1)P−1

i (k − 1) + vi(k − 1)vT
i (k − 1)

P−1
i (0) > 0 , 0 < λi(k − 1) ≤ 1, i = 1, 2, 3 (21)

Then, the tracking of the two outputs is achieved under the persistent excita-
tion of the signals vi.

4.2 Experimental studies

The estimation and control algorithm described above was applied to the
actual experimental system shown in Section 2. The block diagram of the
feedback control system is illustrated in Fig. 2. The controller is a digital
computer with a Pentium 4, 2.2GHz CPU. The software consists of the OS of
Windows 2000 and of the Matlab Simulink. The angles ε, θ and ϕ are detected
by encoders with 12, 12 and 13 bits, respectively. The voltages Vf and Vb of
two motors are in the range (0, 5) [V]. The nominal values of the physical
constants in the actual helicopter testbed are as follows:

Jε=0.86 [kg·m2], Jθ=0.044 [kg·m2], Jϕ=0.82 [kg·m2] La=0.62 [m], Lc=0.44 [m],
Ld=0.05 [m], Le=0.02 [m] Lh=0.177 [m], Mf=0.69 [kg], Mb=0.69 [kg],
Mc=1.67 [kg] Km=0.5 [N/V], g=9.81 [m/s2], ηε=0.001 [kg·m2/s],
ηθ=0.001 [kg·m2/s], ηϕ=0.005 [kg·m2/s].
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Fig. 2. Block diagram of the feedback control system.

The design parameters are given as follows: The sampling period of the inputs
and the outputs is set as Ts = 2 [ms] and the updating period of the parameters
takes T = 10 [ms]. Further, the filter parameter in Eq. (17) is given as α = 1000
for the estimation of velocities and accelerations. The variation ranges of the
identified parameters are restricted as

−1.8 ≤ p̂1 ≤ −0.8, −2.2 ≤ p̂2 ≤ −1.2

−0.3 ≤ p̂3 ≤ 0.0, 0.1 ≤ p̂4 ≤ 0.6

−0.5 ≤ p̂5 ≤ 0.5, −7.0 ≤ p̂6 ≤ −5.2 (22)

−0.6 ≤ p̂7 ≤ 0.0, 1.8 ≤ p̂8 ≤ 2.2

−0.5 ≤ p̂9 ≤ 0.0, −0.5 ≤ p̂10 ≤ −0.2.

The forgetting factor of the least squares algorithm is given by

λi = 0.9995 + 0.0005 exp(−5
√
e21 + e22), i = 1, 2, 3

The introduction of the variable forgetting factor is based on the fact that
it improves the accuracy of parameter identification and control performance
(Goodwin & Sin, 1984). The inputs uM1 and uM2 of the reference model are
given by

uM1 =

 0.3, 45k − 30 ≤ t < 45k − 7.5

−0.1, 45k − 7.5 ≤ t < 45k + 15

uM2 =


0, 0 ≤ t < 7.5

−0.8, 45k + 7.5 ≤ t < 45k + 30

0.8, 45k + 30 ≤ t < 45(k + 1) + 7.5

(23)
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k = 0, 1, 2, · · ·

All the eigenvalues of the matrices K1 and K2 are −1, and the characteristic
roots of the error equations (14) and (15) are specified as (−2.0, − 3.0) and
(−2.0, − 2.2, − 2.4, − 2.6), respectively. The origin of the elevation angle ε
is set as a nearly horizontal level, so the initial angle is ε = −0.336 [rad] when
the voltages of two motors are zero, i.e., Vf = Vb = 0.

The values of the design parameters above are chosen by mainly trial and
error. The selection of the sampling period Ts of the input and output is most
important. The achievable minimum sampling period Ts is 2 [ms] due to the
calculation ability of the computer. The longer it is, the worse the tracking
control performance is. On the other hand, the preliminary experimental stud-
ies show that a short updating period T of the parameter estimation increases
the effect of the output noise on the estimated parameters. Therefore, the
updating period of the parameter is selected as T = 10 [ms] by trial and error.

The outputs of the experimental results are shown in Figs. 3 and 4. The
tracking is incomplete because neither of the output errors vanishes. Figure
5 displays the estimated parameter p̂1, All of the other estimated parameters
move to the limiting values of the variation range as well as p̂1.
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Fig. 3. Time evolution of angle ε (—) and reference output εM (· · ·).
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Fig. 4. Time evolution of angle ϕ (—) and reference output ϕM (· · ·).
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Fig. 5. Time evolution of the estimated parameter p̂1. The dotted lines repre-
sent the limiting values.

5 Parameter identification based on the integral form of the model
equations

5.1 The model equations

5.1.1 Parameter identification algorithm

The main reason why the experimental results exhibit the poor tracking per-
formance described in Subsection 4.2 lies in the fact that the parameter iden-
tification is unsatisfactory due to the inaccuracy of the estimation of the ve-
locity and the acceleration signals, for instance, ε̇(k) and ε̈(k), equivalently
w1(k) and ŵ1(k) obtained using the discretized differentiator. To overcome
this problem in this subsection, a parameter estimation scheme is designed for
modified dynamics equations obtained by applying integral operators to the
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differential equations expressing the system dynamics (18). Neither velocities
nor accelerations appear in these modified equations.

Define w̄1(k) by the following double integral

w̄1 (k)≡
kT∫

kT−nT

τ∫
τ−nT

ε̈(σ)dσdτ (24)

Then, the direct calculation of the right-hand side of Eq. (24) leads to

kT∫
kT−nT

τ∫
τ−nT

ε̈(σ)dσdτ

=

kT∫
kT−nT

(ε̇(τ)− ε̇(τ − nT )) dτ

= ε (kT )− 2ε (kT − nT ) + ε (kT − 2nT ) (25)

Next, discretizing the double integral of the right-hand side of Eq. (18) yields

p1

kT∫
kT−nT

τ∫
τ−nT

cos ε(σ)dσdτ + · · ·

+p3

kT∫
kT−nT

{ε(τ)− ε(τ − nT )} dτ + · · ·

≈ p1T
2

k∑
l=k−(n−1)

l∑
i=l−(n−1)

cos ε(i) + · · ·

+p3T
k∑

l=k−(n−1)

{ε(l)− ε(l − (n− 1))}+ · · · (26)

As a result, the integral form of the dynamics is obtained as

w̄i(k) = ζT
i v̄i(k), i = 1, 2, 3 (27)

where

w̄2 (k)≡ θ (k)− 2θ (k − n) + θ (k − 2n) (28)

w̄3 (k)≡ϕ (k)− 2ϕ (k − n) + ϕ (k − 2n) (29)

v̄1(k) = [v̄11(k), · · · , v̄14(k)]
T
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v̄2(k) = [v̄21(k), · · · , v̄24(k)]
T , v̄3(k)=[v̄31(k), v̄32(k)]

T

ṽ13(l)≡ ε (l)− ε (l − (n− 1))

ṽ23(l)≡ θ (l)− θ (l − (n− 1))

ṽ31(l)≡ϕ (l)− ϕ (l − (n− 1))

v̄ij(k) =
k∑

l=k−(n−1)

ṽij (l), (i, j) = {(1, 3), (2, 3), (3, 1)}

v̄ij(k) =
k∑

l=k−(n−1),

l∑
m=l−(n−1)

vij (m), for other i, j

Hence, the estimate model for Eq. (27) is given by

̂̄wi(k) = ζ̂
T

i (k)v̄i(k), i = 1, 2, 3 (30)

and the system parameters ζ̂
T

i (k) can be identified on the basis of the expres-
sion (30) without use of the velocities or accelerations of ε, θ, ϕ.

Finally, the same parameter identification algorithm as (20) and (21) is applied
to the estimate model (30).

Note here that the estimated velocity and acceleration signals are still used in
the control input (13).

5.1.2 Experimental studies

As well as Subsection 4.2, the estimation and control algorithm described
above was applied to the experimental system shown in Section 2. The design
parameter for the integral form of the identification algorithm is given by
n = 100. The other parameters, the reference model and the reference input
are the same as those of the previous section. The outputs are shown in Figs.
6 and 7. The tracking performance of both the outputs ε and ϕ is improved in
comparison with the previous section. However, there still remains a tracking
error. The estimated parameter p̂1 is plotted in Fig. 8. It changes slowly, and
the variation of the estimated parameter in Fig. 8 is smaller than that of the
corresponding value shown in Fig. 5.

5.2 The model equations with model uncertainties and external disturbances

5.2.1 Parameter identification algorithm

Although the use of the integral form of the dynamics has improved the track-
ing performance of both the outputs ε and θ, tracking errors still remain.
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Fig. 6. Time evolution of angle ε (—) and reference output εM (· · ·).
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Fig. 7. Time evolution of angle ϕ (—) and reference output ϕM (· · ·).
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Fig. 8. Time evolution of the estimated parameter p̂1. The dotted lines repre-
sent the limiting values.
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Since it seems that these errors are caused by model uncertainties and exter-
nal disturbances, for example, motor dynamics or friction (other than viscous
friction), one may add the extra terms Mε, Mθ and Mϕ into Eq. (1) to repre-
sent model uncertainties and external disturbances. Generally, the extra terms
should be given as, for instance,

Mε(t) =
ℓε∑
i=1

ciMi(t) (31)

where ci is a constant and Mi(t) is a known function of time. For simplic-
ity, however, here it is assumed that these extra terms are constant because
tracking errors in the experimental results approximately remain constant in
Subsubsection 5.1.2. Then, the system dynamics are expressed as

w1(k) ≡ ε̈(k)= ξT1 q1(k), w2(k) ≡ θ̈(k) = ξT2 q2(k)

w3(k) ≡ ϕ̈(k)= ξT3 q3(k) (32)

where

ξ1=
[
ζT
1 , p11

]T
, ξ2 =

[
ζT
2 , p12

]T
ξ3=

[
ζT
3 , p13

]T
, q1(k) =

[
vT
1 (k), 1

]T
q2(k)=

[
vT
2 (k), 1

]T
, q3(k) =

[
vT
3 (k), 1

]T
p11 =Mε/Jε, p12 = Mθ/Jθ, p13 = Mϕ/Jϕ

It is worth noting that all the parameters pi (i = 11, . . . , 13) of the equations
are constant. Then, the integral form of the dynamics is obtained as well as
the previous subsection as

zi(k) = ξTi q̄i(k), i = 1, 2, 3 (33)

where

q̄1(k)=
[
v̄T
1 (k), T 2(n− 1)2

]T
, q̄2(k) =

[
v̄T
2 (k), T 2(n− 1)2

]T
q̄3(k)=

[
v̄T
3 (k), T 2(n− 1)2

]T

Hence, defining the estimated parameter vectors corresponding to the vectors
ξ1, ξ2, ξ3 as ξ̂1(k), ξ̂2(k), ξ̂3(k), the estimate model for expression (33) is given
by
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ẑi(k) = ξ̂
T

i (k)q̄i(k), i = 1, 2, 3 (34)

and the system parameters ξ̂i(k) can be identified by the recursive least
squares algorithm (20) and (21) based on expression (34).

5.2.2 Experimental studies

The design parameters and the reference model are the same as those of the
previous section. The outputs are depicted in Figs. 9 and 10, while the esti-
mated parameters are shown in Figs. 11-14.

The tracking performance of both of the outputs ε and ϕ has been further
improved by the inclusion of the uncertainties. Most of the estimated param-
eters, however, do not seem to converge to constant values. The reason is that
the parameters move slightly in order to suppress the effect of the modelling
error since there still remain further unmodelled dynamics.
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Fig. 9. The time evolution of angle ε(—) and reference output εM(· · ·).
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Fig. 10. The time evolution of angle ϕ(—) and reference output ϕM(· · ·).
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Fig. 11. Time evolution of the estimated parameter p̂1. The dotted lines rep-
resent the limiting values.
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Fig. 12. Time evolution of the estimated parameter p̂11.

6 Conclusions

This paper considers the nonlinear adaptive model following control of a 3-
DOF model helicopter. The system model here is not decouplable by static
state feedback, and the nonlinear structure algorithm is applied. When a sim-
ple model following controller is designed, it is not easy to obtain a good
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Fig. 13. Time evolution of the estimated parameter p̂12.
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Fig. 14. Time evolution of the estimated parameter p̂13.

control performance mainly due to the parameter uncertainties. Then, two
parameter identification schemes are discussed: The first scheme is based on
the differential equation model. This scheme is unable to obtain a good track-
ing control performance because of the inaccuracy of the estimated velocity
and acceleration signals. The second scheme is designed for a dynamics model
derived by applying integral operators to the differential equations express-
ing the system dynamics. Hence, this identification algorithm requires neither
velocity nor acceleration signals. The experimental results show that the sec-
ond method yields a better tracking objective, although tracking errors still
remain. Finally, extra terms are introduced into the equations of motion to
express model uncertainties and external disturbances. With reference to ex-
perimental results, this modification is shown to further improve the tracking
control performance.

For the future work, development and application of digital controller designs
based on a sampled-data model for the nonlinear helicopter is left.
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