会期:2006年4月8日

会場:パシフィコ横浜会議センター

モンテカルロ計算を用いた小照射野光子ビームの線量評価

荒木不次男 熊本大学医学部保健学科

Monte Carlo Study on Photon Beams with Small Fields

Fujio Araki Kumamoto University School of Health Sciences

緒言

近年,定位放射線照射STI(定位手術的照射SRSおよ び定位放射線治療SRT)や強度変調放射線治療(IMRT) が高精度放射線治療として普及してきている.これら の高精度照射においては,しばしば側方電子平衡が成 立しないような小照射野の光子ビームが用いられる. 特に,肺のような低密度の不均質部では二次電子の飛 程が長くなり,側方電子平衡が成立しにくくなり,線 量プロファイルにおいて平坦な領域が狭くなる.この 影響は光子エネルギーの増大にともなって大きくな り,固体検出器による小照射野光子ビームの線量測定 を困難にする.

本報告では,高エネルギー加速装置からの光子,電子(陽電子を含む)の物質中での挙動(相互作用)を忠実 に表現できるモンテカルロシミュレーション (EGSnrcMP^{1,2})BEAMnrc^{3,4)}コード)を用いた小照射 野の光子ビームの高精度な線量評価について報告す る.特に,モンテカルロ計算は,測定が困難な非電子 平衡領域の線量評価,また光子ビームの物理的特性 (エネルギースペクトル,フルエンス分布など)や平均 制限質量衝突阻止能比などの評価に有用である.

本報告では,小照射野の光子ビームについて以下の 項目を言及する.

- 2. 衝突カーマと吸収線量の比較
- 3.光子・電子のエネルギースペクトルの変化
- 4.水/空気の平均制限質量衝突阻止能比(SPR)の変化

1. 深部量百分率(PDD),線量プロファイル (OAR),出力係数(OPF)の検証

本報告で使用したモンテカルロ計算のユーザーコー ドは, National Research Council in Canada(NRCC)で 開発されたEGSnrcMP(DOSRZnrc, SPRRZnrc, FLURZnrc)^{1,2)}, BEAMnrc^{3,4)}, DOSXYZnrc⁵⁾で, NRCCのホームページ(http://www.irs.inms.nrc.ca/ BEAM/beamhome.html)からダウンロード(現在は無料)できる.これらのコードをLinux(Fedora Core 3)OS を用いてインストールし, Pentium IV 3.2GHzのCPU で計算した.

最初に,リニアック[ここでは,Varian Clinac 2100C加速器(Varian Medical Systems, Palo Alto, CA)]のヘッド構造をBEAMnrcコードでシミュレーシ ョンした.シミュレーションにおいて重要な因子は, 加速器ヘッド内の個々のコンポネントの実際の幾何学 的寸法とその材質である.Varian Clinac 2100CのX線 モードにおけるコンポネントモジュールは,Fig.1に 示すようにターゲット,一次コリメータ,真空窓,平 坦度フィルター,モニタ電離箱,ミラー,二次コリメ ータ,防護窓からなる.ターゲット前面と水ファント ム表面の距離(source-to-surface distance,SSD)は 100cmである.

BEAMnrcコードでは, 各粒子(光子, 電子, 陽電 子)の位置,角度,電荷や重み付けのすべての粒子情 報を含んだphase space file³が作成される.本報告で は, phase space planeを水ファントム表面に設定した (Fig. 1). PDDとOARは, 作成されたphase space file を用いてDOSXYZnrcコードで計算される.測定と計 算のPDDとOARのコミッショニングにおいては,両 者の差が2%以内で一致するようにターゲットに入射 する電子のエネルギーと強度分布を調整した.ターゲ ットに入射する電子のエネルギー分布(平均エネルギ ーとその分布幅)と放射状の強度分布については,最 も大きな照射野(40×40cm²)においてモンテカルロ計 算と測定のPDDとOARが一致するように調整した. これは,大照射野のOARが平坦度フィルターの形状 を最も反映し, さらに入射電子の放射状の強度分布の 影響を最も受けやすいためである.一方, PDDは入射 電子の平均エネルギーに強く依存し,その分布幅には あまり依存しない⁶⁾.

Fig. 2に, BEAMnrcによるVarian Clinac 2100Cの ヘッドの構造と, DOSXYZnrcによる水中での光子の 相互作用のシミュレーションを示す.Fig. 3とFig. 4 は,4MVと10MV-X線における計算と測定PDDと OARの比較である⁷⁾.測定は円筒形電離箱0.1cm³で行 った.計算値は深さ10cmにおいて測定PDD値と一致 するようにスケール化した. PDDと各深さでのOAR の計算値は,測定値と2%以内で一致している.最終 的に決定した4MV-X線における入射電子の平均エネ ルギーとその分布幅は, それぞれ4.2MeVと3%の半 値幅 full-width half-maximum, FWHM を持ったガウ ス分布で,放射状の強度分布はFWHM=1.2mmのガウ ス分布であった.一方,10MV-X線ではそれぞれ 10.3MeVとFWHM=3%のガウス分布で, 強度分布は FWHM=1.5mmのガウス分布であった.ターゲットへ の入射電子数は,4MV-X線の照射野40×40cm²で 4×10⁷個,10MV-X線で1×10⁷個であった.PDDと OARのモンテカルロ計算値の標準偏差は0.5%以内で あった.

シミュレーションにおけるパラメータは, AE=ECUT=0.7MeV, AP=PCUT=0.01MeVである. AEは電子に対する物質データの下限エネルギー(静止 エネルギーを含む), ECUTは電子のカットオフエネ ルギー,APは光子に対する物質データの下限エネル ギー(静止エネルギーを含む), PCUTは光子のカット オフエネルギーである. photon interaction forcing³⁾と レーリ散乱については考慮しなかった.シミュレーシ ョンのスピードアップのためにvariance reduction technique³⁾を使用した.そのなかで, electron range rejection3)で用いたパラメータは,4MV-X線において ターゲットでESAVE=0.7MeV,他のコンポネントモ ジュールではESAVE=1.0MeVであった.一方, 10MV-X線ではターゲットでESAVE=1.0MeV,他の コンポネントモジュールではESAVE=2.0MeVであっ た.ESAVEは制動放射線に対する電子の下限エネル ギーである.selective bremsstrahlung splitting (SBS)) と呼ばれるvariance reduction techniqueも使用した. SBSにおける最小と最大のsplitting factorはNmin=10と Nmax=100であった.二次電子におけるRussian roulette⁴は使用しなかった.

次に,小照射野におけるシミュレーションを示す. 小照射野においては,Fig.1の二次コリメータの下で phase space file 1を作成し,これを各サイズの円形コ リメータのシミュレーションに繰り返し使用した.そ して,水ファントムの表面でphase space file 2を作成 し,PDDとOARの計算に使用した.Fig.5とFig.6は, 9mm ψと15mm ψの円形コリメータにおける4MVと 10MV-X線のPDDを示す⁸⁾.計算値と測定値は2%以

Fig. 1 Illustration of the treatment head and the component modules used in the BEAMnrc simulation for a Varian Clinac machine operated in photon mode. The phase space plane is taken at the surface of a water phantom.(Ref. 7)

内で一致している.測定は円筒形電離箱0.125cm³とSi 半導体検出器(stereotactic field detector, SFD)で行っ た.Fig.7は,コリメータサイズ2,5,9,15mmφの 深さ5cmにおけるOARの比較を示す⁸⁾.測定はガフク ロミックフィルムXRで行った.いずれの照射野にお いても計算値と測定値はよく一致している.特に 10MV-X線では,4MV-X線に比べ側方電子平衡が成立 していない様子が分かる.

Fig.8は深さ5cmにおける出力係数の比較を示す⁸⁾. 測定はSFDの値である.10MV-X線の2mmφを除け ば,測定値と計算値は2%以内で一致している.同様 に, Fig. 9はサイバーナイフ装置における深さ1.5cmで の出力係数を示す⁹⁾. 測定は円筒形電離箱 0.125cm³と SFDの値である.コリメータサイズは,5,7.5,10, 12.5 , 15 , 20 , 25 , 30 , 35 , 40 , 50 , 60mm *φ*の12種 類である.Fig. 9(a)において,SFDと計算値は5mmφ と7.5mmφ以外でよく一致しているが,電離箱では 15mmφ以下でその電量容積の大きさのために出力係 て,計算値に比べ出力係数が高い.Fig.9(b)は検出器 領域をSFDと同じSiに置き換えて計算した出力係数を よく一致している. Fig. 10は水とSi検出器の線量にお けるレスポンスの違いを示す⁹⁾.5mmφでは10mmφに 比べてSiが水より側方非電子平衡による線量低下の割

Fig. 2 Head configurations simulated with BEAMnrc and interactions with water by 4 MV photon beams calculated with DOSXYZnrc.

Fig. 3 Comparison of measured and Monte Carlo calculated central axis depth-dose curves for a 40×40 cm² field at 4 MV and 10 MV(SSD=100 cm)(Ref. 7)

Fig. 4 Comparison of measured and Monte Carlo calculated dose profiles for a 40×40 cm² field at 4 MV and 10 MV, SSD=100 cm. The profiles are at depths of d_{max} , 5, 10, 20 and 30 cm.(Ref. 7)

Fig. 5 Comparison of measured and Monte Carlo calculated central axis depth-dose curves for 9 mm and 15 mm circular collimators at 4 MV photon beams, SSD=100 cm. Measurements were performed with a 0.125 cm³ ion chamber and an SFD silicon diode.(Ref. 8)

Fig. 6 Comparison of measured and Monte Carlo calculated central axis depth-dose curves for 9 mm and 15 mm circular collimators at 10 MV photon beams, SSD=100 cm. Measurements were performed with a 0.125 cm³ ion chamber and an SFD silicon diode.(Ref. 8)

Fig. 7 Comparison of dose profiles between GAFCROMIC XR film and Monte Carlo calculations. Measurements were performed at a depth of 5 cm with circular collimators of 2, 5, 9 and 15 mm diameter for(a)4 and(b) ^a ^b 10 MV beams, SSD=95 cm.(Ref. 8)

Fig. 9 Comparison of relative output factors(a) measured with a diode detector(SFD) and a 0.125 cm³ ion chamber, and calculated (b) measured with the diode detector and calculated with silicon material of 1×1×1 mm³ a b voxel size, at 1.5 cm depth in water for circular collimator sizes of 5 to 60 mm at 80 cm SAD(Ref. 9)

Fig. 10 Comparison between dose profiles calculated with water and silicon detectors for 5 mm and 10 mm collimators at a 1.5 cm depth(80 cm SAD). The silicon detector size is 1×1×1 mm³ (Ref. 9)

2. 衝突カーマと吸収線量の比較

カーマKと衝突カーマ K_c ,および吸収線量Dの関係 をFig. 11に示す¹⁰⁾. AI物質中において 6MeV光子の平 行ビームで計算されている.ここで, $K \ge K_c$ は次式で 表される.

$$K = \Psi \frac{\mu_{\rm tr}}{\rho} \qquad (1)$$

$$K_{\rm c} = \Psi \frac{\mu_{\rm en}}{\rho} = \Psi \frac{\mu_{\rm tr}(1-g)}{\rho}$$
(2)

 Ψ は光子のエネルギーフルエンス, $\mu_{tt}/\rho \ge \mu_{en}/\rho$ は質量 エネルギー転移係数と質量エネルギー吸収係数,gは 荷電粒子(二次電子)による制動放射線の割合である. $K_c \ge D$ はbuild-up領域を過ぎると過渡電子平衡状態に なり,次の関係で表される.

$$D = \beta K_{\rm c} = \beta \Psi \frac{\mu_{\rm en}}{\rho} \qquad \dots \qquad (3)$$

βは吸収線量と衝突カーマの比で, $\beta \approx 1 + \mu' \overline{x}$ で表される. β は%Coy線で1.005である. μ' は光子の実効線減弱係数, \overline{x} は電子の平均飛程 $1/\mu_{el}$:電子の実効線減弱係数の逆数)である.上記の式からFig. 11の過渡電子平衡領域における $K > K_c$, $D > K_c$ の関係が理解できる.

小照射野では側方電子平衡が成り立たないためFig. 11に示す K_c とDの過渡電子平衡状態が崩れる.Fig. 12 は,それぞれ4MV-X線におけるコリメータサイズ 9mm ϕ と15mm ϕ の水中でのDと K_c の関係を示す.同様 に,Fig. 13は深さ5cmにおけるDと K_c のプロファイル である.Dと K_c は,1項でシミュレーションしたphase

Fig. 11 Kerma, collision kerma and absorbed dose calculated as a function of depth in aluminum for 6 MeV parallel photon beams.

space fileを用いてDOSRZnrcコードで計算した.Fig. 12とFig. 13から 9mm ϕ では $D < K_c$ で側方電子平衡が成 立しないが,15mm ϕ ではほぼ成立することが分か る.Fig. 14とFig. 15は10MV-X線について示す. 10MV-X線では30mm ϕ でほぼ側方電子平衡が成立す る.Fig. 13とFig. 15のプロファイルにおいて照射野端 では, $D \geq K_c$ の分布の違いがよく分かる.10MVでは 4MVに比べ照射野端における線量勾配が緩やかで, 側方非電子平衡による $D \geq K_c$ の差が大きい.

Fig. 16は基準照射野10×10cm²と各コリメータサイ ズの β 値を示す、4MVにおける過渡電子平衡での β の 平均値は、それぞれ9、15mm ϕ 、10×10cm²で0.986、 1.004、1.006であり[Fig. 16(a)]、照射野10×10cm²の 値は⁶⁰Coy線の1.005とほぼ一致する、一方、10MVで は、それぞれ9、15、20、30mm ϕ 、10×10cm²で 0.883、0.961、0.984、1.005、1.011であり[Fig. 16 (b)]、照射野10×10cm²の β 値は4MVに比べて大き い.

Fig. 12 Absorbed dose and collision kerma calculated as a function of depth in water for 9 mm and 15 mm circular collimators at 4 MV photon beams.

Fig. 13 Profiles of absorbed dose and collision kerma calculated at a 5 cm depth in water for 9 mm and 15 mm circular collimators at 4 MV photon beams.

Fig. 14 Absorbed dose and collision kerma calculated as a function of depth in water for 15 mm and 30 mm circular collimators at 10 MV photon beams.

Fig. 15 Profiles of absorbed dose and collision kerma calculated at a 5 cm depth in water for 15 mm and 30 mm circular collimators at 10 MV photon beams.

Fig. 16 β values of small fields and a 10×10 cm² field for 4 MV and 10 MV photon beams.

3.光子・電子のエネルギースペクトルの変化

ここでは,基準照射野10×10cm²と小照射野(4MV: ギースペクトルと平均エネルギーの比較を示す.水フ ァントム表面と任意の深さにおける光子・電子のエネ ルギースペクトルは,1項で計算したphase space file を用いて,それぞれBEAMDP¹¹)とFLURZnrcコード²⁾ で計算した. Fig. 17は水ファントム表面での4MV-X線 と10MV-X線の照射野の違いによる光子エネルギース ペクトルの比較である.照射野中心領域でのエネルギ ースペクトルはほとんど差がない.一方,水ファント ム1cm(4MV), 2.5cm(10MV), 5cm, 10cm, 20cmの 深さにおける光子エネルギースペクトルは照射野の違 いによって変化する(Fig. 18, 19). 小照射野では基準 照射野に比べ高エネルギー側へシフト(平均光子エネ ルギーが増加)し,この傾向は深さが増加するほど大 きくなる.これに対し,光子と水の相互作用で生じる 電子線のエネルギースペクトルは, Fig. 20とFig. 21に 示すように照射野および深さによってほとんど変化な く,小照射野における平均電子エネルギーの増加はわ ずかである.

Fig. 22とFig. 23は,水ファントム内での照射野の違 いによる平均光子エネルギーと平均電子エネルギーを 4MVと10MV-X線について示す.小照射野では基準照 射野に比べ光子エネルギーは増加するが,電子エネル ギーの増加はわずかである.また,10MVでは4MVに 比べて小照射野で光子と電子エネルギーの増加が大きい.

4 . 水/空気の平均制限質量衝突阻止能比(SPR)の 変化

 量衝突阻止能比SPRをphase space fileを用いて SPRRZnrcコード²⁾で計算した.使用したパラメータ は,AE=ECUT=0.521MeV,AP=PCUT=0.01MeVであ る.SPRRZnrcにおけるSPRの計算には,次式のSpencer-Attixの理論^{12,13}が用いられている.

$$\left(\frac{\overline{L}}{\rho}\right)_{\mathrm{air}}^{w} = \frac{\int_{\Delta}^{E_{\mathrm{max}}} [\boldsymbol{\Phi}_{E}^{t}(E)]_{w} [L(E,\Delta)/\rho]_{w} dE + [\boldsymbol{\Phi}_{E}(\Delta)]_{w} [S(\Delta)/\rho]_{w} \Delta}{\int_{\Delta}^{E_{\mathrm{max}}} [\boldsymbol{\Phi}_{E}^{t}(E)]_{w} [L(E,\Delta)/\rho]_{\mathrm{air}} dE + [\boldsymbol{\Phi}_{E}(\Delta)]_{w} [S(\Delta)/\rho]_{\mathrm{air}} \Delta}$$

a b

ここで,エネルギーEは媒質から空洞に入射する全電 子(微分)スペクトル(primary+ δ electrons)で,Eは Δ (cut-off energy)より大きく,E> Δ で電子平衡が成立 すると仮定している. Δ に相当する電子飛程は空洞の 大きさに相当する.円筒形電離箱6mm ϕ では Δ =10keV である.[$\Phi_{4}(\Delta)$][$\Delta \gamma$]]は $E<\Delta$ に低下する全(微分) 電子フルエンス(electrons/g)である.[$\Phi_{4}(\Delta)$]] $\Delta \gamma$] $\Delta \gamma$] はtrack-ends¹³による空洞へのエネルギー付与であ る.(L/ρ 」は水/空気の制限質量衝突阻止能比,(S/ρ 」は 水/空気の非制限質量衝突阻止能比である.

Fig. 24は計算された 4MVと10MV-X線における小 照射野でのSPRの変化を示す.小照射野のSPRは,基 準照射野に比べて低下するが1%以内である.また, 10MVが4MVに比べてSPRの低下がやや大きい.これ は,3項で示した基準照射野に対する小照射野の平均 電子エネルギーの緩やかな増加(Fig. 22,23)と良い相 関関係にある.すなわち,小照射野と深さにおける SPRの低下は,水ファントム中の平均光子エネルギー の増加よりむしろ平均電子エネルギーの緩やかな増加 を表している.

Fig. 17 Comparison of photon fluence spectra between a small field and a 10×10 cm² field at phantom surface for 4 MV and 10 MV photon beams, SSD=100 cm.

Fig. 18 Comparison of photon fluence spectra between a 9 mm circular collimator and a 10×10 cm² field at depths of 1, 5, 10, and 20 cm in water for 4 MV photon beams, SSD=100 cm.

Fig. 19 Comparison of photon fluence spectra between a 15 mm circular collimator and a 10×10 cm² field for at depths of 2.5, 5, 10, and 20 cm in water for 10 MV photon beams, SSD=100 cm.

Fig. 20 Comparison of electron fluence spectra between a 9 mm circular collimator and a 10×10 cm² field at depths of 1, 5, 10, and 20 cm in water for 4 MV photon beams, SSD=100 cm.

Fig. 21 Comparison of electron fluence spectra between a 15 mm circular collimator and a 10×10 cm² field at depths of 2.5, 5, 10, and 20 cm in water for 10 MV photon beams, SSD=100 cm.

Fig. 22 Comparison of photon and electron mean energies between a 9 mm circular collimator and a 10×10 cm² field as a function of depth in water for 4 MV photon beams, SSD=100 cm.

5.結論

モンテカルロ計算による小照射野光子ビームの線量 評価について次のような結果を得た.

(1) モンテカルロ計算は小照射野のビームデータの検 証に有用である.

(2)小照射野の線量測定においては側方非電子平衡を 十分考慮する必要がある.

(3)小照射野の光子エネルギースペクトルは,基準照 射野10×10cm²に比べて高エネルギー側にシフトする が,電子線のエネルギースペクトルの変化(平均電子 エネルギーの増加)はわずかである.したがって,小 照射野における平均制限質量衝突阻止能比は,基準照 射野10×10cm²に比べて1%以内の低下である.

謝辞

Varian Clinac 2100C加速器の詳細なヘッド構造をご 提供いただいたVarian Medical Systemsに感謝いたし ます.また,測定データは熊本大学医学部附属病院で 取得したものであり,ご協力いただいた中央放射線部 副技師長・守部伸幸氏に深く感謝いたします.

Fig. 24 Comparison of calculated Spencer-Attix water-toair stopping-power ratios between a small field and a 10×10 cm² field as a function of depth for 4 MV and 10 MV photon beams, SSD=100 cm.

1410

参考文献

- 1)Kawrakow I, Mainegra-Hing E, and Rogers DWO: EGSnrcMP: the multi-platform environment for EGSnrc. NRCC Report PIRS-877,(2004).
- 2)Rogers DW, Kawrakow I, Seuntjens JP, et al.: NRC User Codes for EGSnrc, NRCC Report PIRS-702 revB)(2005).
- 3)Rogers DW, Faddegon BA, Ding GX, et al.: BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys, 22(5) 503-524, (1995)
- 4)Rogers DW, Walters B, and Kawrakow I: BEAMnrc Users Manual. NRCC Report PIRS-509(A)revK.(2005)
- 5)Walters B, Kawrakow I, and Rogers DWO: DOSXYZnrc Users Manual. NRCC Report PIRS-794revB<u>(</u> 2005)
- 6 Sheikh-Bagheri D, and Rogers DW: Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters. Med Phys, 29(3), 379-390, 2002)
- 7) 荒木不次男: 医用加速器 Varian Clinac 2100Cのモンテカル ロシミュレーション - 4 MVと10 MV-X線の線量分布,エ ネルギースペクトル,角度分布,フルエンス分布,平均エ

ネルギー分布の分析 - .日放腫会誌,17(2),53-63, (2005).

- 8) 荒木不次男, 守部伸幸:モンテカルロ計算による極小照射 野の線量評価.医用標準線量,10(1),35-42,(2005).
- 9)Araki F: Monte Carlo study of a Cyberknife stereotactic radiosurgery system. Med Phys, 33(8) 2955-2963, 2006)
- 10)平山英夫:空気カーマ,空気衝突カーマ,空気吸収線量, 照射線量と実効線量.日本原子力学会誌,43(5),427-432,(2001)
- 11)Ma CM, and Rogers DW: BEAMDP users manual. NRCC Report PIRS-509(C)revA(1999).
- 12)ICRU, International Commission on Radiation Unit and Measurement: Radiation Dosimetry: Electron Beams with Energies Between 1 and 50 MeV, ICRU Report No. 35, Nuclear Technology Publishing (1984)
- 13)Nahum AE: Water/air mass stopping power ratios for megavoltage photon and electron beams. Phys Med Biol, 23 (1), 24-38, (1978).