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A perturbative expression for the self diffusion coefficient is derived by considering that the particles are executing anharmonic
vibrations around the sites with local potential minima and jump to neighbor sites after a certain waiting time. The derived
expression is a natural extension of the expression obtained by Zwanzig that assumes harmonic oscillations. The relation between
the low frequency oscillation and the deviation from the harmonic behavior is also shown.

1. Introduction

The dynamics of atoms in solids and liquids have been
studied for many years. It is well known that the atomic
transport properties in materials are described in terms of the
velocity autocorrelation function (VACF). The VACF carries
the information on the many body interactions of the system.
Therefore, its calculation is not straightforward. Usually, the
VACF is evaluated numerically with the help of computers.
However, for the understanding of the physical essence of
atomic transport properties, it is very useful if we have at
hand an analytical expression for the VACF or related quan-
tity such as the self diffusion coefficient. In the past, some
works have been performed along this spirit [1–3]. Among
these, the model proposed by Zwanzig is well known [1]. It
has been widely used in the literature [4–6] and extended [7].
To describe the dynamics of ions within the materials, the
anharmonic effect is also an important factor. For instance,
the mobile ion in superionic conductors execute its motion
in an anharmonic potential [8]. Therefore, the understand-
ing of the effect of anharmonicity on the atomic transport
is directly connected with the understanding of superionic
behavior. Visco and Sen discussed the relation between the
anharmonic oscillation effect and the normalized VACF
[9]. The effect of anharmonicity on the diffusion in glass
forming binary Lennard-Jones systems was discussed by
Bordat et al. using molecular dynamics simulations [10].

In this study, we modified the assumption used by Zwanzig
by incorporating the effect of the anharmonicity and derive a
new perturbative expression for the self diffusion coefficient.

2. Theory

To describe the effect of anharmonicity, a modified version
of the Zwanzig model for the self diffusion coefficient is used.
The model is based on the following assumptions.

(1) The particles that form the liquid are executing
anharmonic vibrations around the positions where
the potential is minima. A fixed frequency ω charac-
terizes adequately the anharmonic oscillations.

(2) When the particle diffuses, it jumps in a very short
time to a new position which is almost equivalent to
the old position. The waiting time distribution for the
diffusion is given by exp(−t/τ), where τ is the lifetime
that reflects the interruption of the normal mode [1].

(3) After the jump, the particle loses its memory.

In our calculation, the effect of the anharmonicity is
incorporated through the magnitude of the anharmonicity
f . It causes the deviation from the harmonic oscillation and
gives a new expression for the lifetime τ.

To discuss the transport property, it is necessary at first
to derive the VACF of a particle in an anharmonic potential.
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The Hamiltonian for a particle with mass m that executes
anharmonic oscillations is given by

H = p2

2m
+

1
2
mω2

0x
2 − 1

4
mf x4. (1)

Here, p is the particle momentum, ω0 is the harmonic
oscillator frequency as in the Zwanzig model, f is a positive
constant that gives the magnitude of the anharmonicity, and
x is the displacement of the particle. The equation of motion
obtained from the Hamiltonian is

d2x

dt2
+ ω2

0x − f x3 = 0. (2)

By solving the equation, we obtain the following expression
[9, 11, 12]
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where a and bn are constants. The outline of the derivation is
given in the appendix. At this point, it is interesting to note
that the expression given by (4) may have connection with
the low energy excitation and the high anharmonic behavior
that some materials exhibit [13–15]. By using (3) and (4), the
VACF of a particle in an anharmonic potential is written as
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Consider a system that consists of N atoms with mass
m. Under the assumptions that the oscillatory component
of the VACF is described by (5) and that the waiting time
distribution for the particle jump is accounted for by intro-
ducing the factor exp(−t/τ), the following expression for the
VACF of a diffusing particle is obtained. This expression is a
new expression, which reduces to the expression derived by
Zwanzig in the case where f = 0.

C(t) = 1
N

N∑

i=1

〈
pi(t) · pi(0)

〉
〈
p2
i (0)

〉

= cos

[(
ω0 − 3 f a2

8ω0

)
t

]
exp

(
− t

τ

)
.

(6)

In the derivation, only the leading term of the expansion
in (3) was retained. The accuracy of the expression can be
improved by considering the higher terms.

By using (6), we obtain the following expression for the
self diffusion coefficient D through the Green-Kubo formula

D = kBT

m
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In particular, if f � 1, we have

D = kBT
m
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)
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The first term of (8) is the usual expression used in many
works [1, 4, 5] and arises from the harmonic contributions.
The second term of (8) is the correction that arises from the
contribution of the anharmonicity.

From the Hamiltonian of (1), the maximum value of
the potential is mω4

0/4 f . This potential maxima corresponds
to the activation energy. On the other hand, τ−1 gives the
jumping frequency of a hopping particle. The height of
potential and τ−1 is usually related as

1
τ
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)
, (9)

where A is a constant. By inserting this expression into (8),
we obtain
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At low temperature, (10) becomes

D = kBT
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We can note that this expression generalizes the harmonic
expression derived by Zwanzig. The anharmonic contri-
bution is expressed by the second term that contains the
magnitude of the anharmonicity f .

3. Conclusion

A perturbative expression for the self diffusion coefficient
that incorporates the anharmonicity of the atomic vibration
has been derived. It is shown that the self diffusion coefficient
increases with the magnitude of the anharminicity. In other
words, the increase of the anharmonicity results in the
decrease of the activation energy. This finding could have
implications in diverse topics related to atomic transport,
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such as in cases where the interatomic potential is soft or in
the cases where the material is disordered. In particular, it
should be noted that our model catches the essence of ion
transport in superionic conductors. For instance, the derived
expression shows clearly that the low frequency oscillation is
related to the deviations from the harmonic behavior. The
low frequency oscillation is one of the phenomena observed
in many superionic conductors.

Appendix

To obtain the frequency ω of a particle in an anharmonic
potential we must solve the following equation:

d2x

dt2
+ ω2

0x − f x3 = 0. (A.1)

The formal solution of this equation is given by [11, 12]

x = a · sn(Ω(t − t0), k), (A.2)

where a and t0 are constants, sn(. . . , . . .) is an elliptic
function, and
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The elliptic function given in (A.2) is a periodic function of
Ω(t − t0) and has a 1/4 period given by
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By expanding (A.4) in terms of k we obtain
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Therefore, the adimensional period of (A.2) becomes Ω(tp−
t0) = 4K(k), where tp is a constant that can be chosen in
such a way that tp − t0 is the period. Thus, the characteristic
frequency is given as
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