

緒言

日本医学物理学会・測定委員会は,2002年に新しい 吸収線量測定プロトコルとして,「外部放射線治療に おける吸収線量の標準測定法(標準測定法 01(JSMP-01))) を刊行した.これは標準測定法86(JARP-86))を 大幅に改訂したものであり,国際原子力機関International Atomic Energy Agent(IAEA)Technical Report Series No.39& TRS-398 %に準拠している. JARP-86 との大きな相違は,新しくコバルト吸収線量校正定数 N^{Co}が導入された点である、このほかに,乾燥空気に 対するWair/e値の採用,X線および電子線における線質 表示の変更,質量衝突阻止能比などの物理定数の見直 しが行われた.しかしながら,わが国においてはN^{Co} の国家標準の供給が未だ確立されておらず,当分の間 は暫定的にコバルト照射線量校正定数N。からN_{Dw}を計 算しなければならない.したがって,基本的には JARP-86と同様,照射線量から吸収線量への変換に必 要なビルドアップキャップの物理的補正係数や質量衝 突阻止能比などの多くの物理データの不確定度を伴っ ている.

JSMP-01における円筒形電離箱の吸収線量測定は, 計算したN^{Co}_{Dw}を使用する以外は基本的にTRS-398に準 拠しており,各電離箱に対する補正係数の算出法につ いても同様である.平行平板形電離箱については, TRS-398と同様に電子線の深部量百分率PDDの測定, 特に線量半価深R₅₀が4cm未満の吸収線量測定に推奨 されている.その校正方法は,JSMP-01ではコバルト 照射線量校正が推奨されており,電子線による比較校 正については記述されていない.一方,米国医学物理 学会American Association of Physicists in Medicine (AAPM)Task Group 51(TG-51))とTRS-398では、 N_{Dw}^{Co} を持ったファーマ型電離箱との高エネルギー電子線による比較校正が第一に推奨されている.これは、平行平板形電離箱のコバルト吸収線量校正における擾乱補正係数 P_{wall} の不確定度が大きいためである^{5~7)}.また、平行平板形電離箱では円筒形電離箱に比べて構造が複雑で、同じ種類の電離箱でもシリアル番号の違いで必ずしも同じ P_{wall} を示さないことがある^{5~7)}.

本研究では,National Research Council Canada (NRCC)での線量計校正によって国際的に線量トレー サビリティを持った九州地区センターのJARP線量計 を基準線量計とし⁸⁾,壁材の異なるファーマ型電離箱 についてJSMP-01に従って高エネルギー光子および電 子線における校正点吸収線量を評価した.また,市販 されている7種類12個の平行平板形電離箱について, JSMP-01に従って⁶⁰Coy線および電子線における校正 点吸収線量を評価した.さらに,JSMP-01で与えられ ている平行平板形電離箱の補正係数(*k*att*k*mと*P*wall)の妥 当性について検討した.

1.方法

1-1 円筒形電離箱の校正点吸収線量の評価

本研究において使用した種々のファーマ型電離箱の 一覧と、それらの幾何学的寸法や材質をTable 1に示 す.最初に、九州地区センターのJARP線量計を用い て、各ファーマ型電離箱のコバルト照射線量校正を行 った.次に、JSMP-01に従って各電離箱の校正点吸収 線量を⁶⁰Coy線、4MVと10MV-X線、12MeVと18MeV

	Wall		Buildu	Buildup cap		Cavity dimensions		
Chamber type	Material	Thickness (g cm ⁻²)	Material	Thickness (g cm ⁻²)	Length (mm)	Radius (mm)	electrode material	Waterproof
C 110(JARP)	PMMA	0.059	PMMA	0.472	22.0	3.0	Aluminium	Ν
PTW 30001	PMMA	0.045	PMMA	0.541	23.0	3.1	Aluminium	Ν
PTW 30013	PMMA	0.057	PMMA	0.541	23.0	3.1	Aluminium	Y
PTW 30002	Graphite	0.079	PMMA	0.541	23.0	3.1	Graphite	Ν
PTW 30004	Graphite	0.079	PMMA	0.541	23.0	3.1	Aluminium	Ν
NE 2505/3, 3B	Nylon	0.041	PMMA	0.551	24.0	3.2	Aluminium	Ν
Scdx-Wellhöfer FC65P	Delrin	0.057	Delrin	0.483	23.1	3.1	Aluminium	Y
Exradin A12	C-552	0.088	C-552	0.493	24.2	3.1	C-552	Y

Table 1 Physical characteristics of Farmer-type chambers.

電子線の各線質で評価した.また,各線質における JSMP-01とJARP-86の線量比較も行った.

1-1-1 ⁶⁰Coγ線による照射線量校正

各電離箱のコバルト照射線量校正に使用した基準線 量計は,九州地区センターの応用技研のAE-132電位 計(S/N:1102009)とC-110電離箱(S/N:607)の組み合 わせである.本研究ではJARP線量計と呼ぶ.JARP線 量計は,放射線医学総合研究所の二次標準との過去8 年間の相互比較校正において,0.17%(1 σ)の精度で維 持されている.また,NRCCとの相互比較において, N_cはNRCCに対して0.9989,JSMP-01に従って計算し たN^{Co}_{Dw}は1.0005でよく一致している⁸⁾.

コバルト照射線量校正において,各電離箱は幾何学的中心が測定点に一致するように配置した.各電離箱の校正は,精度を高めるため日を変えて計3回行った.また,測定の効率と装置の時間的な安定性を高めるため,2台の電位計DOSE1 DOSEMETER (Scanditronix/Wellhöfer,S/N:6858,8017)を用いて 各電離箱を交互に接続した.電位計と電離箱の組み合 わせはいつも一定にした.すべての測定は,極性効果 を補正するため±300Vの印加電圧で行った.使用し たコバルト装置は,国立病院機構熊本医療センターに 設置されている東芝RCR-120C1(111TBq,平成7年 11月現在)である.

1-1-2 光子線における校正点吸収線量の評価

各電離箱の校正点吸収線量は,⁶⁰Coy線ではJARP線 量計との比較,X線ではイオン再結合補正を行うため PTW 30013との比較から評価した.これは,JARP線 量計では印加電圧の切り替えができないためである. 使用したX線エネルギーは,九州大学病院の VarianClinac 21EX(Palo,Alto,CA)による4MVと 10MV-X線である.

⁶⁰Coy線では十分な線量率(約0.3Gy/min)を確保する ために校正点を水ファントムの深さ5cmとし,4MV と10MV-X線では校正点を10cmとして,各電離箱の 幾何学的中心を校正点に一致させた.各電離箱(cyl)の基準線量計(ref, JARPもしくはPTW 30013)に対す る校正点吸収線量比 D(d_c) f^{yl}は次式から求めた.

ここで, M_{ϱ} は線質 ϱ に対する測定値で, $M_{raw}k_{TP}k_{pol}k_{s}k_{elec}$ からなる. M_{raw} は校正点での指示値補正を含まない値)である. k_{TP} は標準大気状態(22°C, 1atm)に対する温度・気圧補正係数である. k_{pol} は極性効果に対する補正係数, k_{s} はイオン再結合補正係数, k_{elec} は電位計に対する校正定数である. $k_{D,X}$ は $N_{D,\mu}^{Co}/N_{c}$ で表される校正定数比, k_{ϱ} は線質変換係数で, 60 Coy線では k_{ϱ} =1.0である. k_{ϱ} は主に電離箱線量計の壁材質に依存する.

⁶⁰Coy線では異なる日に3回,4MVと10MV-X線では 異なる日に2回測定した.測定条件は照射野 $10\times10cm^2$, 60Coy線では線源電離箱間距離 source-chamber distance, SCD $\beta0cm$ で約0.3Gy/min0.1分測定, 4MVと10MV-X線ではSCD=100cmでそれぞれ2.5Gy/min と4Gy/min0MU=100である.すべての測定は,極性効 果とイオン再結合(60Coy線では除く を補正するため ±300Vと-100Vの印加電圧で行った.測定は値が十分 に安定するまで繰り返し行った.水ファントムはWP34 (Scanditronix, Wellhöfer)を使用し,電離箱ごとに専用 ホルダーを作成した.PTW 30013とExradin A12電離箱 以外ではアクリル 1mm厚の防水鞘を使用した.

次に,各電離箱についてJSMP-01とJARP-86の校正 点における線量比を,次式から計算で求めた.

ここで,測定値*M*は両プロトコルで同じ値とした.*C*^λ は吸収線量変換係数,*A*。はコバルト校正時の電離箱壁

700

Table 2The water-to-air stopping power ratios according to JSMP-01 and JARP-86 and beam quality factors for photon
beams, and k_0 for selected Farmer-types chambers. The quality factors for 4 and 10 MV photons were obtained
from the Varian Clinac 21EX.

		(<u>L</u>	/ρ) ^w air				k _Q			
beam	TPR _{20,10}	JSMP-01	JARP-86	PTW 30001	PTW 30013	PTW 30002	PTW 30004	NE2505 /3,3B	FC65P	Exradin A12
⁶⁰ Co	0.578	1.1330	1.134	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4MV	0.619	1.1277	1.131	0.996	0.996	0.999	0.999	0.993	0.998	1.001
10	0.739	1.1033	1.117	0.980	0.980	0.984	0.986	0.974	0.982	0.987

Table 3 The electron beam parameters for a 15×15 cm² field. The water-to-air stopping power ratios at d_c and d_{max} for JSMP-01 and at d_{max} for JARP-86. The stopping power ratios for JSMP-01 were calculated by the equations defined by Burns et al.¹²

Electron	I _{max}	<i>d</i> _{max}	d _c	<i>I</i> ₅₀	R ₅₀	Rp	$[(\overline{L}/\rho)_{\text{air}}^{W}]_{H_{c}}$	[(<i>L</i> /ρ)	\mathcal{V}_{max}
beam	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	JSMP-01	JSMP-01	JARP-86
6MeV	1.3	1.4	1.35	2.41	2.42	2.98	1.0737	1.0737	1.0830
12	2.6	3.0	2.99	5.06	5.15	6.15	1.0421	1.0421	1.0438
18	1.5	2.7	4.50	7.50	7.66	9.22	1.0233	0.9946	0.9908

とビルドアップキャップの吸収・散乱の補正係数とビ ルドアップキャップの吸収線量と衝突カーマの比を含 む. A_w はコバルト校正時の電離箱壁とビルドアップキ ャップの空気不等価性に対する補正係数である^{9,10)}. \bar{W}_{air}/e は通常の湿度を持った空気の単位電荷当たりに 消費される平均エネルギーで,33.73J/Cである. P_d と P_f は測定点における変位補正係数と電子フルエンス擾 乱補正係数である. f_w は水と空気の実効質量衝突阻止 能比である. A_c , A_w , P_d ,1/ f_w は,それぞれJSMP-01 の k_{att} , k_m , P_{dis} ,($\bar{L}/\rho \sum_{ir}^w P_{wall}$ に相当する.また, C_λ は k_{D,xk_Q} に相当する. A_c はJARP-86の表A3.1から計算し た.FC65Pの A_w 計算のためのデルリンに対する質量衝 突阻止能比と質量エネルギー吸収係数はGastorfら¹¹の データを用いた.

Table 2にJSMP-01とJARP-86の水/空気の質量衝突 阻止能比,4MVと10MV-X線の線質指標である組織フ ァントム線量比*TPR*_{20,10},各ファーマ型電離箱に対す るk₂を示す.

1-1-3 電子線における校正点吸収線量の評価

電子線の校正点吸収線量においても,極性効果とイ オン再結合を補正するためPTW 30013との比較から評 価した.使用した電子線エネルギーは,九州大学病院 のVarian Clinac21EX(Palo, Alto, CA)による12MeV と18MeV電子線である.各電子線エネルギーのパラ メータ(電離量最大深*I*_{max},線量最大深*d*_{max},校正深 *d*_c,電離量半価深*I*₅₀,線量半価深*R*₅₀,実用飛程*R*_p), およびJSMP-01とJARP-86の水/空気の質量衝突阻止能 比をTable 3に示す. 電子線測定における校正深 *d*。)は, JSMP-01に従っ て電離箱の幾何学的中心を 0.5*r*_{cy}(*r*_{cy1}は電離箱の空洞 半径)線源側に変位して, *d*_c=0.6*R*₅₀-0.1(cm)に一致す るように配置した.各電離箱の基準線量計(PTW 30013)に対する校正点吸収線量比は,光子線と同様に 式(1)から求めた.測定は異なる日に2回行った.測 定条件は照射野15×15cm², SCD=100cmで4Gy/minの MU=100である.すべての測定は,極性効果とイオン 再結合を補正するため±300Vと-100Vの印加電圧で行 った.

電子線の場合は,各電離箱でのJSMP-01とJARP-86 の線量比は線量最大深d_{max}で求めた.JSMP-01におけ るd_cでの線量は,PDD(d_c)からd_{max}の線量に変換して 次式で比較した.

$$[D_{w}^{Q}(d_{\max})]_{86}^{01} = \frac{M_{d_{c}}N_{c}k_{D,X}k_{Q}/PDD(d_{c})}{M_{d_{\max}}N_{c}[C_{E}]_{d_{\max}}}$$
$$= \frac{M_{d_{c}}k_{D,X}k_{Q}/PDD(d_{c})}{(\overline{W}_{air}/e)A_{c}A_{w}[MP_{f}/f_{w}]_{d_{\max}}} \quad \dots \dots (3)$$

ここで, *C_E*はJARP-86の線量最大深における吸収線量 変換係数である. *P_{wall}=1.0*, *P_{dis}とP_dは変位法により* 1.0とすると, JSMP-01における*PDD*(*d*,)は次式で求め られる.

ここで,JSMP-01で用いられる $d_c \geq d_{max}$ での質量衝突 阻止能比 L/ρ , L/ρ

Table 4 values of kalor ramer-type chambers. They were obtained from JSMP-01.								
Electron	RED				k _Q			
beam	(cm)	PTW 30001	PTW 30013	PTW 30002	PTW 30004	NE2505 /3,3B	FC65P	Exradin A12
12 MeV	5.15	0.906	0.906	0.911	0.916	0.899	0.910	0.917
18	7.66	0.899	0.899	0.904	0.909	0.892	0.903	0.909

Table 4. Values of ke for Farmer type chambers. They were obtained from ISMP 01

Table 5 Physical characteristics of plane-parallel chambers.

	Entrance wi	ndow	Body		Gaurd ring			
Chamber type	Material	Thickness (mg cm ⁻²)	material	Material	Diameter (mm)	Separation (mm)	width (mm)	
NACP02 ^a	Mylar foil and graphite	104	Graphite and rexolite	Graphited rexolite	10	2	3	
Markus ^b PTW 23343	Graphited polyethylene	102 (incl. cap)	PMMA	Graphited polystyrene	5.3	2	0.2	
Advanced Markus ^b PTW 34045	Graphited polyethylene	102 (incl. cap)	PMMA	Graphited polystyrene	5.0	1	2	
Exradin Markus-type A10	Kapton film	118 (incl. cap)	C-552	C-552	5.4	2	4.14	
Roos ^b PTW 34001	PMMA	118	PMMA	Graphited PMMA	16	2	4	
PPC40 ^c PTW 34001	PMMA	118	PMMA	Graphited PMMA	16	2	4	
Exradin P11	Polystrene equiv. plastic D400	104	Polystrene equiv. plastic D400	Polystrene equiv. plastic D400	20	2	5.1	

^aScanditronix, Dosetek(Calcam).

^bPhysikalisch Technische Werksttäte.

^cScdx-Wellhöfer

86の線量比は,式(3)と(4)から以下のように計算でき る.

ここで,測定値Mは両プロトコルで同じ値とした. JSMP-01 $\mathcal{O}d_{max} \ge d_c \ cav \ge JARP-86 \mathcal{O}P_f \ d_r$ 両プロトコルに従って平均エネルギー *Ē* から評価し た.

Table 4に12MeVと18MeV電子線に対する各ファー マ型電離箱の k_Q を示す.

1-2 平行平板形電離箱の校正点吸収線量の評価

本研究において使用した平行平板形電離箱の一覧 を,幾何学的寸法や材質を含めてそれぞれTable5に示 す. 平行平板形電離箱のScdx-Wellhöfer PPC40は基本 的にPTW Roosと同じ構造と材質である.最初に,九 州地区センターのJARP線量計を用いてExradin A10を

除く平行平板形電離箱のコバルト照射線量校正を行っ た.次に,JSMP-01に従ってコバルト照射線量校正定 数N。から各電離箱の校正点吸収線量を⁶⁰Coγ線, 12MeVと18MeV電子線の各線質で評価した.また, TG-51やTRS-398で推奨されている⁶⁰Coy線および電子 線を用いた基準線量計との比較校正から平行平板形電 離箱の校正定数を求めて電子線の校正点吸収線量を評 価した.

1-2-1 ⁶⁰Coy線による照射線量校正

各平行平板形電離箱のコバルト照射線量校正は,円 筒形電離箱と同様に九州地区センターのJARP線量計 との相互比較で行った.各電離箱は幾何学的中心が測 定点に一致するように配置した.ビルドアップキャッ プの材質は, IAEA TRS-38113)で推奨されているよう に電離箱本体と同じ材質のものを用いた. Exradin A10 は電離箱本体と同材のC-552ビルドアップキャップ が入手できなかったので,照射線量校正において は除外した.各電離箱の校正は,あとで追加した Advanced MarkusとPPC40を除いて,精度を高めるた

め日を変えて計3回行った.Advanced Markusでは2回, PPC40では1回の校正であった.測定条件は,円筒形電離箱と同様な方法で行った.すべての測定は, 極性効果を補正するため±300Vの印加電圧で行った.

1-2-2 ⁶⁰Coy線における校正点吸収線量の評価

各平行平板形電離箱の校正点吸収線量は,JARP線 量計との比較から評価した.校正点を深さ5cmとし, 電離箱の空洞前壁を校正点に一致するように設定し た.各電離箱(pp)のJARP線量計(ref)に対する校正点 吸収線量比 D₄(d_c) f^p_e(は次式から求めた.

測定は, Advanced MarkusとPPC40を除いて異なる 日に3回行った.Advanced Markusでは2回, PPC40 では1回であった.測定条件は円筒形電離箱の測定と 同様である.すべての測定は,極性効果を補正するた め±300Vの印加電圧で行った.非防水電離箱の MarkusとAdvanced Markusでは0.9mm厚, Exradin A10 では1mm厚の専用の防水アクリルキャップを使用し た.

1-2-3 電子線における校正点吸収線量の評価

電子線の測定においては,極性効果とイオン再結合の補正を行うためPTW 30013線量計との比較から評価した.PTW 30013線量計は,⁶⁰Coy線による校正点吸収線量の比較においてJARP線量計と1.0002±0.18%の一致であった.使用した電子線エネルギーは,円筒形電離箱の測定と同様に九州大学病院のVarian Clinac 21EX(Palo, Alto, CA)による12MeVと18MeV電子線である.Table 3には1-2-4項で必要な 6MeV電子線についても示している.

電子線測定における校正深 d_c)は, JSMP-01に従っ て電離箱の空洞前壁を $d_c=0.6R_{50}-0.1$ (cm)に一致するように配置した.各電離箱の基準線量計(PTW 30013)に 対する校正点吸収線量比 $D_{ef}^{\alpha} d_c$) p_{ef}^{α} は次式から求めた.

測定は異なる日に2回行った.PPC40では1回であった.測定条件は円筒形電離箱の測定と同様で,すべての測定は極性効果とイオン再結合を補正するため ±300Vと-100Vの印加電圧で行った.

1-2-4 ⁶⁰Coγ線および電子線の比較校正による電子 線の校正点吸収線量

平行平板形電離箱の*N_{D,w}を⁶⁰Coγ線および18MeV*電 子線の比較校正からそれぞれ次式で求めた.

ここで,⁶⁰Coy線では1-2-2項の測定から式 8)によっ て[*N_{D,w}*]₀を求めた.同様に,電子線では1-2-3項の 18MeV電子線での測定から式 9)によって[*N_{D,w}*]_{8E}を 求めた.

次に, [*N_{D,w}*]₀と[*N_{D,w}*]₈からそれぞれ求めた電子線の吸収線量を, 1-2-3項で測定したPTW 30013基準線量計による線量と次式から比較した.

$$[D_w^Q(d_c)]_{\text{ref}}^{\text{pp}} = \frac{[N_{D,w}]_{18E}^{\text{pp}}[M(\overline{L}/\rho)_{\text{air}}^w P_{\text{cav}}]_Q^{\text{pp}}/[(\overline{L}/\rho)_{\text{air}}^w P_{\text{cav}}]_{18E}^{\text{pp}}}{[N_c k_{D,X}]^{\text{ref}}[M_Q k_Q]^{\text{ref}}}$$

.....(11)

式(10)の⁶⁰Coy線校正に基づく平行平板形と基準電離 箱との線量比較は12MeVと18MeV電子線で,式(11) の電子線校正に基づく線量比較は6MeVと12MeV電子 線でそれぞれ行った.6MeV電子線については,PTW 30013の代わりにRoos-No.1とRoos-No.2の平均線量に 対する比で表した.

2.結果

2-1 円筒形電離箱の校正点吸収線量の評価

2-1-1 ⁶⁰Coy線による照射線量校正

Table 6に各ファーマ型電離箱の N_c , $k_{D,x}$, $N_{D,v}^{Co}$ をそれ ぞれ示す. $k_{D,x}$ はJSMP-01に従って計算した.測定か ら得られた各電離箱の N_c は, 0.3%(1 σ)以内の精度で あった.

2-1-2 光子線における校正点吸収線量の評価

Fig. 1に⁶⁰Coy線,4MVと10MV-X線におけるファー マ型電離箱の校正点吸収線量の比較を示す.基準線量 計は,⁶⁰Coy線ではJARP線量計,4MVと10MVでは PTW 30013線量計である.⁶⁰Coy線の比較において, PTW 30013のJARP線量計に対する比は,1.0002±0.18 %で良い一致にあった.⁶⁰Coy線での各電離箱の測定 精度(3回測定)は0.2%(1*σ*)以内で,4MVと10MVで はNE 2505/3,3Bを除けば1回目と2回目の差は0.3 %以内であった.NE 2505/3,3Bでは,4MVと10MV における1回目と2回目で0.7%の差がみられた. PTW 30001はJARP線量計とPTW30013と同じアクリ ル壁材であり,すべての光子エネルギーでよく一致し た.グラファイト壁のPTW 30002とPTW 30004では, ⁶⁰Coy線でわずかな違いがみられるが,4MVと10MV

Table 6 The values of calibration coefficients for Farmer-type chambers. The exposure calibration coefficients were obtained by comparing to the JARP chamber. 'm.u. indicates meter units, and it is' R 'for C-110' JARP)and' C 'for other Farmer-type chambers.

Chamber type	Serial number	N _c Ckg⁻¹/m.u.	k _{D,X} Gy/Ckg⁻¹	N ^{Co} D,w Gy/m.u.
C-110(JARP)	607	2.722E-04±0.17%	37.02	1.006E-02
PTW 30001	1231	1.440E+06±0.08%	37.00	5.327E+07
PTW 30013	456	1.432E+06±0.15%	36.98	5.295E+07
PTW 30002	127	1.416E+06±0.30%	36.99	5.238E+07
PTW 30004	87	1.417E+06±0.13%	36.99	5.243E+07
NE 2505/3, 3B	4309	1.271E+06±0.25%	37.01	4.704E+07
Scdx-Wellhöfer FC65P	526	1.321E+06±0.27%	37.15	4.907E+07
Exradin A12	XA023333	1.272E+06±0.14%	37.30	4.745E+07

Fig. 1 Comparison in absorbed-dose to water between the JARP chamber (for 60 or PTW 30013 chamber (for 4 and 10 MV) and various Farmer-type chambers for photon beams according to JSMP-01.

C-552壁のExradin A12では,⁶⁰Coy線と4MVでやや高 い傾向にある.ナイロン壁のNE 2505/3,3Bでは, ⁶⁰Coy線と10MVで線量比の差が1.6%であった.

Table 7はJSMP-01とJARP-86の線量比を示す. ⁶⁰Coγ線と4MVではほぼ同じ値であり,FC65Pを除け ば1%弱の線量比の差である.10MVではJSMP-01と JARP-86はほぼ一致する.FC65Pは,いずれの光子エ ネルギーにおいても他の電離箱に比べ約0.7%高い. 2-1-3 電子線における校正点吸収線量の評価

Fig. 2は, 12MeVと18MeV電子線での各ファーマ型 電離箱のPTW 30013に対する校正点吸収線量の比較を 示す.2回の繰り返し測定精度は,NE 2503/3,3B (0.8%差)を除けば 0.3%以内であった.FC65Pでは PTW 30013と約1%の相違であるが,他の電離箱では 0.6%以内で一致する.NE 2505/3,3Bを除けば, ⁶⁰Coy線の結果と同様な傾向にある.

Table 8はJSMP-01とJARP-86の線量比較を示す.

Table 7	Comparison in absorbed-dose to water between
	JSMP-01 and JARP-86 for photon beams.

Chamber type	⁶⁰ Co	4 MV	10 MV
<i>TPR</i> _{20,10}	0.578	0.619	0.739
C 110(JARP)	1.008	1.007	0.999
PTW 30001	1.009	1.006	0.998
PTW 30013	1.008	1.006	0.998
PTW 30002	1.006	1.006	0.999
PTW 30004	1.006	1.007	1.001
NE 2505/3, 3B	1.007	1.004	0.998
Scdx-Wellhöfer FC65P	1.015	1.013	1.005
Exradin A12	1.009	1.008	0.998

18MeVで2.0~2.8%, 12MeVでは1.3~2.1%, JSMP-01がJARP-86に比べて高い.PTW30004とFC65Pで は,他の電離箱に比べ0.5~0.8%高い.

2-2 平行平板形電離箱の校正点吸収線量の評価 2-2-1 ⁶⁰Coy線による照射線量校正

Table 9に各平行平板形電離箱の N_c , $k_{D,X}$, $N_{D,W}^{Co}$ をそれ ぞれ示す. $k_{D,X}$ はJSMP-01に従って計算したが, JSMP-01に記載されていないAdvanced Markusは, Mainegra-Hingら¹⁴の⁶⁰Coy線に対する補正係数 $k_{att}k_m$ と P_{wall} を, RoosとPPC40ではMainegra-Hingらの $k_{att}k_m$ を それぞれ用いて計算した.

測定から得られた各電離箱の*N*_cは,0.5%(1σ)以内 の精度であった.Advanced MarkusとPPC40はそれぞ れ2回と1回の校正結果を示している.

2-2-2 ⁶⁰Coγ線における校正点吸収線量の評価

Fig. 3に⁶⁰Coy線における平行平板形電離箱の校正点 吸収線量の比較を示す.誤差棒は標準偏差を示す. Advanced MarkusとPPC40はそれぞれ2回と1回の測 定結果である.Exradin P11ではJARP線量計とよく一 致する.平均的には1.006±0.29%でややJARP線量計

Fig. 2 Comparison in absorbed-dose to water between the PTW 30013 chamber and various Farmer-type chambers for electron beams according to JSMP-01.

Table 8	Comparison in absorbed-dose to water between
	JSMP-01 and JARP-86 for electron beams. JSMP-
	01 and JARP-86 were compared at <i>d</i> max.

Chamber type	12 MeV	18 MeV
<i>R</i> ₅₀ (cm)	5.15	7.66
PTW 30001	1.015	1.022
PTW 30013	1.015	1.022
PTW 30002	1.014	1.021
PTW 30004	1.020	1.026
NE 2505/3, 3B	1.013	1.020
Scdx-Wellhöfer FC65P	1.021	1.028
Exradin A12	1.014	1.021

 Table 9
 The values of calibration coefficients for plane-parallel chambers. The exposure calibration coefficients were obtained by comparing to the JARP chamber. 'm.u. indicates meter units and it is" C ".

Chambertyna	Carial number	Buildu	р сар	Nc	k _{D.X}	N ^{Co} Dw
Chamber type	Senai number	Material	Thickness	Ckg ⁻¹ /m.u.	Gy/Ckg ⁻¹	Gy/m.u.
NACP02-No.1	DFA0007608	Graphite	4.9 g/cm ²	4.261E+06±0.45%	38.43	1.637E+08
NACP02-No.2	DFA0006903	Graphite	4.9 g/cm ²	4.216E+06±0.08%	38.43	1.620E+08
Markus-No.1	2594	PMMA	5.1 g/cm ²	1.477E+07±0.35%	38.25	5.651E+08
Markus-No.2	3392	PMMA	5.1 g/cm ²	1.416E+07±0.36%	38.25	5.417E+08
Advanced Markus-No.1	143	PMMA	5.1 g/cm ²	3.774E+07	38.30	1.445E+09
Advanced Markus-No.2	144	PMMA	5.1 g/cm ²	3.789E+07	38.30	1.451E+09
Exradin A10	XC023061					
Roos-No.1	327	PMMA	3.3 g/cm ²	2.276E+06±0.19%	37.93	8.632E+07
Roos-No.2	424	PMMA	3.3 g/cm ²	2.224E+06±0.23%	37.93	8.435E+07
PPC40-No.1	324	PMMA	3.3 g/cm ²	2.354E+06	37.93	8.928E+07
PPC40-No.2	328	PMMA	3.3 g/cm ²	2.304E+06	37.93	8.739E+07
Exradin P11	XD023602	Polystrene	3.5 g/cm ²	1.386E+06±0.33%	38.12	5.284E+07

に比べて高いが,すべての平行平板形電離箱は1%以内で一致する.

2-2-3 電子線における校正点吸収線量の評価

Fig. 4は,12MeVと18MeV電子線での各平行平板形 電離箱のPTW 30013基準線量計に対する校正点吸収線 量の比較を示す.2回の繰り返し測定精度は0.5%以 内であった.PPC40では1回の測定結果である. 12MeVと18MeVにおける線量比は,それぞれ平均で 1.013±0.55%と1.012±0.53%である.平均的には約1 %の相違であるが,Markus-No.2とPPC40-No.1では約 2%の相違がある.

2-2-4 ⁶⁰Coγ線および電子線の比較校正による電子
 線の校正点吸収線量

⁶⁰Coy線と18MeV電子線を用いて, JARPあるいは

Fig. 3 Comparison in absorbed-dose to water between the JARP chamber and various plane-parallel chambers for a ⁶⁰Co beam according to JSMP-01.

Fig. 4 Comparison in absorbed-dose to water between the PTW 30013 chamber and various plane-parallel chambers for electron beams according to JSMP-01.

Fig. 5 Comparison in absorbed-dose to water between the PTW 30013 chamber and various plane-parallel chambers for electron beams. The absorbed-dose to water for the plane-parallel chambers were calculated from equation(10)using *N_{D,W}* with ⁶⁰Co beam cross-calibrations.

PTW 30013の基準線量計との比較校正から求めた平行 平板形電離箱の[*N_{D,w}*]₀と[*N_{D,w}*]_{8E}をTable 10に示す. 比較校正においては,1-2-2項と1-2-3項の測定結果を 利用した.

Fig. 5とFig. 6に, [*N_{D,w}*]_b と*N_{D,w}*]_{be}から求めた各電 離箱の電子線吸収線量と, PTW 30013線量計による線 量の比較を示す.[*N_{D,w}*]_bから計算した比較では, Exradin A10で約3%の違いがあるが,他の電離箱で はほとんど1%以内である.Exradin A10を除けば PTW 30013に対する線量比の平均値は,12MeVと 18MeVでそれぞれ1.006±0.55%と1.006±0.56%であ る.同様に, [*N_{D,w}*]_{be}から計算した比較では,12MeV ですべて0.5%以内であり, PTW 30013に対する線量 比の平均値は1.001±0.22%である.6MeVにおいて

Table 10 The absorbed-dose to water calibration coefficients determined by ⁶⁰Co and electron beam cross-calibrations for plane-parallel chambers. ' m.u. indicates meter units and it is 'C ".

Chamber type	[<i>N_{D,w}</i>] _{Co} Ckg ⁻¹ /m.u.	[<i>N_{D,w}</i>]₁ ₈ <i>E</i> Ckg ^{−1} /m.u.
NACP02-No.1	1.627E+08±0.31	1.441E+08
NACP02-No.2	1.606E+08±0.16	1.417E+08
Markus-No.1	5.623E+08±0.09	4.972E+08
Markus-No.2	5.381E+08±0.09	4.749E+08
Advanced Markus-No.1	1.434E+09	1.275E+09
Advanced Markus-No.2	1.440E+09	1.297E+09
Exradin A10	5.338E+08±0.08	4.872E+08
Roos-No.1	8.587E+07±0.23	7.654E+07
Roos-No.2	8.406E+07±0.15	7.450E+07
PPC40-No.1	8.839E+07	7.852E+07
PPC40-No.2	8.657E+07	7.714E+07
Exradin P11	5.286E+07±0.03	4.649E+07

Fig. 6 Comparison in absorbed-dose to water between the PTW 30013 chamber and various plane-parallel chambers for electron beams. The absorbed-dose to water for the plane-parallel chambers were calculated from equation(11) using *N*_{D,W} with electron beam cross-calibrations.

は, Roos-No.1とRoos-No.2の平均線量に対する比で 0.999±0.56%である.12MeVに比べて線量比の変動 は大きいが, Exradin A10を除けば1%以内である. 6MeVでの変動は,電離箱の位置合わせ誤差による線 量への影響が考えられる.

3.考察

3-1 円筒形電離箱の校正点吸収線量の評価

本研究では,JSMP-01によるファーマ型電離箱の校 正点吸収線量の評価を行った.Fig.1の光子線による JARPあるいはPTW 30013線量計との比較において, 壁材の異なるグラファイト,デルリン,C-552を持っ Table 11 Comparison of correction factors for the chamber wall and ⁶⁰Co buildup cap and various perturbation correction factors for photon beams according to JSMP-01 and JARP-86.

Photon	JARP-86			JSMP-01					
beam	Ac	A _w	P_{wall}	Pgr	k _{att}	<i>k</i> m	P_{wall}	P _{dis}	P _{cel}
JARP (C-110)									
⁶⁰ Co			1.001	0.987			1.002	0.988	0.9926
4 MV	0.992	0.980	1.000	0.989	0.991	0.981	1.002	0.988	0.9932
10			1.001	0.992			1.002	0.992	0.9943
PTW 30013									
⁶⁰ Co			1.001	0.987			1.001	0.988	0.9926
4 MV	0.990	0.980	1.000	0.989	0.991	0.981	1.001	0.988	0.9932
10			1.001	0.992			1.001	0.991	0.9943
PTW 30001									
⁶⁰ Co			1.001	0.987			1.002	0.988	0.9926
4 MV	0.991	0.980	1.000	0.989	0.991	0.981	1.002	0.988	0.9932
10			1.000	0.992			1.002	0.991	0.9943
PTW 30002									
⁶⁰ Co			0.997	0.987			0.991	0.988	1.0000
4 MV	0.990	0.987	0.997	0.989	0.990	0.992	0.995	0.988	1.0000
10			0.998	0.992			0.998	0.991	1.0000
PTW 30004									
⁶⁰ Co			0.997	0.987			0.991	0.988	0.9926
4 MV	0.990	0.987	0.997	0.989	0.990	0.992	0.994	0.988	0.9932
10			0.998	0.992			0.998	0.991	0.9943
NE 2005/3, 3B									
⁶⁰ Co			1.009	0.987			1.010	0.987	0.9926
4 MV	0.991	0.974	1.005	0.989	0.991	0.973	1.007	0.988	0.9932
10			1.002	0.992			1.004	0.991	0.9943
Scdx-Wellhöfer F	C65P								
⁶⁰ Co			0.997	0.987			0.997	0.988	0.9926
4 MV	0.991	0.982	0.997	0.989	0.991	0.989	0.999	0.988	0.9932
10			0.997	0.992			1.000	0.991	0.9943
Exradin A12									
⁶⁰ Co			0.987	0.987			0.984	0.988	1.0000
4 MV	0.991	1.000	0.990	0.989	0.991	1.006	0.989	0.988	1.0000
10			0.995	0.992			0.993	0.991	1.0000

たPTW 30002, PTW 30004, FC65P, Exradin A12で は光子エネルギー間で約0.5%の変動がみられた. Table 11に, JARP-86とJMSP-01の各補正係数の比較 を示す.JMSP-01において,アクリル壁に比べて他の 壁材では電離箱壁と水ファントムとの材質の相違によ る補正係数Pwall値が,光子エネルギーに依存している ことが分かる.したがって,各電離箱の光子エネルギ ー間の線量比の変動は,各光子エネルギーに対する Pwallの誤差によると考えられる.壁材がナイロンのNE 2505/3,3Bにおいては,⁶⁰Coy線と10MV-X線で1.6% の差(Fig.1)がみられる.4MVと10MVでは測定の再 現性(0.7%差)は良くないが,1.6%の相違は再現性の 不確定度に比べて大きく,壁材の異なる他の電離箱と 同様に光子エネルギー間のPwallの誤差が考えられる.

Fig. 7はJARP-86において同様に比較した結果を示 す.Fig. 1のJSMP-01と比較して注目すべき点は,

Fig. 7 Comparison in absorbed-dose to water between the JARP chamber (for ⁶⁰Co)or PTW 30013 chamber (for 4 and 10 MV)and various Farmer-type chambers for photon beams according to JARP-86.

FC65Pが基準線量計とよく一致していることである. JSMP-01では⁶⁰Coy線で0.8%高い.これは,Table 7の JSMP-01/JARP-86比において,FC65Pが他の電離箱に 比べ約0.7%高いのと一致する.すなわち,Table 8の JARP-86とJSMP-01の各補正係数の比較から, FC65Pでは他の電離箱に比べ $k_{n}(A_{w})$ が0.7%高いこと に起因している.Table 11におけるJARP-86の P_{wall} は,[$f_{n}(L/p \sum_{i}]^{1}$ から求めた.また,Table 7のJSMP-01/JARP-86比は,Table 11の各補正係数の比較と \bar{W}_{air}/e 値の違い(33.97/33.73=1.007)から説明され,光子エネ ルギーによる相違は,主に質量衝突阻止能比(Table 2) の違いによる.

Fig. 2の18MeVと12MeV電子線による比較結果は, Fig. 1の⁶⁰Coγ線の結果とよく似ている.18MeVにおい て,PTW 30004とFC65Pはそれぞれ0.6%と0.9%の 線量比の差がある.一般的な電子線の吸収線量測定プ ロトコル^{1-4,15-17)}では,壁材の違いによる擾乱はない と仮定され,P_{wall}は1.0としている.ここで,JSMP-01 の電子線の吸収線量をJARP-86の表記に従って表せば 次式のようになる.

ここで, $k_{cel} \geq P_{cel}$ は中心電極の補正係数である.各電 離箱の k_{at} (Table 11) $\geq P_{cav}$ は,JSMP-01/JARP-86比に おいてほぼ消去されるので,電子線でのPTW 30013 \geq 各電離箱の線量比として考えられる因子は,式(12) \geq Table 11から $k_m \geq k_{cel} \cdot P_{cel}$ の違いである. $k_{cel} \cdot P_{cel}$ は PTW 30002 \geq Exradin A12では1.0で,他の電離箱では 1.0054である¹⁾.結論としては,NE 2505/3,3Bを除 く各電離箱の線量比が,電子線 \geq^{60} Coy線(Fig.1 \geq Fig. 2)でよく一致しており,両線質における各電離箱の線 量比は k_m の誤差に起因していると考えられる.一方, 60 Coy線でのNE 2505/3,3Bの線量比は,電子線でよ く一致していることから P_{wall} の誤差が考えられる.

Fig. 8は, Fig. 2と同様なJARP-86での比較を示す. JARP-86では電離箱間の変動が小さい.Fig. 8とFig. 2 の違いは, Table 8に示す $k_m \geq k_{cel} \cdot P_{cel}$ の違いにほぼー 致する.すなわち, JSMP-01/JARP-86比において PTW 30013, PTW 30001, NE 2505/3, 3Bは各補正 係数がほぼ一致し, PTW 30002では k_m が 0.5%高く, $k_{cel} \cdot P_{cel}$ は 0.54%低くなるので消去され一致する.同 様に, PTW 30004とFC65Pでは k_m がそれぞれ 0.5% と 0.7%高く, Exradin A12は一致する.結局, PTW 30004とFC65Pでは,他の電離箱に比べそれぞれ0.5% と 0.7%線量比が高くなる.Table 8のJSMP-01/JARP-86比の電離箱間の差は, Fig. 2とFig. 8の比較結果と同 様な傾向にある.JSMP-01/JARP-86比は,光子と同様

Fig. 8 Comparison in absorbed-dose to water between the PTW 30013 chamber and various Farmer-type chambers for electron beams according to JARP-86.

に $W_{air}/e値$, $k_{rr}(A_w)$, $k_{cel} \cdot P_{cel}$ の違いに起因する.電子線エネルギーの相違によるJSMP-01/JARP-86比は,主に質量衝突阻止能比(Table 3)の違いによる.

以上述べたように,現在のJSMP-01のN^{Co}_{Dw}は基本的にはN_cから計算したものであり,⁶⁰Coy線に対するk_{D,x}のなかのk_mやP_{wall}などの計算に使用する物理データの不確定度を伴っている.これらの問題を解決するには,国際的に線量トレーサビリティを持ったわが国の一次標準機関におけるコバルト吸収線量校正の早期の確立が望まれる.

3-2 平行平板形電離箱の校正点吸収線量の評価

本研究では, JSMP-01に従って平行平板形電離箱の 校正点吸収線量の評価を行った.

Fig. 3の⁶⁰Coy線によるJARP線量計との比較におい て,平行平板形電離箱の線量はJARP線量計に比べて 平均的に0.6%高い.この相違の原因として,JSMP-01の平行平板形電離箱に対するk_{D.X}の違いが考えられ る.これは,JSMP-01で推奨しているk_{att}k_mとP_{wall}の値 の不確さに起因する.ここで,k_{att}はコバルト校正時の 電離箱壁とビルドアップキャップの吸収・散乱の補正 係数とビルドアップキャップの吸収線量と衝突カーマ の比を含む.k_mはコバルト校正時の電離箱壁とビルド アップキャップの空気不等価性に対する補正係数であ る.P_{wall}は電離箱本体と水ファントムとの材質の相違 による補正係数である.Fig.3では,同種の電離箱の シリアル番号の違いによる差はほとんどみられない.

電子線を用いた比較では,平行平板形電離箱は基準 線量計のPTW 30013に比べて1~2%高く,電離箱間 の変動と同種の電離箱のシリアル番号の違いによる変 動も大きい.12MeVと18MeVのエネルギー間の違い はみられない. 一方, Fig. 5の[*N_{D,w}*]₀から計算して比較した線量比は, ほとんどの電離箱で1%以内であり, *N*₀から計算した線量比に比べて電離箱間の変動も小さい.[*N_{D,w}*]_{8E}から計算した場合では, 12MeV電子線でPTW 30013の線量に0.5%以内で一致する.

われわれは, JSMP-01に従って求めた平行平板形電 離箱のPTW 30013との線量比と電離箱間の変動の原因 を調べるために,各電離箱のk_{D,x}, k_{att}k_m, P_{wall}の値を 実験的に評価した.ここで, k_{D,x}は1-2-2項の測定から 次式で求められる.

 $k_{\text{att}}k_{\text{m}} \geq P_{\text{wall}}$ の算出においては,最初に式9)で求めた[$N_{D,w}$]_{8E}から次式で空気吸収線量校正定数 $N_{D,\text{air}}^{3,13}$ を求めた.

$$[N_{D,\text{air}}]^{\text{pp}} = \frac{[N_{D,w}(d_c)]_{18E}^{\text{pp}}}{[(\overline{L}/\rho)_{\text{air}}^w(d_c)P_{\text{cav}}]_{18E}^{\text{pp}}} \dots (14)$$

次に, $N_{D,air}$ から $k_{att}k_m \geq P_{wall}$ を次式でそれぞれ評価した. $k_{att}k_m$ は 60 Coy線の照射線量校正における $N_{D,air} \geq N_c$ の関係式, P_{wall} は 60 Coy線のJARP線量計との比較校正における $N_{D,air}$ を用いた関係式からそれぞれ求められる.

$$[P_{\text{wall}}]_{\text{Co}}^{\text{pp}} = \frac{[N_{\text{c}}k_{D,X}]^{\text{ref}}[M]_{\text{Co}}^{\text{ref}}}{[N_{D,\text{air}}]^{\text{pp}}[(\overline{L}/\rho)_{\text{air}}^{w}]_{\text{Co}}[M]_{\text{Co}}^{\text{pp}}} \quad \dots (16)$$

式 13 から実験的に求めた*k_{D,x}と*, JSMP-01および Mainegra-Hingら¹⁴のモンテカルロ計算による*k*_{att}*k*_mと Pwallから計算したk_{D,X}の値の比較をTable 12に示す.実験的に求めたk_{D,X}は,JSMP-01とMainegra-Hingらの値に比べて約1%まで低くなる.各電離箱のシリアル番号の違いによる差はほとんどない.

次に,式 15)と(16)から実験的に求めた*k*att*k*mと*P*wall を,JSMP-01およびMainegra-Hingらの計算値との比 較でTable 13と14に示す.実験的に求めた*k*att*k*mは, JSMP-01のNACP02,Markus,Exradin P11との比較 において 0.2~1.8%低い,平均で 0.990±0.62%であ る.NACP02とExradin P11では 1%以内であるが, Markusでは平均で1.6%低い.Mainegra-Hingらの計算 値との比較においては,本実験値との比は平均で 0.989±0.53%である.NACP02とAdvanced Markusで はシリアル番号によっても1.3%の違いがある.

一方, *P*_{wall}はNRCP02以外では実験値がJSMP-01に 比べ 0.5~1%高い. Mainegra-Hingらの比較において も傾向は同じである.NRCP02とExradin P11ではよく 一致するが, Exradin A10では 3%も高くなる. Advanced Markusではシリアル番号によって1.3%の相違 がある.本研究で求めたNRCP02, Roos, PPC40の *P*_{wall}値は, Palmら⁶とStewartら⁷⁾の実験値とほぼ一致 する. MarkusではDingら⁵⁾の実験値に近い.

以上のように,平行平板形電離箱のk_{D,X}は,本研究 での実験的な分析からJSMP-01やMainegra-Hingら¹⁴⁾ のモンテカルロ計算値と1%以内で一致するが,k_{att}k_m とP_{wall}はJSMP-01, Mainegra-Hingら,TRS-398の推奨 値と必ずしも一致しない.また,電離箱によってはシ リアル番号による違いがみられる.これらの不一致は 平行平板形電離箱のk_{att}k_mとP_{wall}値の不確かさに起因す る.したがって,平行平板形電離箱の校正は,TG-51

Table 12 Ratios of calibration coefficients, $k_{D,X}$, derived experimentally for plane-parallel chambers. The values of $k_{D,X}$ for the plane-parallel chambers given in JSMP-01 and calculated from data of Mainegra-Hing et al.¹⁴ are included for comparison.

Chamber type	ISMP-01	Mainoara Hina	Measured	Measured	Measured	
Chamber type	JOINI -01	Manegra-ring	Measured	JSMP-01	Mainegra-Hing	
NACP02-No.1	38.43	38.33	38.16	0.993	0.996	
NACP02-No.2	38.43	38.33	38.12	0.992	0.994	
Markus-No.1	38.25	38.10	38.05	0.995	0.999	
Markus-No.2	38.25	38.10	38.00	0.993	0.997	
Advanced Markus-No.1		38.30	38.06		0.994	
Advanced Markus-No.2	2	38.30	38.07		0.994	
Exradin A10		37.26				
Roos-No.1		37.89	37.74		0.996	
Roos-No.2		37.89	37.81		0.998	
PPC40-No.1		37.89	37.55		0.991	
PPC40-No.2		37.89	37.58		0.992	
Exradin P11	38.12	38.61	38.14	1.000	0.988	

708

Table 13 Correction factors, $k_{\text{att}}k_{\text{m}}$, derived experimentally for plane-parallel chambers. The values of $k_{\text{att}}k_{\text{m}}$ for the plane-parallel chambers given in JSMP-01 and Mainegra-Hing et al.¹⁴) are included for comparison.

Chamber type		JSMP-01	Mainegra-Hing	Maggurod	Measured	Measured	
				Measureu	JSMP-01	Mainegra-Hing	
	NACP02-No.1	0.975	0.976	0.973	0.998	0.997	
	NACP02-No.2	0.975	0.976	0.966	0.991	0.991	
	Markus-No.1	0.985	0.985	0.971	0.985	0.985	
	Markus-No.2	0.985	0.985	0.967	0.982	0.982	
	Advanced Markus-No.1		0.987	0.972		0.985	
	Advanced Markus-No.2		0.987	0.985		0.998	
	Exradin A10		1.006				
	Roos-No.1		0.976	0.968		0.992	
	Roos-No.2		0.976	0.964		0.988	
	PPC40-No.1		0.976	0.960		0.983	
	PPC40-No.2		0.976	0.963		0.987	
	Exradin P11	0.973	0.976	0.965	0.991	0.989	

Table 14 Wall correction factors, P_{wall} , derived experimentally for plane-parallel chambers. The values of P_{wall} , for the plane-parallel chambers given in JSMP-01, Mainegra-Hing et al.¹⁴, Stewart et al.⁷, and Ding et al.⁵ are included for comparison.

Chamber type	JSMP-01	Mainegra-Hing	Measured	Stewart et al.	Ding et al.
NACP02-No.1	1.024	1.021	1.019	1.020(1.024)	(1.028),(1.031)
NACP02-No.2	1.024	1.021	1.025		
Markus-No.1	1.009	1.005	1.019	1.010(1.013)	(1.016),(1.021)
Markus-No.2	1.009	1.005	1.021		
Advanced Markus-No.1		1.008	1.018		
Advanced Markus-No.2		1.008	1.005		
Exradin A10		0.962	0.990		
Roos-No.1	1.010	1.009	1.014	1.016(1.019)	
Roos-No.2	1.010	1.009	1.019		
PPC40-No.1	1.010	1.009	1.017		
PPC40-No.2	1.010	1.009	1.014		
Exradin P11	1.018	1.028	1.027		

(): TG-51 protocol

やTRS-398で推奨している電子線を用いたファーマ型 電離箱との比較校正が望まれる.

4.結論

本研究では、壁材の異なるファーマ型電離箱につい て、JSMP-01に従って高エネルギー光子および電子線 の校正点吸収線量を評価した・光子および電子線にお ける各電離箱の校正点吸収線量は、JARP線量計と1% 以内で一致した・光子線における相違は、⁶⁰Coy線に 対する各電離箱のkmと各光子エネルギーに対するPwall の誤差、電子線ではkmの誤差に起因する、JSMP-01と JARP-86の線量比は、⁶⁰Coy線と4MVでJSMP-01が約 1%高く、10MVではほぼ一致した・電子線において

2006 年 5 月

は18MeVでJSMP-01が2.0~2.8%,12MeVでは1.3~2.1%高くなった.これらの光子と電子線における線量比は,主に \bar{W}_{air}/e , $k_{n}(A_{w})$, $k_{cel} \cdot P_{cel}$,質量衝突阻止能比の違いに起因する.

次に,市販されている7種類12個の平行平板形電離 箱について,JSMP-01に従って⁶⁰Coy線および電子線 における校正点吸収線量を評価した.⁶⁰Coy線におけ る各電離箱の校正点吸収線量は,基準線量計と比べ 1.006±0.29%であった.電子線では12MeVと18MeV でそれぞれ1.013±0.55%と1.012±0.53%であった.ま た,⁶⁰Coy線の比較校正による[*N_{D,W}*]₀から求めた各電 離箱の電子線の校正点吸収線量は,基準線量計に比べ て12MeVと18MeVでそれぞれ1.006±0.55%と

710

1.006±0.56%であった.電子線の比較校正による [*N_{D,w}*]& から求めたものでは,12MeVで1.001±0.22% であった.本研究から平行平板形電離箱の校正は, JSMP-01で推奨されている⁶⁰Coy線による照射線量校 正では*k*att*k*mと*P*wall値の不確定度,あるいは⁶⁰Coy線に よる比較校正では*P*wall値の不確定度を伴うので,電子 線を用いたファーマ型電離箱との比較校正が推奨さ れる. 謝辞

本研究において,各種ファーマ型電離箱を貸与して いただいた東洋メディック株式会社とユーロメディテ ック株式会社に深く感謝いたします.

本研究の要旨は,日本医学物理学会誌,25巻,3 号,2005^{18,19})に掲載された.

参考文献

- 1)日本医学物理学会編:外部放射線治療における吸収線量の 標準測定法(標準測定法01)第2版.通商産業研究社,東 京,(2003).
- 2)日本医学放射線学会物理部会編:放射線治療における高エ ネルギーX線および電子線の吸収線量の標準測定法.通商 産業研究社,東京,(1986).
- 3)IAEA, International Atomic Energy Agency: Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, Technical Report Series No. 398, IAEA, Vienna (2000)
- 4)Almond PR, Biggs PJ, Coursey BM, et al.: AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams, Med Phys, 26(9), 1847-1870, (1999).
- 5)Ding GX, and Cygler JE: Measurement of P_{repl} P_{wall} factors in electron beams and in a ⁶⁰Co beam for plane-parallel chambers. Med Phys, 25(8), 1453-1457 (1998)
- 6)Palm A, Mattsson O, and Andreo P: Calibration of planeparallel chambers and determination of p_{wall} for the NACP and Roos chambers for ⁶⁰Co γ -ray beams. Phys Med Biol, 45(4), 971-981 (2000)
- 7)Stewart KJ, and Seuntjens JP: Comparing calibration methods of electron beams using plane-parallel chambers with absorbed-dose to water based protocols. Med Phys, 29(3), 284-289,(2002)
- 8) 荒木不次男,熊谷孝三:医療用標準線量の国際比較-九州 地区センターとカナダ(NRCC)の相互比較-.日放腫瘍会 誌,17,155-159,(2005).
- 9)Shiragai A: A proposal concerning the absorbed dose conversion factor. Phys Med Biol, 23(2), 245-252, 1978).
- 10)Shiragai A: Effective mass stopping power ratio in photon dosimetry. Phys Med Biol, 24(2), 452-454, (1979).

- 11)Gastorf R, Humphries L, and Rozenfeld M: Cylindrical chamber dimensions and the corresponding values of Awall and Ngas/ NxAion. Med Phys, 13(5), 751-754, (1986).
- 12)Burns DT, Ding GX, and Rogers DW: *R*₅₀ as a beam quality specifier for selecting stopping-power ratios and reference depths for electron dosimetry. Med Phys, 23(3) 383-388(1996)
- 13)IAEA, International Atomic Energy Agency: The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams: An International Code of Practice for Dosimetry, Technical Report Series No. 381, IAEA, Vienna (1997)
- 14)Mainegra-Hing E, Kawrakow I, and Rogers DW: Calculations for plane-parallel ion chambers in ⁶⁰Co beams using the EGSnrc Monte Carlo code. Med Phys, 30(2), 179-189(2003).
- 15)AAPM, American Association of Physicists in Medicine, Task Group 21: A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys, 10 (6) 741-771 (1983)
- 16)IAEA: Absorbed Dose Determination in Photon and Electron Beams: An International Code of Practice, Technical Report Series No. 277, IAEA, Vienna, (1987)
- 17)Almond PR, Attix FH, Humphries LJ, et al.: The calibration and use of plane-parallel ionization chambers for dosimetry of electron beams: an extension of the 1983 AAPM protocol report of AAPM Radiation Therapy Committee Task Group No. 39. Med Phys, 21(8), 1251-1260 (1994)
- 18) 荒木不次男,熊谷孝三,吉浦隆雄,他:標準測定法01によるファーマ型電離箱の校正点吸収線量の評価.医学物理, 25(3),104-113,(2005).
- 19) 荒木不次男,熊谷孝三,吉浦隆雄,他:標準測定法01による平行平板形電離箱の校正点吸収線量の評価.医学物理, 25(3),114-123,(2005).