実験と数値解析による簡易型爆破成形線の評価

機塑正 *田中 茂(熊大工) 機塑正 伊東 繁(沖縄高専)

1. 諸言

バングラディシュやパキスタンの海岸には、世界中か ら多くの廃船が集まる。現地の住民は、簡単な道具を使 用してそれらを解体している。廃船にはアスベストを含 むものもあり、作業環境は劣悪である。爆破成形線(Liner Shaped Charge、以下 LSC)は、金属材料等を瞬間的に切断 する目的で開発されたものであり、鉄塔や鉄橋の解体や ロケット燃料タンクのロケット本体からの切り離し等に 利用される。LSCは、金属材料と爆薬の組み合わせから なるものであり、モンロー・ノイマン効果によりジェッ トを発生させ対象物の切断を行うものである¹⁾。Fig.1 に は、金属ジェットの発生過程を示す。爆薬の爆破によっ てV字の金属は、高速で飛翔・衝突をする。その際衝突 点からは、超高温・高圧のジェットが発生する。LSC に よる金属等の切断は、このジェットによるものである。

LSC に関する研究論文は非常に少なく、特に実験と数 値解析では、それらの結果に大きな違いを生じるとされ ている。本研究では、簡易型 LSC を製作し、軟鋼の侵徹 試験を行った。切断の現象に対して、Ls-Dyna による数 値解析が有効であるかどうかを確認するために、実験と 解析結果を比較したので、その結果について報告する。

Fig.1 ジェットの発生過程

2. 実験

Fig.2 に、実験装置の概略を示す。簡易型 LSC は爆薬 と銅板によって構成されている。銅板(100×150×2mm) は 1 辺が 50mm、内角が 90°になるように折曲げられ、 厚み 10mm の爆薬がその上に設置される。爆薬には、火 薬 ジャ パン 製 高 性 能 爆 薬 SEP(爆速:7000m/s、密 度:1310kg/m3)、起爆には同社製 6 号電気雷管が用いられ た。切断される材料には、軟鋼(300×300×20mm)を使用 した。Fig.1 に示すように、LSC と軟鋼の間には間隙(Stand off distance, S.O.D.)を設けており、それを 10,20,30mm と 変化させて侵徹試験を行った。

機塑正 外本 和幸 (熊大衝撃センタ)

Fig.2 実験装置概略

3. 実験結果

試験後の軟鋼板の外観写真を Fig.3 に示す。間隙が 10mm の条件では、軟鋼の表面に銅が衝突した形跡が確 認された(Fig.3(a))。ジェットを形成する以前の銅が、軟 鋼の表面に衝突したものであり、不適切な間隙のため未 成熟な金属ジェットによる侵徹が起こったと考える。そ の結果、侵徹深さは13.7mm となった。間隙が 20mm の 条件では、部分的な切断を、間隙が 30mm の条件では、 完全な切断を確認した(Fig.3(b))。

4. 数值解析

実験結果との比較を行うために、汎用解析ソフト Ls-Dyna を用いて数値解析を行った。解析時間短縮のた めに、解析問題は3次元から2次元に変更された。解析 手法としては、SPH法¹⁾を用いた。SPH法は、格子をノ ードに置き換えて解析を行う方法で、通常の解析方法で は解析困難な大変形を伴う解析においても安定した計算 を行う事が出来る。実験と同じように、間隙を 10,20,30mmと変化させた3種類の数値解析を行った。状 態方程式としては、金属材料にはユゴニオに基づく Mie-Gruneisen^{3,4)}を、爆薬にはJWL 状態方程式^{5,6)}を適用 した。解析条件の詳細を Table 1 に示す。

Table 1 数值解析条件詳細

Analysis method	SPH (Lagrange type, mesh free)
Equation of state	Mie-Gruneisen (metal), JWL (explosive)
Material model	Elastic plastic hydro (metal), High explosive burn (explosive)
Element number	82446
CPU time	32hrs 5mins
Dimension	2D

5. 数值解析結果

Fig.4 に示すように、銅同士の激しい衝突によって銅の 大変形が起こり、衝突点からはジェットが発生している 様子が確認出来る。Fig.5 では、ジェットによる軟鋼の侵 徹が確認できる。Fig.5 (a)に示すように、間隙 10mm の条 件では、侵徹深さが 15.7mm となり、実験結果とは 2mm の誤差を生じた。間隙 20,30mm の条件では、Fig.5 (b) (c) に示すようにおよそ 20mm の侵徹深さとなり、実験結果 と良好な一致を示した。

Fig.4 ジェット発生の様子

6. 結言

簡易型のLSCを作製し、厚さ20mmの軟鋼板に対して、 侵徹試験とLs-Dynaを用いた数値解析を行った。条件変 化(LSCと軟鋼板までの距離)によって、侵徹深さの変 化が確認された。数値解析では、SPH 法を用いる事で、 大変形を伴う計算においても安定した計算が行われ、ジェットの発生過程を確認した。数値解析による侵徹深さ は実験よりも高い値となったが、傾向としては一致して おり、Ls-Dyna による数値解析が、この現象の解析に有 効な手段である事が明らかとなった。

本研究は、日本学術振興会奨励研究 2010 の補助を受け て行われたものである。

参考文献

- Marc A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, Inc. (1994), 570-585
- Vishal Mehra, Journal of Computational Physics. 212, (2006), 318
- S. P. Marsh, LASL Shock Hugoniot Data, University of California Press. (1980)
- R. Kinslow, High-Velocity Impact phenomena, Academic, New York. (1970)
- 5) J. W. Kury, 4th symposium on Detonation, (1956), A 109
- E. L. Lee, Adiabatic Expansion of High Explosive Detonation Products, UCRL-50422, TID-4500,UC-4, (1968)