離散ウェーブレット変換を用いた有明海 湾奥部の貧酸素水塊の変動特性と気象要素 VARIABILITY CHARACTERISTICS AND METROLOGICAL ELEMENT OF OXYGEN-DEFICIENT WATER IN ARIAKE SEA BAY INTERIOR PART WHERE DISCRETE WAVELET TRANSFORM WAS USED

矢北孝一¹・滝川清²・園田吉弘³・増田龍哉⁴・ 五十嵐学⁵・杉野拓之⁶・岩永豊⁷・村岡芳郎⁸ Kouichi YAKITA, Kiyoshi TAKIKAWA, Yoshihiro SONODA, Tatsuya MASUDA, Manabu IGARASHI, Hiroyuki SUGINO, Yutaka IWANAGA and Yoshiro MURAOKA

¹正会員 熊本大学工学部技術部(〒860-8555 熊本市黒髪2-39-1)
 ²フェロー 工博 熊本大学教授 沿岸域環境科学教育研究センター(同上)
 ³正会員 熊本大学特任助教 大学院先導機構(同上)
 ⁴正会員 工博 熊本大学特任助教 大学院先導機構(同上)
 ⁵正会員 研究員 沿岸域環境科学教育研究センター(同上)
 ⁶学生会員 熊本大学工学部社会環境工学科(同上)
 ⁷九州農政局 整備部農地整備課(〒860-8527 熊本市二の丸1-2)
 ⁸国際航業株式会社 社会基盤事業部(812-0013 福岡市博多区博多駅東3-6-3)

The problem concerning the environmental deterioration of an increase of oxygen-deficient water and the red tide occurrence occurs in the littoral region in various places where Ariake Sea was included. A lot of investigations and the research on the generation mechanism of oxygen-deficient water are being executed by the government and laboratories. However, a complex system by the interaction of a physical process, the metrological element, and the living thing is formed in the littoral region. It is a current state that the generation mechanism of oxygen-deficient water is not clearly shown. In the present study, it paid attention to changes with the lapse of time such as oxygen-deficient water, the weathers, and hydrographic phenomenon generated in Ariake Sea. And, variability characteristics of oxygen-deficient water and the relativity of the metrological element were examined by using the discrete wavelet transform. As a result, it is expected for the generation cycle of oxygen-deficient water and the influence period of the metrological element to become clear, and to become the index of the site investigation and the evaluation approach.

Key Words: Oxygen-deficient water, Discrete wavelet transform, Metrological element, Ariake sea

1. はじめに

近年,有明海を含めた各地の沿岸域において,赤 潮多発や底生生物種数の激減など環境悪化が顕在化 している.この環境悪化の要因の一つとして,溶存 酸素濃度低下による貧酸素水塊の形成が指摘されて いる.貧酸素水塊の発生機構に関する調査・研究に 際しては,海域全体の物理・化学的環境と生物生産 過程を視野に入れた総合的な取り組みが必要であり, 各府省庁や研究機関等で数多くの調査・研究が実施 されている.^{1),2),3),4)}

しかしながら,沿岸域を含む海域では,潮汐に よる移流・拡散,有機物の堆積・巻き上げ等の物理 的過程,また,降水・風・日照等の気象要素の影響, さらには多種多様な生物が存在しており,各環境要 因の相互作用による複雑なシステムが形成されてい ることから,貧酸素水塊の発生機構が十分に明確化 されていないのが現状である.現在,貧酸素水塊の 大規模化,長期化が有明海を含む閉鎖性の強い海域 での大きな環境問題となっており,発生パターンの 定量的な評価が不可欠であり,その発生機構・条件 の解明が急務である.

本研究では、有明海で発生した貧酸素水塊と気 象・海象等の経時変化に着目し、波形の低周波から 高周波への分解が可能である離散ウェーブレット変 換を用いて、貧酸素水塊の変動特性と気象要素等の 関連性について検討した.

なお、本研究では、海水中の酸素飽和度が 40%

(≒3.0mg/0)を閾値とし貧酸素状態とした⁵⁾.

2. 観測結果の考察

(1) 観測地点·期間

観測地点は、図-1 に示すように諫早湾中央付近の P1,水道部の P2,西側沿岸 P3,P4,東側沿岸 P5,P6の6地点とした.表-1に観測期間での平均水 深を示す.表より観測点の水深は、P2地点を除き3~8m と比較的浅い海域に位置している.気象要素の気温,降雨量,風向・風速等のデータは、図-1 に示した A1~A3の有明海沿岸域の気象庁アメダスデータ(http://www.jma.go.jp/jma/)を使用し,潮位は大浦検潮所を代表とした.解析期間は、酸素飽和度(以下 D0)の連続データが得られた 2007 年7月~9月の夏期を対象とし、観測データのサンプリング時間は1時間としている.

(2) D0 と潮位・河川流量・風速ベクトル

図-2に、P1~P6での底層付近における D0 の経時 変化を示す.図より各地点での変動には、スパイク ノイズ的な変動を示す高周波成分と貧酸素状態とな る約2週間周期が 6 期確認できる.特に、8 月中旬 から濃度低下が約 10 日以上連続する期間は、ほぼ 湾奥全域で確認できる.しかし、長期低下の発生時 期は、地点間にタイムラグがあることから、時・空 間的な変動を捉える必要性が示唆される.

上記に示した D0 の経時変化との関連性を検討す るために、図-3 に大浦での潮位変動、図-4 に筑後 川と矢部川のハイドログラフ、図-5 に各アメダス 観測点での風速ベクトルの変化を示す.

地点	(m)	地点	(m)
P1	8.0	P4	4.3
P2	23.0	P5	3.1
P3	5.1	P6	3.5

素-1 観測地占の亚均水涩

図−1 観測地点

図-3 には、潮位の25時間移動平均値も併記している. 図より潮位変動には、図-4 に示した台風接近時の小潮時の潮位の増加が捉えられている.また、8 月中旬以降の貧酸素の時期は、大潮から小潮へ変化する時期になることが確認できる.図-4 に示した流出量は日平均値であり、降雨量はA3 地点の日量である.図中での下向き矢印は、台風4,5,11 号の接近時期を示している.両河川からの流出量は7月上旬に、1000~3500m³/sec,8 月上旬には、300~1000 m³/sec を記録している.

柳ら⁶⁾は,有明海全域における 1990 年~2000 年 のデータを基に,河川水の平均滞留時間を求めてい る.それによると平均滞留時間は,河川流量に依存 し約2ヶ月と示されている.ここでは,有明海全域

における河川流量を調査していないが、この7・8 月上旬の流出量が8月中旬以降の貧酸素水塊の形成 に寄与した可能性は否定できない.また、八木ら⁷⁰ によると、潮汐が卓越する有明海干潟前縁域におい ても残差流に与える海上風の影響が大きいことが指 摘されている.そこで、図-5 に示した風速ベクト ルを検討する.A2 地点に注目すると、D0 が低下傾 向を示す8月中旬から、風速は湾奥へ向かう弱い南 風が卓越し、貧酸素状態が解消される9月上旬に、 約10m/secの南東からの風が連吹していることが分 かる.有明海は、南東方向へ開いた形状となってお り、風の吹送距離は、湾軸方向と直交する方向より 長いことから、南東の風が卓越する場合は、エクマ ン輸送と波の成長等へ影響し、貧酸素水塊の解消に 寄与することが推察される.

(3) 密度躍層

貧酸素水塊の形成には,密度躍層の存在が指摘されている.しかし,全地点で鉛直プロファイルが取得されていないため,表・底層付近での塩分濃度,水温,気温,日照時間の変化を検討する.

一例として P1, P2, P3, P5 地点での塩分濃度の変 化を図-6 に、図-7 に水温の変化、そして図-8 にア メダス地点の代表として、A1 地点での気温・日照 時間の変化を示す.図-6 より、各地点では 7・8 月 上旬に表層付近で河川水の影響による塩分濃度の低 下が全地点で観測され、底層との濃度差が生じてい る.それ以外の期間は、若干底層付近の塩分濃度が 高めの値で推移し、貧酸素状態が海域全体で長期化 する 8 月下旬では、表・底層での塩分の濃度差は小 さい.

一方, 図-7の水温変化より, 全地点において 7・8 月上旬の筑後川等の河川水の流入と台風による擾乱 の影響で、表・底層での水温が等しい. その後、表 層では 30℃付近まで上昇し, P1, P2, P3 地点では, 貧酸素状態となる9月上旬まで表・底層での水温差 が確認できる. その後, 9 月上旬に底層の貧酸素状 態が解消する時期まで,底層の水温は徐々に上昇し, 表層の水温約 27℃と等しくなる. この時期の図-8 に示した海水温に影響する気温、日照時間の変化に 注目すると,気温の変動と表層の水温の変動には, 定性的に気温の上昇傾向から下降傾向への変化点に 重なり、8月下旬を境として気温が低下傾向を示す ことが分かる. 観測期間での DO 変動の大きな特徴 は、8月中旬~下旬の貧酸素状態は、大潮~大潮ま で約 14 日連続しており、その他の短期的な貧酸素 化が小潮時、回復期が大潮時となる形態と違う点で ある.

以上の観測結果の考察から D0,海水温,塩分濃 度,気象要素等の変動には,台風等の擾乱による短 期的な変動と徐々に進行する長期的な変動が混在し ていることが確認できた.次章以降では,離散 ウェーブレット変換の概略を述べ,D0の変動特性 と気象要素等との関連性を検討する.

(1) 離散ウェーブレット変換の概略

これまで周波数特性を解析する場合、三角関数や 指数関数を基底とした直交変換である FFT 等のスペ クトル解析が用いられている.しかし、局所的に激 しく変化する波形に対して解析精度が低下すること, 周波数特性は定常な信号として取り扱い時間領域の 情報が失われる等の欠点がある. 上記に対して離散 ウェーブレット変換(以下 DWT)は、信号中の様々 なスケールの分布を元の時間軸情報を失わずに抽出 し、周波数特性に合う局所フィルタを作用させなが ら変換を行う. これによって周波数精度は若干低下 するが、時間・周波数分解が可能となり、多種多様 な分野で利用されている.また,収束性のよい正規 直交系となるため, データ圧縮やエネルギー解析等 に用いられている⁸⁾. ただし, 単一のウェーブレッ トでは、分離・解析し得る周波数帯域には限界があ り、分離可能域外にあれば2波の波動でも判別でき ないケースもある.

離散ウェーブレット変換を行列形式で表現すると 式(1)で示される. ここで S は、ウェーブレットス ペクトラム、W は、アナライジングウェーブレッ ト行列、X は、入力データである.W は、変換行 列 C より和と差の演算として求めることができる. 一例として、式(2)に示したように、行列 C をド ビッシーの k=4 次基底関数とする.行列式の一行は 4 ケの係数からなり、 $C^{T}C=I$ の正規直交関係が存在 する.行列 C の 1 行目は、スケーリング係数、2 行 目は、ウェーブレット係数と呼ばれる.また、入力 データ行列 X を式(3)のように、N=3 として $2^{N}=8$ 個 からなるものとする.第1回目の変換は、式(11)に 示した行列 P と式(2)の C によって、式(4)の W⁽¹⁾ が

算出され、式(5)のように終了する.ここで、 P_8 と C_s は、 8×8 行列を示し、式(5)の要素 s,d は、和と差の演算(内積)を行っていることを示す.また、

$$S=W X \qquad (1)$$

$$C = \begin{bmatrix} c_{0} & c_{1} & c_{2} & c_{3} & 0 & 0 & 0 & 0 \\ c_{3} & -c_{2} & c_{1} & -c_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & c_{0} & c_{1} & c_{2} & c_{3} & 0 & 0 \\ 0 & 0 & c_{3} & -c_{2} & c_{1} & -c_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{0} & c_{1} & c_{2} & c_{3} \\ c_{2} & c_{3} & 0 & 0 & 0 & 0 & c_{0} & c_{1} \\ c_{1} & -c_{0} & 0 & 0 & 0 & 0 & c_{3} & -c_{2} \end{bmatrix} \qquad (2)$$

$$\mathcal{T}_{C} \mathcal{T}_{C}^{S} \cup, \ c_{0} = \frac{1+\sqrt{3}}{4\sqrt{2}}, \ c_{1} = \frac{3+\sqrt{3}}{4\sqrt{2}}, \ c_{2} = \frac{3-\sqrt{3}}{4\sqrt{2}}, \ c_{3} = \frac{1-\sqrt{3}}{4\sqrt{2}} \\ X = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \end{bmatrix}^{T} \qquad (3)$$

$$W^{(1)} = P_{8}C_{8} \qquad (4)$$

$$S_{1} = W^{(1)}X = \begin{bmatrix} s_{1} & s_{2} & s_{3} & s_{4} & d_{1} & d_{2} & d_{3} & d_{4} \end{bmatrix}^{T} \qquad (5)$$

$$L_{1} = \begin{bmatrix} 0 & 0 & 0 & d_{1} & d_{2} & d_{3} & d_{4} \end{bmatrix}^{T} \qquad (6)$$

$$W^{(2)} = (P_{8}^{*}C_{8}^{*})W^{(1)} \qquad (7)$$

$$\mathbf{S}_{2} = \mathbf{W}^{(2)} \mathbf{X} = [\mathbf{s}_{1} \ \mathbf{s}_{2} \ \mathbf{d}_{1} \ \mathbf{d}_{2} \ \mathbf{d}_{1} \ \mathbf{d}_{2} \ \mathbf{d}_{3} \ \mathbf{d}_{4}]^{\mathrm{T}}$$
(8)

式(6)に示すのが逆ウェーブレット変換の際に使用 する波形要素である. 第2回目以降の変換は、式 (7)~(9)と図-9 に示したアルゴリズムのように, データ個数 2^{N-M}が k 次数より少なるまで繰り返す. ドビッシーのウェーブレット係数の場合、正規直行 系であるため逆ウェーブレット変換は、W⁽ⁱ⁾の転置 行列となり、式(10)で示される.式(10)より入力波 形は、各レベルに分解でき、その各レベルの波形成 分は, [W⁽ⁱ⁾]^T Li である. 観測データ数は, 2208 個 であったが DWT では 2^N 個のデータを取り扱うため, 2048(=211)個のデータについて解析した.また、ド ビッシーのウェーブレット係数は, k=20 次数とし た. この場合, 分離できるレベルは, 1~7 まで存 在する. 各レベルに対する FFT によるパワースペル トルを図-10 に示す. 図より,実測値よりレベル 2 ~7 の高周波成分を除去する場合,サンプリング時 間の 1hr を掛ければ周波数帯が 0.01~0.5/hr とな り、分離可能な周期は、100~2hr となる.

以上より DWT は、離散データを順次低周波から高

$$L_2 = [ss_1 ss_2 dd_1 dd_2 0 0 0 0]^T$$
(9)

$$\mathbf{X} = [\mathbf{W}^{(2)}]^{\mathrm{T}} \mathbf{L}_{2} + [\mathbf{W}^{(1)}]^{\mathrm{T}} \mathbf{L}_{1}$$
(10)

$$P_8 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} P_8' = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

周波成分で表すデータの線形結合に分解する解析手法⁹であり,図-10に示したように,特定周波数帯 域を通過させるフィルタと考えることができる.

(2) D0, 気象要素等の離散ウェーブレット変換

D0 の観測期間中に長期の欠測があった P1,P6 を 除く, P2, P3, P4, P5 地点を対象に DWT を行った. そ の一例として湾奥部 P3 地点の解析結果を図-11 に 示す. 図では、分離した波形のレベル 2~7 をマイ ナス側ヘシフトしている. 図に示したレベルの数値 が 1~7 へ変化するに従って低周波から高周波へ分 離されたことを意味し、全てを合計すると観測値の レベル 0 となる. 図-12(a)~(e)に潮位, 気象要素 のレベル1の波形を示す. 図-12(a)より, 潮位変動 は長期的には8月14日付近にピークを持ち,約10 日周期の変動があることが分かる.一方,気象要素 の変動には、定性的には D0 との関連性が示唆され、 その値は同様な傾向を示している. そこで、地形的 な影響を受けない沿岸域に位置する A2 地点を気象 要素の代表地点として,次章での D0 の変動特性と 気象要素との関連について検討する.

この低周波の物理的な意味として,D0等のスカ ラ量が流体に含まれると,流体によって混合された スカラ量自身の変動スペクトルが形成され,低周波 の変動は,ほぼ流体の速度変動のスケールに一致す る.また高周波の変動は,分子拡散係数と粘性係数 の比であるプラントル数(熱輸送)やシュミット数 (濃度拡散)等によって決まることが示されている ¹⁰⁾.以上のことを踏まえ,D0濃度等のスカラ量の 低周波成分は,流体の移流や鉛直混合的な運動に左 右されるとし,流体に影響を与える気象要素等の外 力についても低周波成分であるレベル1を対象とす る.なお,河川からの流出量の変動については、日 平均値であるため今回の解析では対象としていない.

4. D0 の変動特性と気象要素等との関連

(1) 底層の D0 の変動特性

図-13 に P2~P5 地点のレベル 1 を抜粋して示し, この変動特性について考察を進める.図より, P3,P4 地点では,貧酸素となる変動周期が,ほぼ同 程度で振幅が大きい傾向を示す.これに対し,P5 地点は,観測期間を通して D0 が閾値以下となるこ とがなく,特に8月下旬にP2,P3,P4 地点の D0 が低 下する時期に,80%以上の値を記録している.一方, P2 地点は,8月下旬までは閾値以上で推移し,9月 上旬より上昇傾向を示す.また,水道部 P2 と湾奥 部 P3,P4 地点での D0 値が 40%以下となる8月下旬 の時期に約6日間の遅れが確認できる.以上のこと は,有明海での大きな潮汐作用により河口部付近で 生じる成層が維持できず,有明海湾奥の残差流系の 特徴である反時計回りの影響を受け¹¹⁾,筑後川等 の出水に伴う栄養塩を P3,P4 から P2 地点へ表層か ら供給し,底層付近での有機物分解に伴う酸素消費 による貧酸素化が進行したと示唆される.

以上のレベル1の考察を踏まえ,D0の自己相関 を検討する. 自己相関の値は、現象に偶然性が強い 場合、長期間に渡って測定を継続するとゼロに収束 することが知られている. その傾向を検討するため, 図-14 に P2~P5 地点での D0 レベル 1 の自己相関を 示した. 図より, P3, P4 地点に注目すると, 第1 ピークが約14日後に見られ,第2ピークが30日後 となり、約2週間の周期が確認される. それに対し、 P2 地点では、約 30 日後に第1ピークがある.また、 P5 地点では、明確な周期が確認できないがゼロに は収束していない. 自己相関を求める場合, ナイキ ストの定理よりデータ数が半減するため D0 が最も 低下する8月中旬以降を捉えられていない.しかし、 前駆的な気象等の外力の影響によって D0 低下が引 き起こされたと仮定すると、8月中旬までの気象要 素との関連を検討する意味はあると考えられる.

(2) 気象要素・潮位との相互相関

ー例として、レベル1のP2~P5地点のD0と大浦 潮位、P3地点D0とA2地点の気象要素の相互相関 を図-15(a)、(b)に示す.図-15(a)より、8月10日 以前の相互相関に注目するとP5とP2,P3,P4地点の 変化には位相があり、P5→P4→P3→P2と移行する ことが分かる.このことは、先に述べた定性的な考 察となっている栄養塩の供給と貧酸素化の進行を説 明する結果となった.

また,図-15(b)より P3 地点の D0 と気象要素との 相互相関には,降雨・風速は短期的,気温・風向に は長期的な傾向が含まれていることが確認できる. さらに,8月下旬(24日頃)の D0 が長期に低下する 時期から自己相関の周期約 14日を考慮すると8月 10日付近となる.この時期の観測値を確認すると,

潮位は小潮~大潮時,気温 30℃,表・底層での塩 分差約 10psu,水温差約 5℃である.風速は約 4m/sec,風向は南~南西を記録している.

以上のように、この観測期間での現象と限定する が、これまで、一般的に述べられている貧酸素化の 発生と解消のパターンと多少異なっており、気象・ 海象の時空間変動の把握が重要となることが分かる.

5. おわりに

本研究では、離散ウェーブレット変換を用いて溶 存酸素濃度の変動特性を検討した.これによって、 分離された波形の自己相関、気象要素との相互相関 を実施することで、今後の貧酸素水塊の発生機構の 分析・評価に関する指標となる可能性が示された.

しかし,底質,流動等との関連性の議論がなされ ておらず,今後検討する予定である.

謝辞:本研究では,貧酸素水塊漁業被害防止法対策 事業(水産庁)並びに有明海・八代海再生重点課題 対策調査(環境省)による調査結果を西海区水産研 究所からご提供いただいた.ここに,謝意を表す.

参考文献

- 4.1) 梶原義範,富田友幸,中野拓治,磯部雅彦:有明海湾 奥西部海域における 2002 年夏期の貧酸素水塊の発生 状況について,土木学会論文集,第 747 巻,pp.187-196,2003.
- 中山哲巖, 佐伯信哉, 時吉学, 木本克則:有明海北西部 で発生する貧酸素水塊に着目した現地調査,海岸工学 論文集, 第 50, pp. 976–980, 2003.
- 3) 滝川清,田中健路,外村隆臣,西岡津恵,青山千春: 有明海の過去 25 年間における海域環境の変動特性, 海岸工学論文集,第 50 巻, pp. 1001-1005, 2003.
- 4)九州農政局:「有明海の再生に向けた新たな取組」環 境変化の仕組みの更なる解明のための調査報告 書,2008.
- 5)(社)日本水産資源保護協会:水産用水基準(2005年度版)
- 御哲雄,阿部良平:有明海の塩分と河川流量から見た 海水交換の経年変動,海の研究,12(3),pp.269-275, 2003.
- 7) 八木宏,松村航裕,井瀬肇,木元克則:夏季有明海干 潟前縁域における流動構造と貧酸素水塊の動態に関す る現地観測,海岸工学論文集,第53巻,pp.986-990, 2006.
- 8) 関根太郎,武居昌宏,岡野道治,長江啓泰,斎藤兆古, 堀井清之:離散ウェーブレット多重解像度解析による ドライバ精神負担度の可視化,可視化情報学会論文集, Vol. 20 No. 79, pp. 62-70, 2000.
- 9) 石川康宏:臨床医学のためのウェーブレット解析, 医 学出版, pp.118-122,2000.
- 10) H.Tennekes and J.Lumley(1972)藤原仁志, 荒川忠一
- 訳:乱流入門, 東海大学出版会, pp. 340-342, 1998.
- 田中昌宏,稲垣聡,山本克則:有明海の潮汐及び三次元流動シミュレーション,海岸工学論文集,第49巻,pp.406-410,2002.

- ・1 実施期間:平成22年1月~平成22年6月
- ・2 業務内容:論文の原案からデータ処理・分析・考察及び成果発表を実施