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Abstract

Nef is a multifunctional HIV-1 protein that accelerates progression to AIDS, and enhances the infectivity of progeny viruses
through a mechanism that is not yet understood. Here, we show that the small molecule compound 2c reduces Nef-
mediated viral infectivity enhancement. When added to viral producer cells, 2c did not affect the efficiency of viral
production itself. However, the infectivity of the viruses produced in the presence of 2c was significantly lower than that of
control viruses. Importantly, an inhibitory effect was observed with Nef+ wild-type viruses, but not with viruses produced in
the absence of Nef or in the presence of proline-rich PxxP motif-disrupted Nef, both of which displayed significantly
reduced intrinsic infectivity. Meanwhile, the overexpression of the SH3 domain of the tyrosine kinase Hck, which binds to a
PxxP motif in Nef, also reduced viral infectivity. Importantly, 2c inhibited Hck SH3-Nef binding, which was more marked
when Nef was pre-incubated with 2c prior to its incubation with Hck, indicating that both Hck SH3 and 2c directly bind to
Nef and that their binding sites overlap. These results imply that both 2c and the Hck SH3 domain inhibit the interaction of
Nef with an unidentified host protein and thereby reduce Nef-mediated infectivity enhancement. The first inhibitory
compound 2c is therefore a valuable chemical probe for revealing the underlying molecular mechanism by which Nef
enhances the infectivity of HIV-1.
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Introduction

Nef is a 25- to 30-kDa protein with no catalytic activity encoded

by the HIV-1 genome [1–4]. Studies of HIV-1-infected patients

have demonstrated Nef to be a critical determinant of the

progression to AIDS: HIV-1 strains without an intact nef gene

were frequently isolated from non-progressive long-term survivors

[5,6]. A subsequent study of HIV-1 transgenic mice confirmed the

pathogenetic activity of Nef: targeted expression of the entire

coding sequence of HIV-1 in CD4+ T cells and macrophages

caused a severe AIDS-like disease in mice, which was completely

abolished by disruption of the nef gene [7].

Nef is multifunctional. For instance, it accelerates the endocy-

tosis of CD4 [8,9], the primary entry receptor for HIV-1, which

allows efficient viral release from host cells [1–4]. Nef also reduces

the surface expression of MHC I through multiple mechanisms

[10–13], which diminishes the recognition of infected cells by

CTL [1–4]. Nef is also known to activate the Src kinase Hck

[14–16], which causes an impaired macrophage response to the

cytokine M-CSF [17,18] or triggers cell fusion of HIV-1-infected

macrophages [19]. Another hallmark function of Nef is the

enhancement of the intrinsic infectivity of progeny viruses. This

function of Nef is independent of CD4 downregulation and

requires the presence of Nef in viral producer cells [20–23].

Moreover, this function appears to depend on an early step of the

target cell infection process, as Nef is dispensable for the infectivity

of HIV-1 pseudotyped with vesicular stomatitis virus glycoprotein

VSV-G [24,25]. However, Nef does not affect viral assembly

or maturation, and it is still unclear how Nef enhances viral

infectivity [26].

Thus far, only a few chemical compounds that interfere with the

functions of Nef have been identified. Among them, a series of

guanidine alkaloid analogs were found to be too toxic for cell-

based assays [27]. A unique diphenylfuropyrimidine and its

analogs were identified to be strong inhibitors of the Nef-

dependent activation of Hck, but their primary target seemed to

be Hck not Nef [28]. In contrast, the chemical compounds D1 and

2c directly target Nef. Betzi et al. identified D1 and showed that it

reduced Nef-mediated MHC I, but not CD4, downregulation in a

dose-dependent manner [29]. Subsequently, we identified 2c, the

structure of which is distinct from that of D1, and showed that it

almost completely inhibited the Nef-dependent activation of Hck
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[30] and significantly reduced Nef-mediated MHC I, but not

CD4, downregulation [31]. The fact that 2c has the inhibitory

effect on MHC I downregulation and Hck activation, but not on

CD4 downregulation, agrees with the finding that MHC I

downregulation and Hck activation are mediated by overlapping

motifs or amino acids of Nef, which are distinct from those

required for CD4 downregulation [3,9,14,18]. However, none of

these compounds have been tested for their ability to interfere with

the enhancement of viral infectivity by Nef.

In contrast to its requirement for elevated in vivo viral load

[5,6], Nef is not essential for viral replication in ex vivo cell

cultures. Nonetheless, Nef significantly enhances viral replication

in primary CD4+ T cells and macrophages that have been

exposed to HIV-1 prior to their stimulation with mitogens

[32,33], a function of Nef that is likely determined by

enhancement of the initial infection with cell-free HIV-1 [34].

In this regard, a compound that can reduce viral infectivity would

be a valuable chemical probe for revealing the underlying

mechanism of this function of Nef. In this study, we identified 2c

as the first small compound that has an inhibitory effect on Nef-

mediated HIV-1 infectivity enhancement and reported its

inhibitory mechanism.

Figure 1. The effect of 2c on the infectivity of NL43 wild-type and Nef-defective mutant viruses. (A) The chemical structure of 2c. (B) The
infectivity of the NL43 wild-type (WT) and Nef-defective mutant (DNef) viruses to the target TZM-bl cells was compared by varying the concentration
of p24 Gag protein and is expressed as a percentage of the value for the sample on the far left. Data are shown as the mean6SD of triplicate assays
and are representative of two independent experiments with similar results. (C) 2c was added to 293 cells producing NL43-WT or DNef viruses at the
indicated concentrations for 2 days, and the concentration of p24 Gag protein in the cell supernatants was determined by ELISA (bar graph). Data are
shown as the mean6SD of triplicate assays and are representative of two independent experiments with similar results. Alternatively, the producer
cells were lysed and analyzed for the expression of Gag and Nef by Western blotting (lower blots). The actin blot was used as a loading control. (D)
The infectivity of NL43-WT (upper) or DNef viruses (lower) produced by 293 cells in the absence or presence of the indicated concentrations of 2c was
determined using TZM-bl cells as the target cells. The WT and DNef viruses were inoculated by changing the p24 concentration (2 or 4 ng/ml and 8 or
16 ng/ml for the WT and DNef viruses, respectively) so that the two viruses were similarly infective to the target cells. Infectivity is expressed as a
percentage of the value for the sample on the far left. Data are shown as the mean6SD of triplicate assays and are representative of three
independent experiments with similar results. *p,0.05.
doi:10.1371/journal.pone.0027696.g001
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Results and Discussion

2c reduces the infectivity of wild-type HIV-1
We assessed the effect of the compound 2c (Fig. 1A) on Nef-

mediated infectivity enhancement using a standard single-round of

replication assay [21–23]. HIV-1 viruses were prepared by

transfecting HIV-1 proviral clones into 293 cells (producer cells),

and infectivity was analyzed by inoculating TZM-bl cells (target

cells) with defined amounts of p24 Gag protein of the resultant

viruses. We first used the proviral clone NL43 and a Nef-defective

mutant (DNef) and confirmed that the infectivity of the DNef

viruses was lower than that of the NL43 wild-type (WT) viruses

(Fig. 1B). When added to the producer 293 cells, 2c did not affect

the production of WT or DNef viruses, even at a high

concentration such as 75 mM (Fig. 1C): there was no significant

difference in the supernatant p24 Gag protein concentration

(upper graph) or the processing of the Gag polyprotein in the cells

(lower blots) between the control and 2c-treated cells. However,

we found that the infectivity of the WT viruses produced in the

presence of 2c was significantly lower than that of the control

viruses (Fig. 1D, upper). An inhibitory effect of 2c was detectable

at a minimal concentration of 25 mM. Importantly, no such

inhibition was observed for the DNef viruses, even at a high 2c

concentration (75 mM) (Fig. 1D, lower). In the experiment shown

in Fig. 1D, WT and DNef viruses were inoculated into TZM-bl

cells, and the concentration of p24 was adjusted (2 or 4 ng/ml and

8 or 16 ng/ml for WT and DNef viruses, respectively) so that the

two viruses were similarly infective to the target cells (see Fig. 1B).

As the supernatant of proviral plasmid-transfected 293 cells was

used as a viral stock, 2c was also present in the culture of target

cells (,5 mM). However, 2c did not reduce the infectivity when

added to the target cells at a high concentration (10 or 25 mM)

together with WT viruses produced in the absence of 2c (Fig. 2A),

suggesting that the presence of 2c in the producer cells was

essential for its inhibitory effect. Although 2c was added to the

producer cells immediately after transfection in Fig. 1D, the

inhibitory effect was also observed when 2c was added 24 h after

transfection (Fig. 2B). Importantly, 2c did not show any inhibitory

effect on the infectivity of Nef+ HIV-1 viruses pseudotyped with

VSV-G (Fig. 2C), which was consistent with the finding that Nef

was dispensable for the infectivity of VSV-G-pseudotyped HIV-1

[24,25]. Therefore, these results indicated that 2c specifically

reduced the infectivity of the wild-type NL43 viruses produced in

the presence of Nef.

We also assessed the effect of 2c on viral replication. 2c

decreased by half in the number of viable peripheral blood

mononuclear cells after 9 days when used at 50 mM (data not

shown). On the other hand, 2c at the same concentration showed

no detectable toxicity to 293, TZM-bl, Jurkat T cells and

macrophages (data not shown). We therefore used Jurkat and

macrophages as target cells. As previously reported [28], the

replication of HIV-1 NL43 was independent of Nef in Jurkat T

cells (Fig. 3A). Accordingly, 2c failed to inhibit viral replication in

the cells (Fig. 3A). However, WT JRFL viruses replicated more

efficiently than DNef viruses in monocyte-derived macrophages,

and 2c significantly reduced the replication of WT viruses (Fig. 3B).

The result further supported the idea that the primary target of 2c

was Nef.

The inhibitory effect of 2c requires the proline-rich PxxP
motif of Nef

Next, we tested the inhibitory activity of 2c on the infectivity of

NL43 viruses with point mutations in Nef; i.e., R77A, K82A,

D86A, F90A, or G119L [35]. As shown, 2c reduced the infectivity

of all these viruses, although to a varying degree (Fig. 4A).

Interestingly, the intrinsic infectivity of the NL43-G119L viruses

was shown to be low [35] (also see Fig. 4A), but 2c further reduced

the infectivity of the mutant viruses to the level of the DNef viruses

Figure 2. Several features of the activity of 2c on viral infectivity. (A) 2c was added to the target TZM-bl cells at the indicated concentrations
together with the NL43 wild-type (WT) viruses produced in the absence of 2c. The amount of p24 inoculated was 4 or 8 ng/ml. The infectivity is
expressed as a percentage of the value for the sample on the far left. (B) 2c (50 mM) or the control DMSO was added to the producer 293 cells
immediately after transfection (0 h) or 24 h after transfection of the NL43 WT plasmid. The infectivity of the viruses was determined using TZM-bl
cells and is expressed as a percentage of the value for the sample on the far left. The amount of p24 inoculated was 4 ng/ml. (C) 2c (50 or 75 mM) or
the control DMSO was added to the producer 293 cells immediately after co-transfection of Env-defective NL43 plasmid and VSV-G expression
plasmid. The infectivity of the pseudotyped viruses was determined using TZM-bl cells and is expressed as a percentage of the value for the sample
on the far left. The amount of p24 inoculated was 4 or 8 ng/ml. (A–C) Data are shown as the mean6SD of triplicate assays and are representative of
two independent experiments with similar results. *p,0.05.
doi:10.1371/journal.pone.0027696.g002
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(Fig. 4B). This result supported the conclusion that 2c reduced the

infectivity of the NL43 viruses in a Nef-dependent manner.

The dileucine motif of Nef (164LL165) that is required for CD4

downregulation is also required for the enhancement of infectivity

[3,36]. However, it was unlikely that the inhibitory activity of 2c

was mediated through the motif, as 2c did not inhibit CD4

downregulation [31]. On the other hand, Nef has another

characteristic motif; i.e., a proline-rich PxxP motif, and the

substitution of the proline residues for alanine residues (AxxA) is

known to result in reduced viral infectivity [3]. Thus, we tested

whether 2c further reduced the infectivity of Nef-AxxA viruses as it

did with G119L mutant viruses (see Fig. 4B). To test whether 2c is

also effective against Nef derived from an additional HIV-1 strain,

we used an HIV-1 JRFL construct in which nef gene was replaced

with that of the SF2 strain Nef or its AxxA mutant [30] in the

subsequent experiments. First, as expected, the infectivity of the

Figure 3. The effect of 2c on the replication of HIV-1. (A) Jurkat cells were infected with either the NL43 wild-type (WT) or Nef-defective (DNef)
viruses at the indicated concentrations of p24, and cultured in the presence (50 mM) or absence of 2c. AZT was also used at 5 mM. The concentration
of p24 in the supernatants (at day 5, 7 or 9) was determined by ELISA. Data are shown as the mean6SD of triplicate assays and are representative of
two independent experiments with similar results. (B) Peripheral blood monocyte-derived macrophages were obtained from two different donors,
infected with either the JRFL wild-type (WT) or Nef-defective (DNef) viruses at the indicated concentrations of p24, and cultured in the presence
(50 mM) or absence of 2c. AZT was also used at 5 mM. The concentration of p24 in the supernatants (at day 6, 9 or 12) was determined by ELISA. Data
are shown as the mean6SD of triplicate assays. *p,0.05.
doi:10.1371/journal.pone.0027696.g003

Small Molecule Inhibition of HIV-1 Infectivity

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e27696



Nef- AxxA viruses was lower than that of the wild-type (WT)

viruses, although it was still higher than that of the DNef viruses

(Fig. 5A). As was the case with the NL43 viruses (see Fig. 1C), 2c

did not affect viral production in the JRFL-SF2 Nef viruses

(Fig. 5B): there was no change in the amount of p24 Gag protein in

the supernatants (upper graph), the processing of the Gag

polyprotein, or the expression of Nef or another viral protein,

Vif, (lower blots) between the control and 2c-treated cells.

Moreover, as was the case with the NL43 viruses (see Fig. 1D),

2c significantly reduced the infectivity of the produced JRFL-SF2

Nef WT viruses, but not that of the DNef viruses (Fig. 5C).

However, we found that 2c minimally affected the infectivity of the

Nef-AxxA mutant viruses (Fig. 5C, middle), which was in contrast

with the finding that it further reduced the infectivity of the Nef-

G119L mutant viruses (see Fig. 4B). These results suggested that

the inhibitory activity of 2c is mediated, at least in part, through

the proline-rich motif of Nef.

2c binds directly to Nef in a similar manner to the Hck
SH3 domain

Although 2c was the first small molecule to be found to reduce

the Nef-mediated infectivity of HIV-1, the overexpression of

mutant forms of Hck in viral producer cells was also reported to

result in reduced viral infectivity [37]. Hck is a cellular tyrosine

kinase, and its SH3 domain has been shown to bind to Nef with

high affinity [14–16], although its pathological significance is not

yet understood. It is also known that the SH3 domain forms an

intra-molecular interaction with the linker region of Hck [15,16]

(also see Fig. 6A). Thus, the SH3 domain of mutant Hck, which

lacks the linker region and the subsequent kinase domain (see

Fig. 6A, HckN), is devoid of the intra-molecular interaction, and is

thought to more efficiently bind to Nef and thereby reduce viral

infectivity. Indeed, when co-expressed with the NL43 proviral

clone, HckN and HckN-R151S, which carries a mutation in its

SH2 domain, but not HckN-W93F, which carries a mutation in its

SH3 domain, significantly reduced the infectivity of viruses

produced from the cells (Fig. 6B).

Based on these results, we hypothesized that 2c inhibits viral

infectivity in a similar manner to mutant Hck. To this end, we

examined whether 2c and Hck compete to bind to Nef using an in

vitro pull-down assay. First, we performed a pull-down assay with

various combinations of GST-Nef fusion proteins (Fig. 7A) and the

Hck proteins described above. As a result, we found that the wild-

type (WT) NL43 Nef bound to the wild-type (WT) Hck, HckN,

and HckN-R151S, but not Hck-W93F, which had a mutation in

its Nef-binding SH3 domain (Fig. 7B). In contrast, the PxxP motif-

disrupted AxxA mutant did not bind to any of these Hck proteins

(Fig. 7B), confirming that the pull-down system specifically

detected Nef-Hck binding. As the affinity of the SF2 strain Nef

for Hck was higher than that of NL43 strain Nef, which was due to

the different amino acid present within the PxxP motif (Figs. 7A

and B, NL43 Nef-TR mutant with a T71R substitution), we used

SF2 Nef in the following experiments. Among three different

competitive pull-down assays, the pre-incubation of Nef with 2c

most effectively inhibited the binding of Hck to Nef (Fig. 7C,

right). We therefore concluded that both the Hck SH3 domain

and 2c directly bind to Nef and that their binding sites overlap.

To further confirm the above-mentioned conclusion, we used a

GST fusion protein containing a 20-mer peptide derived from the

PxxP motif of SF2 Nef (Fig. 8A, SF2-PxxP). As shown, the

observed binding of the SF2-PxxP peptides to Hck was specific,

albeit weak, in comparison with that of the full-length Nef, since it

was detected with the wild-type Hck, HckN, and HckN-R151S,

but not with the Nef binding-deficient HckN-W93F (Fig. 8A).

Importantly, 2c inhibited the binding of Hck to the Nef-PxxP

peptide, and its inhibitory effect was more marked when the Nef-

PxxP peptide was pre-incubated with 2c prior to its incubation

with Hck (Fig. 8B). This result suggests that 2c binds to Nef, at

least in part, through the region including the PxxP motif, which is

consistent with the finding that unlike the wild-type viruses, the

Figure 4. The effect of 2c on the infectivity of NL43 viruses with point amino acid mutations in Nef. (A) The infectivity of the indicated
NL43 viruses produced by 293 cells in the absence or presence of 50 mM 2c was determined using TZM-bl cells as the target cells and is expressed as
a percentage of the value for the sample on the far left. The amount of p24 inoculated was 10 ng/ml. Wild-type (WT), Nef-defective (DNef), or viruses
with the indicated amino acid point mutations in Nef (R77A, K82A, D86A, F90A, or G119L) were used. (B) The infectivity of NL43 viruses with the
G119L mutation in Nef or DNef viruses produced by 293 cells in the absence or presence of 50 mM 2c was determined using TZM-bl cells as the target
cells and is expressed as a percentage of the value for the sample on the far left. The amount of p24 inoculated was 2, 8, or 32 ng/ml. (A, B) Data are
shown as the mean6SD of triplicate assays and are representative of two independent experiments with similar results. *p,0.05.
doi:10.1371/journal.pone.0027696.g004
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infectivity of the PxxP motif-disrupted AxxA mutant viruses was

minimally affected by 2c (see Fig. 5C).

Finally, a computer-assisted simulation of the 2c-Nef docking

model supported the idea that 2c binds directly to Nef and

suggested that R77, K82, A83, D86, I87, F90, Q118, and Y120

(positions are based on the sequence of NL43 strain Nef) may be

responsible for this binding (Fig. 9). Among them, R77 lies within

the PxxP motif (–PVTPQVPLR77P–, the proline residues are

Figure 5. The effect of 2c on the infectivity of SF2 wild-type, Nef-defective, and Nef PxxP motif-disrupted viruses. (A) The infectivity of
the SF2 wild-type (WT), Nef-defective (DNef), and Nef PxxP motif-disrupted viruses (AxxA) was compared by inoculating them into the target TZM-bl
cells at a concentration of 8 ng/ml p24 and is expressed as a percentage of the value for the sample on the far left. Data are shown as the mean6SD
of triplicate assays and are representative of two independent experiments with similar results. *p,0.05. (B) 2c was added to 293 cells producing SF2-
WT, DNef, or AxxA viruses at the indicated concentrations for 2 days, and the concentration of p24 Gag protein in the supernatants was determined
by ELISA (bar graph). Data are shown as the mean6SD of triplicate assays and are representative of two independent experiments with similar
results. Alternatively, the producer cells were lysed and analyzed for the expression of Gag, Nef, and Vif by Western blotting (lower blots). The actin
blot was used as a loading control. (C) The infectivity of SF2-WT (top), AxxA (middle), or DNef viruses (bottom) produced by 293 cells in the absence
or presence of the indicated concentrations of 2c was determined using TZM-bl cells as the target cells. The WT, AxxA, and DNef viruses were
inoculated by changing the concentration of p24 (8 ng/ml, 16 ng/ml, and 32 ng/ml for WT, AxxA and DNef viruses, respectively) so that these viruses
were similarly infective to the target cells. Infectivity is expressed as a percentage of the value for the sample on the far left. In the top panel, the
infectivity values of the AxxA and DNef viruses produced at the same concentration of p24 (i.e., 8 ng/ml) are also shown as a reference. In the middle
panel, the infectivity values of the DNef viruses produced at the same concentration of p24 (i.e., 16 ng/ml) are also shown. Data are shown as the
mean6SD of triplicate assays and are representative of three independent experiments with similar results. *p,0.05.
doi:10.1371/journal.pone.0027696.g005
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underlined). On the other hand, molecular modeling also

identified several residues in Nef that are responsible for its

binding to Hck, such as P72, P75, R77, A83, F90, W113, His116,

and Y120 [38]. Among them, R77, A83, F90, and Y120 were also

found in the 2c-Nef docking model (Fig. 9, underlined), supporting

the finding that 2c inhibits the binding of Hck to Nef or Nef PxxP

motif-derived peptides (Figs. 7C and 8B). In summary, the present

study revealed that the compound 2c reduced the infectivity of

HIV-1 viruses and suggested that its inhibitory activity is mediated

by its direct binding to Nef.

It remains to be determined exactly how 2c reduces Nef-

mediated infectivity enhancement. Given that both 2c and the

Hck SH3 domain bind directly to overlapping domains of Nef and

reduce viral infectivity, we speculate that their inhibitory effects

are due to the inhibition of the interaction of Nef with host

proteins (Fig. 10). One of the candidates for such a host protein is

p21-activated kinase 2, PAK2, the association of which depends

on the Nef PxxP motif [39]. However, we did not observe any

inhibitory effect of 2c on the association of Nef with PAK2 activity

or its downstream effector functions (data not shown), and the Nef-

PAK2 association is dispensable for the enhancement of infectivity

by the viral protein [40]. Another candidate is the GTPase

dynamin 2 whose interaction with Nef was implicated in

enhancing viral infectivity [41]. However, again, we did not

observe any significant inhibitory effect of 2c on the binding of Nef

to dynamin 2, which was assessed using a co-immunoprecipitation

assay (data not shown). Thus, the inhibitory activity of 2c observed

in this study appears to be independent of these host proteins. The

inhibitory compound 2c is a useful chemical probe for investigat-

ing the underlying molecular mechanism by which Nef enhances

the infectivity of HIV-1, and in particular, for identifying the host

proteins involved in the process.

Recently, a single-domain antibody (sdAb) that binds to Nef was

reported [42]. Although the binding domains in Nef remained

unclear, anti-Nef sdAb was also shown to reduce in vitro viral

infectivity [42]. Therefore, to clarify whether viral infectivity

enhancement by Nef accounts for the high in vivo viral load

observed in the presence of Nef, it is necessary to test the effects of

2c, a more potent analog, and/or the anti-Nef sdAb in animal

models such as HIV-1-infected humanized mice.

Materials and Methods

The compound 2c preparation
Some of the 2c was prepared by Kyowa Hakko Kogyo (Tokyo,

Japan), as described previously [43], whilst the rest (a large

quantity) was prepared by Sai Advantium Pharma (Hyderabad,

India). Both preparations were dissolved in DMSO and had an

equivalent inhibitory effect on HIV-1 infectivity (data not shown).

Proviral plasmids
The provial NL43 plasmid and its derivatives, which had

mutations in the Nef gene (DNef, R77A, K82A, D86A, F90A, and

G119L), were prepared as described previously [35]. The Env-

defective mutant (pNL-Kp) and VSV-G expression plasmid were

prepared as described previously [44]. The proviral JRFL plasmid

was provided by Y. Koyanagi (Kyoto University, Kyoto, Japan)

[45]. We also prepared the proviral JRFL plasmid, in which the

Nef gene was disrupted (DNef) or replaced with the PxxP motif-

disrupted AxxA mutant [30].

Hck plasmids
The p56Hck cloned into the pcDNA3.1 vector (Invitrogen) was

prepared as described previously [18]. The mutant forms of Hck

cloned into the pCAGGS vector (HckN, Hck-R151S, and Hck-

W93F; see Fig. 6A) were provided by M. Matsuda (Kyoto

University, Kyoto, Japan) [37].

GST fusion plasmids
The control GST and GST-Nef fusion plasmids (the wild-type

NL43, NL43 Nef-TR mutant, NL43 Nef-AxxA, and the wild-type

SF2; see Fig. 7) were prepared as described previously [30]. We also

prepared a GST-SF2 Nef-PxxP plasmid, which expressed a 20-mer

peptide derived from the PxxP motif of SF2 Nef (see Fig. 8). The

cDNA containing the motif was amplified by PCR using the

following primers (59-GGATCCGTGGGTTTTCCAGT-39 and

59-GTCGACCTATAAAGCTGCCT-39), cloned into the pCR2.1

vector (Invitrogen), sequenced using the BigDye Terminator v3.1

Figure 6. The effects of the overexpression of mutant forms of
Hck on viral infectivity. (A) The mutant forms of Hck used are shown
schematically. HckN lacks the kinase domain and the two intra-
molecular interactions present in the wild-type (WT) Hck. HckN-based
HckN-R151S and HckN-W93F have amino acid substitutions in their SH2
and SH3 domain, respectively. (B) The 293 cells were transfected with
the NL43 wild-type proviral plasmid or co-transected with the indicated
amount of plasmid (HckN, HckN-R151S, or HckN-W93F). The infectivity
of the viruses produced in the supernatants was determined using
TZM-bl cells as the target cells and is expressed as a percentage of the
value for the sample on the far left (bar graph). The amount of p24
inoculated was 8 ng/ml. Alternatively, the producer 293 cells were lysed
and analyzed for the expression of the mutant Hck proteins by Western
blotting (blot).
doi:10.1371/journal.pone.0027696.g006
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Cycle Sequencing kit (Applied Biosystems) and the ABI PRISM

3100 Genetic Analyzer (Applied Biosystems), and cloned into the

pGEX-6P-1 bacterial expression vector (GE Healthcare).

Virus preparation
HEK293 cells (Invitrogen) were maintained in DME medium

supplemented with 10% FCS and used as viral producer cells. The

293 cells were seeded onto 12-well tissue culture plates at a density

of 1.86105 cells/well and transfected with 1.6 mg/well of various

proviral HIV-1 plasmids using 4 ml/well Lipofectamine 2000

reagent (Invitrogen). To prepare VSV-G-pseudotyped viruses (see

Fig. 2C), cells were transfected with 0.5 mg/well Env-defective

mutant plasmid (pNL-Kp) and 1.0 mg/well VSV-G expression

plasmid. In a selected experiment (see Fig. 6B), the cells were co-

transfected with 0.8 mg/well pNL43 plasmid and 0.2, 0.4, or

0.8 mg/well of one of the mutant forms of Hck (HckN, HckN-

R151S, or HckN-W93F). The total amount (1.6 mg/well) of the

plasmid was normalized using the pCAGGS empty vector. After

6 h of transfection, the culture medium was replaced with fresh

medium, and the cells were cultured for an additional 48 h in the

presence or absence of 2c at the indicated concentrations. In a

selected experiment (see Fig. 2B), 2c was added to the culture 24 h

after transfection. Then, the supernatants containing the viruses

were clarified by brief centrifugation, and viral production was

assessed by measuring the concentration of p24 Gag protein in the

supernatants using the RETROtek p24 Antigen ELISA kit

(ZeptoMetrix). Viral production was also assessed by analyzing

the expression of viral proteins in the cells by Western blotting.

The preparation of the total cell lysates and Western blotting were

performed essentially as described previously [17,18,30]. Briefly,

the cells were lysed on ice with Nonidet P-40 lysis buffer (1%

Nonidet P-40, 50 mM Tris, and 150 mM NaCl) containing

protease inhibitors (1 mM EDTA, 1 mM PMSF, 1 mg/ml

aprotinin, 1 mg/ml leupeptin, and 1 mg/ml pepstatin). Total cell

lysates were then subjected to Western blotting. The antibodies

used were as follows: anti-Gag (#65-004; BioAcademia, Osaka,

Japan), anti-Nef (#2949; NIH AIDS Research & Reference

Program), anti-Vif (#319; NIH AIDS Research & Reference

Program), and anti-actin (#C-2; Santa Cruz). The detection was

performed with HRP-labeled secondary antibodies (GE Health-

Figure 7. The effect of 2c on binding between Nef and Hck. (A) The Nef proteins fused to GST are shown schematically. In addition to the wild-
type (WT) SF2 and NL43 strain Nef, the NL43-TR mutant, which contained a T71R amino acid substitution, and another NL43 AxxA mutant, in which
the PxxP motif was disrupted (P72A and P75A substitutions), were used. (B) The resins to which the control GST or indicated GST-Nef fusion proteins
were bound were incubated with the lysates of 293 cells expressing the indicated Hck protein. The amount of Hck bound to the resins was
determined by Western blotting (pull-down assay). To confirm the equal expression of these Hck proteins in the 293 cells, equal amounts of each cell
lysate were analyzed (Input Hck). Moreover, the amounts of the GST and GST-Nef fusion proteins bound to the resins were verified by the elution
from the resins followed by SDS-PAGE/Coomassie brilliant blue (CBB) staining. (C) Three different competitive pull-down assays were performed. In
the experiment shown in the left panel, the resins to which the GST-SF2 Nef fusion proteins were bound were incubated with the lysates obtained
from the 293 cells expressing the wild-type Hck for 3 h, and then 2c was added to the mixture at the indicated concentration. In the experiment
shown in the middle panel, the resins to which the GST-SF2 Nef fusion proteins were bound were incubated with the lysates of 293 cells expressing
the wild-type Hck and the indicated concentration of 2c. In the experiment shown in the right panel, the resins to which the GST-SF2 Nef fusion
proteins were bound were first incubated with the indicated concentration of 2c for 4 h and then washed to remove unbound 2c. Then, the resins
were incubated with the lysates of 293 cells expressing the wild-type Hck. The amount of Hck bound to the resins was determined by Western
blotting (upper blots). The GST-Nef blot was used as a loading control (lower blots). Data shown are representative of two independent experiments
with similar results.
doi:10.1371/journal.pone.0027696.g007
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care), the Immunostar LD Western blotting detection reagent

(Wako, Osaka, Japan), and an image analyzer (ImageQuant LAS

4000; GE Healthcare).

Infectivity assay
TZM-bl cells (NIH AIDS Research & Reference Program) were

maintained in DME medium supplemented with 10% FCS and

used as viral target cells. TZM-bl cells were seeded onto 96-well

tissue culture plates at a density of 66103 cells/well and challenged

with serially diluted viruses normalized for the concentration of

p24 Gag protein. The supernatant of the proviral plasmid-

transfected 293 cells was used as a viral stock and diluted with

DME medium containing 10% FCS and 20 mg/ml DEAE-

dextran (MP Biomedicals, Solon, OH). The diluted viruses were

then added to the target cells (150 ml/well) overnight, and the

culture medium was replaced with fresh DME medium containing

10% FCS and incubated for 48 h. In a selected experiment (see

Fig. 2A), 2c was added to TZM-bl cells together with the diluted

viruses. Viral infectivity was assessed by measuring the HIV-1 Tat-

mediated induction of b-galactosidase activity in the target cells

using a b-Galactosidase Enzyme Assay System (Promega). The

absorbance of the wells was measured at 420 nm using a

Multiskan microplate reader (Thermo Electron).

Replication assay
The replication assay with macrophages was performed essen-

tially as described previously [46]. Heparinized venous blood was

collected from healthy donors, after informed consent was obtained

in accordance with the Declaration of Helsinki. The approval for

this study was obtained from the Kumamoto University Medical

Ethical Committee. Mononuclear cells obtained using LSM reagent

(MP Biomedicals) were suspended into RPMI1640 medium-1%

FCS at 16106 cells/ml and seeded into 24-well plates. Monocytes

were enriched by adherence to plates for 1 h at 37uC, and non-

adherent cells were removed by extensive washing with PBS. Then,

the adherent monocytes were differentiated into macrophages by

culturing with RPMI1640-10% FCS containing 100 ng/ml rhM-

CSF (a gift from Morinaga Milk Industry, Kanagawa, Japan). After

3 days, the cultures were replaced with fresh complete media and

incubated for another 3 days. The purity of the day 6-macrophages

prepared by this method was routinely more than 95% when

assessed by the expression of CD14 (data not shown). Then,

macrophages were incubated with 250 ml of the 293 cell

supernatants containing JRFL HIV-1 viruses for 2 h at 37uC.

Either 2c or DMSO was added to the incubation together with the

diluted viruses. AZT (NIH AIDS Research & Reference Program)

was used as a positive control. The cells were washed twice with PBS

to remove unbound viruses and cultured with RPMI1640-10% FCS

containing rhM-CSF in the presence or absence of 2c or AZT. One-

half of the culture media was replaced with the complete media

every 3 days. The culture supernatants collected at day 6, 9 and 12

were analyzed for the concentration of p24 Gag proteins by ELISA

to monitor viral replication.

Jurkat cells were also used in this study. The cell pellet (16106

cells) were incubated with 500 ml of the 293 cell supernatants

containing NL43 viruses for 2 h at 37uC. Either 2c or DMSO was

added to the incubation together with the diluted viruses. AZT

was used as a positive control. The cells were washed twice with

PBS, resuspended into 1 ml of RPMI1640-10% FCS, and

cultured for 3 days in the presence or absence of 2c or AZT.

Then, the culture were diluted (1/5) with RPMI1640-10% FCS,

and cultured for another 2 days in the presence or absence of 2c or

AZT. The concentration of p24 in the culture supernatants of day

5, 7 and 9 was analyzed as above.

GST pull-down assay
The control GST and GST-Nef fusion proteins cloned in

the pGEX-6P-1 vector were expressed in E. coli BL21 cells

Figure 8. The effect of 2c on the binding between Nef PxxP
motif-containing peptides and Hck. (A) The Nef peptide fused to
GST is shown schematically. The 20 amino acid peptide derived from the
PxxP motif of SF2 Nef was used (the proline residues are underlined). The
resins to which the control GST, GST-SF2 Nef-PxxP peptides (SF2-PxxP), or
GST-intact SF2 Nef (SF2-WT) fusion proteins were bound were incubated
with the lysates of 293 cells expressing the indicated Hck protein. The
amount of Hck bound to each resin was determined by Western blotting
(Pull-down). To verify the equal expression of these Hck proteins in the
293 cells, equal amounts of each cell lysate were analyzed (Input Hck).
Moreover, the amounts of the GST and GST-Nef fusion proteins bound to
the resins were verified by eluting from the resins followed by SDS-PAGE/
Coomassie brilliant blue (CBB) staining. (B) Two different competitive
pull-down assays were performed. In the experiment shown in the left
panel, the resins to which the GST-SF2 Nef-PxxP peptides were bound
were incubated with the lysates of 293 cells expressing the wild-type Hck
and the indicated concentration of 2c. In the experiment shown in the
right panel, the resins to which the GST-SF2 Nef-PxxP peptides were
bound were incubated with the indicated concentrations of 2c for 4 h
and then washed to remove unbound 2c. Then, the resins were
incubated with the lysates of 293 cells expressing the wild-type Hck. The
amount of Hck bound to the resins was determined by Western blotting
(upper blots). The GST-Nef blot was used as a loading control (lower
blots). Data shown are representative of two independent experiments
with similar results.
doi:10.1371/journal.pone.0027696.g008
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(GE Healthcare). The cells were grown in LB medium containing

50 mg/ml ampicillin, before being induced with 1 mM IPTG

(Sigma). The expression-induced cells were harvested and lysed

with BugBuster Protein Extraction Reagent containing 1 U/ml

rLysozyme and 25 U/ml Benzonase Nuclease (all from Novagen).

The cleared lysates were then incubated with GST-Bind Resin

(Novagen). After extensive washing with GST Bind/Wash Buffer

(Novagen), the resin was incubated with the total cell lysate of the

293 cells transfected with the expression plasmid for Hck for 12 h.

In the competitive pull-down assay, we employed the following 3

protocols: (1) the concurrent addition of 2c and Hck-containing

lysates to the GST-Nef-bound resin, (2) the addition of Hck-

containing lysates for 3 h followed by the addition of 2c, (3) the

addition of 2c at the indicated concentrations for 4 h followed by

the addition of the Hck-containing lysates. The incubation of the

above mixtures was carried out at 4uC in Nonidet P-40 lysis buffer

(1% Nonidet P-40, 50 mM Tris, and 150 mM NaCl) containing

protease inhibitors (1 mM EDTA, 1 mM PMSF, 1 mg/ml

aprotinin, 1 mg/ml leupeptin, and 1 mg/ml pepstatin). After

extensive re-washing with complete Nonidet P-40 lysis buffer,

the resin was boiled with SDS-PAGE sample buffer, and the

eluates were analyzed for the presence of Hck by Western blotting

with anti-Hck antibodies (clone 18; Transduction Laboratories).

The 2c-Nef docking model
We predicted the complex structures of Nef and 2c by

homology modeling and docking simulation using the Molecular

Operating Environment (MOE) ver. 2007.09. (Chemical Com-

puting Group, Canada). First, homology modeling [47–49] was

used to construct the model structure of HIV-1 Nef SF2 strain

using its NMR structure (PDB code: 2NEF) [50] as a template.

During the modeling, energy calculations were performed with the

AMBER ff99 force field [51] and the GB/VI implicit solvent

energy function [52]. Next, docking simulation of 2c with the

homology model of Nef was achieved with the ASEDock module

[53]. The initial structure of 2c was generated with the Molecular

Builder module. Then, we searched for the binding site of 2c with

the Site-Finder module. During the simulation, the energy

calculations were performed with the MMFF94x force field

[54,55] and the GB/VI implicit solvent energy function [52].

Figure 9. The 2c-Nef docking model. The amino acids that are predicted to be involved in the interaction between Nef and 2c are indicated. The
positions of these amino acids in the NL43 strain and SF2 strain are shown. The amino acids predicted to interact with the Hck SH3 domain are
underlined [38].
doi:10.1371/journal.pone.0027696.g009

Figure 10. A model of the inhibitory effect of 2c. Both 2c and the Hck SH3 domain bind directly to Nef and reduce viral infectivity, probably by
inhibiting the interaction of Nef with an unidentified cellular protein(s).
doi:10.1371/journal.pone.0027696.g010
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During the docking simulation, movement of the main chain

atoms around 4.5 Å of the ligand binding site in Nef was

restrained with a harmonic potential of 100 kcal/mol/Å2, while

the atoms in compound 2c were not constrained. In this study, the

structure with the lowest score was selected for the model.

Statistical analysis
The statistical significance of differences between assay groups

was determined using Mann-Whitney U test. p values less than

0.05 were considered significant.
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