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Chapter 1

Introduction

Since 2000, high pressure research of liquid structure has attracted great
attentions. That year, a first-order liquid-liquid phase transition has been
observed for phosphorus, that is, the structure of liquid phosphorus jumps
suddenly from a molecular structure to a new polymetric structure form
with higher density by increasing pressure [1]. After that, many high pres-
sure studies have been conducted to investigate liquid structure, especially
covalent liquids, such as liquid SiO2, GeO2, silicate and germanate, as candi-
dates for observing pressure-induced first-order liquid-liquid phase transition.
Additionally covalent liquids are attracted interest from earth science since
they are strong related to Earth’s mantle.

Besides structural changes, there are two interesting topics in research of
covalent liquids under pressure. One is (i)viscosity behavior and the other is
(ii)metallization.

(i) Viscosity of usual liquid such as liquid metal increase with pressure.
However, a number of covalent liquids, such as SiO2, GeO2, silicates and
germanates, have abnormal behavior of the viscosity shown in Fig. 1.1, i.e.
the viscosity significantly drops with pressure [2, 3]. This anomalous behavior
of the viscosity is considered to be related to the atomic diffusion in the liquids
under pressure. Since it is very difficult to investigate the atomic diffusion in
liquid state from experiment, the microscopic origin of anomalous pressure
dependence of the viscosity is still unknown. It is, therefore, of particular
interest to investigate the pressure dependence of the microscopic diffusion
mechanism in covalent liquids with using computer simulation.

(ii)When pressure increases, metallization occurs in all substances. Liq-
uids matter is no exception. The metallization of covalent liquids with in-
creasing temperature have been intensively studied because of the anomaly
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Figure 1.1: Presssure dependence of the viscosity of various silicate and
GeO2 [4]

which is metallization with volume expansion. On the other hand, pressure-
induced metallization is accepted as expected phenomenon. Therefore, there
are only a few studies about metallization with increasing pressure. Covalent
liquids have strong local units such as SiO4 tetrahedral unit, BO3 triangle
local unit and Se chain structure unit. When the pressure increases and met-
allization occurs, these local units should transform into other shape of local
units or be broken. It is, however, unknown how to rearrange these local
units.

Computer simulation based on molecular dynamics is powerful approach
to clarify experimental difficult topics in the situation just described, such
as the microscopic mechanism of atomic diffusion and the detail of pressure-
induced metallization in covalent liquids.

Classical molecular dynamics (MD) using emprical potentials is well es-
tablished as a powerful tool serving to investigate many-body condenced
matter system including liquid system. Since the classical MD simulation
is based on emprical potential, the result obtained from the simulation is
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significantly depended on the choice of the potential. To estimate the sim-
ulation result quantitatively, it is required to compare the result obtained
by the simulation to the experimental result. Due to the above fact, the
invesitigation based on classical MD simulation is very hard in the following
type of system.

(i) “the extream condition system ” such as high temperatute or high pres-
sure in which it is difficult to perform experiments.

(ii) “the chemical complex system” in which there are many different type
of interactions between atoms.

Ab initio molecular dynamics overcomes these problems. The basic idea
underlying every ab initiomlecular dynamics method is to compute the forces
acting on the nuclei from electronic structure calculations that are performed
“on-the-fly” as the molecular dynamics trajectory is generated. Since forces
acting on the nuclei are calculated without depending on the any emprical
parameters in ab initio molecular dynamicis, the calculation under the ex-
tream condition such as high temperature or high pressure and the chemical
complex system in which interactions between atoms changes between MD
simulations or there are many different types interactions became possible.

We apply this ab initio molecular dynamics simulation to several cova-
lent liquids. In addition, a new method of ab initio molecular dynamics
adaptation of electronic transition and the application are introduced.

(i) liquid B2O3, SiO2 GeO2 and SrGeO3 in order to clarify the dynamic
properties of liquid oxide under pressure. Transport properties of liquid
oxide, such as liquid B2O3, SiO2 and GeO2, under pressure are quite
interesting in the sense that they show unexpected pressure depen-
dence. It is, therefore, of partuicular interest to explore the dynamic
properties and clarify the microscopic origin of the unexpected pres-
sure dependence of liquid oxide. We focus on the relationship between
macroscopic diffusion properties and microscopic diffusion mechanism.

(ii) liquid Se and liquid AsS in order to clarify the microscopic mechanism
of pressure-induced metallization in liquid calcogenide. It is well known
that pressure leads to sturctural change accompaning with metalliza-
tion in liquid chalcogenide. However, the microcopic mechanism of the
metallization and properties in the metallic state are still unknown. We
focus on the the pressure effects on the covalent-like interaction during
pressure-induced metallizatin.
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(iii) light-harvesting dendrimer. The new method of ab initio molecular dy-
namics is introduced. Light-harvesting dendrimers is a example of the
application. In the light-harvesting dendrimers, electronic excitation
energy due to photoexcitation of antennas located on the periphery
of the molecules is rapidly transported to the photochemical reaction
centers at the cores of the molecules, which in turn perform useful
work such as photosynthesis and molecular actuation. We focus on the
energy tranport mechanism on atomic level.



Chapter 2

Method of Calculation

2.1 Density functional theory

The fundamental concept of density functional theory is that any properties
of a system of many interacting particles can be viewed as a functional of the
ground state density n0(r); that is, one scalar function of position n0(r), in
principle, determines all the information in the many-body wavefunctions for
the ground state and all excited states. Density functional theory is based on
two theorems first proved by Hohenberg and Kohn [5]. The relations based
on the book ”Electronic Structure” [6] can be started as follows:

� Theorem I: For any system of interacting particles in an external
potential Vext(r) is determined uniquely, except for a constant, by the
ground state density n0(r).

� Corollary I: Since the hamiltonian is thus determined, except for a
constant shift of the energy, it follows that the many-body wavefunc-
tions for all states (ground and excited) are determined. Therefore
all properties of the system are completely determined given only the
ground state density n0(r).

� Theorem II: A universal functional for the energy E[n] in terms of
the density n(r) can be defined, valid for any external potential Vext(r).
For any particular Vext(r), the exact ground state energy of the system
is the exact ground state density n0(r).

� Corollary II: The functional E[n] alone is sufficient to determine the
exact ground state energy and density.
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2.1.1 Kohn-Sham equation

The electronic structure of a physical system is calculated by the density
functional theory (DFT). In the Kohn-Sham formulation of the DFT, the
energy of the system is expressed as a functional of atomic positions {RI}
and one-electron wave functions (or Kohn-Sham orbitals) {ψm} in the atomic
unit:

E[{ψm}, {RI}] =Ts[ρ] +
∑
m

fm

∫
ψ∗
m(r)Vion(r)ψm(r)dr

+
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EXC[ρ] +

1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
(2.1)

where Ts[ρ] is the kinetic energy of a noninteracting electron gas in its
ground state with the number density ρ(r) of valence electrons, fm an oc-
cupation number of mth electronic state,Vion(r) an electron-ion interaction
potential, EXC [ρ] the exchange-correlation energy functional, and the last
term is the electrostatic energy between ions with valence {ZI}. The valence
electron number density ρ(r) is calculated as

ρ =
∑
m

fm|ψm(r)|2 (2.2)

The ground-state energy of the system, with given atomic position {RI}
is obtained by minimizing E{{ψm},{RI} } with respect to {{ψm}}, subjected
to orthonormality constraints,

∫
ψ∗
m(r)ψn(r)dr = δmn (2.3)

This minimization leads to the following eigenvalue equation (the Kohn-
Sham equation),

Ĥψm(r) = εmψm(r) (2.4)

with the eigenvalue ϵm for the mth electronic state. The Kohn-Sham Hamil-

tonian Ĥ is defined through



14 Method of Calculation

Ĥ(r) = −1

2
▽2 + Vion(r) + VH(r) + VXC(r) (2.5)

where VH(r) is the Hartree potential given by

VH(r) =

∫
ρ(r′)

|r− r′|
dr′ (2.6)

and VXC(r) = δEXC/δρ is the exchange-correlation potential.

2.1.2 Exchange-correlation energy

The Kohn-Sham equations represent a mapping of the interacting many-
electron system onto a system of noninteracting electrons moving in an ef-
fective potential originated from all the other electrons. If the exchange-
correlation energy functional were known exactly, an exchange-correlation
potential that included the effects of exchange and correlation exactly would
be produced by taking the functional derivative with respect to the density.

Local density approximation

The Hohenberg-Kohn provides some motivation for using approximate meth-
ods to describe the exchange-correlation energy as a function of the electron.
The simplest method is local density approximation (LDA). In LDA the
exchange-correlation energy of electron system is constructed by assuming
that the exchange-correlation energy per electron at a point r in the electron
gas, ϵXC(r), is equal to the exchange-correlation energy per electron in a
homogeneous electron gas that has the same density as the electron gas at
point r. Thus

EXC [ρ(r)] =

∫
ϵXC(r)ρ(r)d

3r (2.7)

and

EXC [ρ(r)]

δρ(r)
=
∂[ρ(r)ϵXC(r)]

∂ρ(r)
(2.8)
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with

ϵXC [ρ(r)] = ϵhomXC (r) (2.9)

Generalized gradient approximation

To address the issue of inhomogeneities in the electronic density, the natural
way is to carry out an expansion of the density in terms of the gradient and
higher order derivatives. In general, the exchange-correlation energy can be
written in the following form:

EXC [ρ(r)] =

∫
ρ(r)ϵXC [ρ(r]FXC [ρ(r),∇ρ(r),∇2ρ(r), . . . ]dr (2.10)

where the function FXC is an enhancement factor that modifies the LDA
expression according to the variation of the density in the vicinity of the
considered point.

The second order gradient expansion corresponds to an expression of the
type

EXC [ρ(r)] =

∫
AXC [ρ]ρ(r)

4/3 +

∫
CXC [ρ]|∇ρ(r)|2/ρ(r)4/3dr (2.11)

which is asymptotically valid for densities that vary slowly in space. The LDA
retains only the first term of Eq. 2.11. A number of gradient expansions
which have been named generalized gradient approximations (GGA) have
been proposed. Here, two types of GGA functional BLYP and PBE are
introduced.

In 1998, Becke proposed an exchange functional where the parameters
were fitted to experimental molecular data [7].

ϵX = ϵLDA
X

(
1− β

21/2Ax

x2

1 + 6βxsinh−1(x)

)
(2.12)

for x = 2(6π2)(1/3)s = 21/3|∇ρ(r)|/ρ(r)4/3. Ax = (3/4)(3/π)1/3, and β =
0.0042.

This was complemented by a correlation functional derived also in 1988
by Lee, Yang, and Parr, thus giving rise to a very widely used combination
called the BLYP functional [8]
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ϵC = − a

1 + dρ−1/3

{
ρ+ bρ−2/3

[
CFρ

5/3 − 2tw +
1

9

(
tw +

1

2
∇2ρ

)]
e−cρ−1/3

}
(2.13)

where

tw =
1

8

( |∇2ρ|
ρ

−∇2ρ
)
, (2.14)

CF = 3/10(3π2)2/3, a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349.
This correlation functional is not based on the LDA. It has been derived as
an extension to other closed-shell systems of the Colle-Salvetti expression for
the electronic correlation in helium [9].

In 1996, Perdew, Burke and Ernzerhof (PBE) proposed an exchange and
correlation functional that satisfies as many formal properties and limits as
possible, sacrificing only those deemed to be energetically less important [10].

The enhancement factor FX(ρ, ζ, s) over the local exchange defined in
Expression (2.10) depends on the local density ρ, magnetization density ζ
(in the spin dependent case), and the demensionless density gradients s =
|∇ρ(r)|/(2kFρ). The chosen expression is

FX(s) = 1 + κ− κ

1 + µs2/κ
(2.15)

where µ = β(π2/3) = 0.21951 and β = 0.066725 is related to the second
order gradient expansion. PBE choose the κ=0.804. The correlation energy
is written in a form similar to an earlier proposal of Perdew and Wang. It
assumes the form

EGGA
C =

∫
ρ(r)

[
ϵLDA
C (ρ, ζ) +H[ρ, ζ, t]

]
dr (2.16)

with

H[ρ, ζ, t] = (e2/a0)γφ
3In
{
1 +

β

γ
t2
[ 1 + At2

1 + At2 + A2t4

]}
(2.17)
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Here, t = |∇ρ(r)|/2φksρ is a dimensionless density gradient, with ks the

Thomas-Fermi screening wave number, and φ(ζ) = [(1+ ζ)2/3+(1− ζ)2/3]/2
is spin-scaling factor. The quantity β is the same as for the exchange term
β = 0.066725 and γ = (1 − ln2)/π2=0.031091. The function A has the
following form:

A =
β

γ

[
e−ϵrmLDA

C [ρ]/(γφ3/a0) − 1
]−1

(2.18)

So defined, the correlation correction term H satisfies the following prop-
erties:(a) it tends to the correct second-order gradient expansion in the slowly
varying (high density) limit (t → 0), (b) it approaches minus the uniform

electron gas correlation -ϵLDA
C for rapidly varying densities (t → ∞), thus

making the correlation energy vanish in that limit, as required by the corre-
lation hole sum rule, (c) it cancels the logarithmic singularity of ϵLDA

C in the
high density limit, thus forcing the correlation energy to scale to a constant
under uniform scaling of the density.

2.1.3 Pseudopotential approximation

It is well known that most physical properties of solids are dependent on the
valence electrons to much greater extent than on the core electron. The pseu-
dopotential approximation exploits this by removing the core electrons and
by replacing them and the strong ionic potential by a weaker pseudopotential
that acts on a set of pseudo wave functions rather than the true valence wave
functions.

Norm-conserving pseudopotentials

The condition for the construction of norm-conserving pseudopotentials are
the following:

(i) The eigenvalues of the pseudo-wave functions coincide with those of the
all-electron wave functions for a chosen electronic configuration of the
atom;

(ii) The radial pseudo-wave function RPS(r) is nodeless, and it is identical
to the all-electron wave function outside a suitably chosen cutoff radius
rc:

RPS(r) =

{
R̃PS(r) r < rc

RAE(r) r≧rc
(2.19)
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(iii) the norm of the true and pseudo-wave functions inside the pseudized
region (r < rc) is the same (norm-conservation condition):∫ rc

0

|rR̃PS(r)|2dr =
∫ rc

0

|rR̃AE(r)|2dr; (2.20)

(iv) The logarithmic derivatives of the all-electron and pseudo-wave function
agree for r≧rc.

The norm-conservation constraint guarantees that the pseudopotential is use-
ful, not in every energy range, but at least in environments such that the
eigenvalues do not depart significantly from the eigenvalues used in its con-
structions.

Ultrasoft pseudopotentials

The norm-conservation constraint is the main factor responsible for the hard-
ness of some pseudepotentials, especially p states in first-row elements and d
states in second-row transition metals, e.g. O 2p or Cu 3d. For these states
there is no core state of the same angular momentum to which they have to
be orthogonal. Therefore, the all-electron wave function is nodeless and quite
compressed compared to the other valence states, thus requiring a large num-
ber of plane waves to be represented accurately. Pseudization of this wave
function does not help much because the pseudo-charge has to match the
charge of the all-electron wave function and this latter is already nodeless.

The norm-conservation constraint is tightly linked to the concept of trans-
ferability through the sum rule.

−1

2

{
[rRl(ϵ, r)]2

d

dϵ

d

dr
lnRl(ϵ, r)]

}
rc
=

∫ rc

0

r2[Rl(ϵ, r)]2dr. (2.21)

This expression shows that the first order energy variation of the phase
shifts is proportional to the norm of the wave function in the pseudized re-
gion. However, apart from respecting the transferability criterion embodies in
(2.21), it is not strictly necessary that the norm of the all-electron and pseudo-
wave functions coincide. Therefore, efforts directed towards the reduction of
the plane wave cutoff should focus on relaxing the norm-conservation condi-
tion by generalizing the sum rule (2.21). The difference in the norm equation
(2.20) is given by

Qij =

∫ Rc

0

drQij(r), (2.22)
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where

Qij(r) = ψ∗
i (r)ψj(r)− ϕ∗

i (r)ϕj(r) (2.23)

We now define the new functions

|χp⟩ = (ϵp − T̂ − Vloc)|ϕp⟩ (2.24)

where Vlocal is equal to the all-electron functions outside a cutoff radius r >
RC . For r < Rc, Vlocal is chose in some smooth fashion. If pseudofunctions ϕs

are constructed from all-electron calculation at different energy ϵs, one can
form the Matrix Bpq = ⟨ϕp|χq⟩. In terms of the functions |βq⟩ =

∑
pB

−1
pq |χq⟩,

the non-local potential operator can be written

V NL
0 =

∑
p,q

Bpq|βp⟩⟨βq|

In the calculation that uses an “ultrasoft pseudopotential” the solutions are
orthonormalized according to

⟨ϕp|S|ϕq⟩ = δpq (2.25)

where

S = 1 +
∑
r,s

qrs|χr⟩⟨χs| (2.26)

qrs =

∫
Qrs(r)dr (2.27)

The generalized eigenvalue problem is

(T̂ + V loc + V NL)|φp⟩ = εpS|φp⟩ (2.28)

where

V NL = V NL
0 +

∑
p,q

εqQpq|βp⟩⟨βq| =
∑
p,q

(Bpq + εqQpq)|βp⟩⟨βq| (2.29)

Fortunately, such a generalized eigenvalue problem is not a major compli-
cation with iterative method. The scattering properties are correct at each
reference energy, in the sense that the logarithmic derivative match the AE
one at that energy.
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2.2 Momentum-space formalism

A momentum formalism is designed particularly for application with the
self-consistent pseudo-potential method. In the present formalism, the total
energy is obtained through band-structure calculation without additional
integrations. Following the conventional density functional formalism in a
pseudopotential framework, the total energy is given by

Etotal = T + V +

∫
Exc(r)dr

3 (2.30)

where the total kinetic energy, T is

T =
∑
i

∫
ψ∗
i (r)(−∇2)ψi(r)d

3r, (2.31)

and the electronic potential energy, V is

V =
∑
i,µ,l

∫
ψ∗
i (r)Ups,l(r−Rµ)P̂lψi(r)d

3r

+
1

2

∫∫
2ρ(r)ρ(r′)

|r− r′|
d3rd3r′ +

1

2

∑
µ ̸=ν

2Z2

|Rµ −Rν |
(2.32)

V =
∑
i,µ,l

∫
ψ∗
i (r)Ups,l(r−Rµ)P̂lψi(r)d

3r

+
1

2

∫∫
2ρ(r)ρ(r′)

|r− r′|
d3rd3r′ +

1

2

∑
µ ̸=ν

2Z2

|Rµ −Rν |
(2.33)

and EXC is exchange -correlation energy.

Let the momentum-space representations of wave function, the charge
density, the inter-electronic Coulomb potential and the exchange-correlation
Coulomb potential be denoted by ψ(ki +G), ρ(G), Vcoul(G) and µXC(G),
respectively, where the (G) are reciprocal lattice vectors.

ψi(r) = exp[iki · r]ui(r) (2.34)

= exp[iki · r]
∑
G

ψ(ki +G) exp[iG · r] (2.35)

=
∑
G

ψ(ki +G) exp[i(ki +G) · r] (2.36)
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ρ(r) =
∑
G

ρ(G) exp[iG · r] (2.37)

VCoul(G) =
8πρ(G)

G2
(2.38)

Using this Fourier representation, the Coulomb repulsion energy becomes:

1

2

∫∫
2ρ(r)ρ(r′)

|r− r′|
d3rd3r′ =

1

2
Ω
∑
G

VCoul(G)ρ∗(G) (2.39)

The pseudopotential energy can be written as:

∑
i,µ,l

∫
ψ∗
i (r)Ups,l(r−Rµ)P̂lψi(r)d

3r

= Ω
(∑

G

S(G)Ups(G)ρ(G) +
∑

i,l,G,G′

ψ∗(ki +G)ψ(ki +G′)S(G′ −G)U ′
ps,l,k∗

i+G,ki+G′

)
(2.40)

where

P̂l =
l∑

m=l

|lm⟩⟨lm| (2.41)

and

S(G) =
1

N

∫
ρ(r) exp[iG · r]dr3 (2.42)

=
1

N

∫ ∑
i

δ(r− ri) exp[iG · r]dr3 (2.43)

=
1

N

∑
i

exp[iG · ri]dr3 (2.44)

From equations (2.30), (2.39) and (2.40) it can be seen that total energy
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reduces to

Etotal = Ω
(∑

i,G

|ψ(ki +G|2(ki +G)2 +
1

2

∑
G

VCoul(G)ρ∗(G) (2.45)

+
3

4

∑
G

µ∗
XC(G)ρ(G) +

∑
G

S(G)U∗
ps(G)ρ(G) (2.46)

+
∑

i,l,G,G′

ψ∗(ki +G)ψ(ki +G′)S(G′ −G)U ′
ps,l,ki+G,ki+G′

)
(2.47)

+
1

2

∑
µ ̸=ν

2Z2

|Rµ −Rν |
(2.48)

To simplify equation (2.48), we multiply on the left of equation(
−∇2 +

∑
µ,l

Ups,l(r−Rµ)P̂l +

∫
2ρ(r′)

|r− r′|
d3r′ + µxc(r)

)
ψi(r) = ϵiψi(r)

(2.49)

by ψ∗
i (r), integrate over r and sum over i, and substitute the result into

equation (2.30):

Etotal =
∑
i

εi −
1

2

∫ ∫
2ρ(r)ρ(r′)

|r− r′|
d3rd3r′ − 1

4

∫
µXC(r)ρ(r)d

3r +
1

2

∑
µ ̸=ν

2Z2

|Rµ −Rν |
(2.50)

=
∑
i

εi − Ω
[1
2

∑
G

VCoul(G)ρ∗(G) +
1

4

∑
G

µ∗
XC(G)ρ(G)

]
+

1

2

∑
µ̸=ν

2Z2

|Rµ −Rν |
(2.51)

In practice, some mathematical manipulation are necessary to calculate Etotal

from equation (2.51) because Vcoul(0), UPS(0) and
∑

µ̸=ν
2Z2

|Rµ−Rν | are individu-

ally divergent quantities. First, we solve tha band-structure eigenvalue prob-
lem, equation (2.51) with Vcoul(0) and UPS(0) set equal to zero. For small
|G| the local potential is :

UPS(G) =
−8πZ

ΩatG2
+ α1 + (higher terms in G) (2.52)

where the constant term α1 is given by:

α1 = lim
G→0

[Ups(G) +
−8πZ

ΩatG2
] = (1/Ωat

∫
[Ups(r) + (2Z/r)]d3r (2.53)
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Another quality relevant to the total energy is β, defined from the expan-
sion at small G of the charge density:

ρ(G) = (Z/Ωat) + βG2 + (higher terms in G) (2.54)

From equation (2.38)

β = lim
G→0

Ωat

8π

(
VCoul(G)−

8πZ

ΩatG2

)
=

Ωat

8π

1

Ω

∫∫
2[ρ(r)− (Z/Ωat)]

|r− r′|
d3rd3r′

(2.55)

The lattice (ion-ion) energy per atom is usually expressed assuming the av-
erage electronic potential is zero, as

1

2

′∑
ν

2Z2

|Rν |
= γEwald +

1

2
lim
G→0

8πZ

ΩatG2
(2.56)

that is,

γEwald≡
1

2

′∑
ν

2Z2

|Rν |
− 1

2
lim
G→0

8πZ

ΩatG2
=

1

2

(
′∑
ν

2Z2

Rν

− 1

Ωat

∫
2Z2

r
d3r

)
(2.57)

Combining equations (2.38), (2.52), (2.54) and (2.56), the energy per atom
coming from the three divergent terms is

lim
G→0

Ωat

[ 1

2
VCoul(G)ρ(G) + Ups(G)ρ(G)

]
+

1

2

′∑
ν

2Z2

|Rν |
(2.58)

= lim
G→0

[Ωat

2

8π[Z/Ωat + βG2]2

G2
(2.59)

+ Ωat

(−8πZ

ΩatG2
+ α1

)( Z

Ωat

+ βG2
)
+

1

2

8πZ2

ΩatG2

]
+ γEwald (2.60)

= α1Z + γEwald (2.61)

The final expression for the total energy per atom is

Etotal(per atom) =
1

N

∑
i

εi−
1

2
Ωat

∑
G ̸=0

VCoul(G)ρ(G) (2.62)

− 1

4
Ωat

∑
G

µXC(G)ρ(G) + α1Z + γEwald

(2.63)
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2.3 Projector augumented waves (PAW) method

The projector augmented wave (PAW) methods, developed by Blöchl [11]
and Kresse [12] is a powerful tool for performing electronic structure cal-
culations within the framework of DFT. Like “ultrasoft” pseudopotential
method, it introduces projectors and auxiliary localized functions. The PAW
approach also defines a functional for the total energy that involves auxiliary
functions and it uses advances in algorithms for efficient solution of the gen-
eralized eigenvalue problem like (2.28). However, the difference is that the
PAW approach keeps the full all-electron wavefunction. Since the all-electron
wavefunction varies rapidly near the nucleus, all integrals are evaluated as
a combination of integrals of smooth functions extending throughout space
plus localized contributions evaluated by radial integration over muffin-tin

spheres. One can define a smooth part of a valence wavefunction ϕ̃v
i (r) and

a linear transformation ϕv = τ ϕ̃v that relates the set of all-electron valence

functions ϕv
j (r) to the smooth functions ϕ̃v

i (r). The transformation is as-

sumed to ne unity except worth a sphere centered on the nucleus, τ = 1+ τ0.
For simplicity, we omit the superscript v, assuming that the ϕs are valence
states, and the labels i, j. Adopting the Dirac notation, the expansion of

the each smooth function |ϕ̃⟩ in partial waves m within each sphere can be
written,

|ϕ̃⟩ =
∑
m

cm|ϕ̃m⟩ (2.64)

with the corresponding all-electron functions,

|ϕ⟩ = τ |ϕ̃⟩ =
∑
m

cm|ϕ̃m⟩ (2.65)

Hence the full wavefunction in all space can be written

|ϕ⟩ = |ϕ̃⟩+
∑
m

cm{|ϕm⟩ − |ϕ̃m⟩} (2.66)

In the transformation τ is required to be linear, then the coefficients must
be given by a projection i each sphere

cm = ⟨p̃m|ϕ̃⟩ (2.67)

for some set of projection operators p̃. If the projection operator satisfy the
biorthogonality condition,

⟨p̃m|ϕ̃m′⟩ = δmm′ (2.68)
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then the one-center expansion
∑

m |ϕ̃m⟩⟨p̃m|ϕ̃⟩ of the smooth function ϕ̃

equals ϕ̃ itself.

The difference from pseudo potentials is that the transformation τ still
involves the full all-electron wavefunction

τ = 1 +
∑
m

{|ϕm⟩ − |ϕ̃m⟩}⟨p̃m′ | (2.69)

Furthermore, the expressions apply equally well to core and valence states
so that one can derive all-electron results by applying the expressions to all
the electron states.

The general form of the PAW equations can be cast in terms of transfor-

mation (2.69). For any operator Â in the original all-electron problem, one

can introduce a transformed operator Ã that operates on the smooth part of
the wavefunctions

Ã = τ †Âτ = Â+
∑
mm′

|p̃m⟩{⟨ϕm|Â|ϕm′⟩ − ⟨ϕ̃m|Â|ϕ̃m′⟩}⟨p̃m′ | (2.70)

Furthermore, one can add to the right-hand side of (2.70) any operator of
the form

B̂ −
∑
mm′

|p̃m⟩⟨ϕm|B̂|ϕm′⟩⟨p̃m′| (2.71)

with no changes in the expectation values. For example, one can remove
the nuclear Coulomb singularity in the equations for the smooth function,
leaving a term that can be dealt with in the radial equations about each
nucleus.

The expressions for physical quantities in the PAW approach follow from
(2.69) and (2.70). For example, the density is given by calculating the ex-
pectation value of the real-space projection operator |r⟩⟨r|

n(r) = ñ(r) + n1(r)− ñ1(r) (2.72)

which can be written in terms of eigenstates labeled i with occupations fi as

ñ(r) =
∑
i

fi|ϕ̃i(r)|2 (2.73)

n1(r) =
∑
i

fi
∑
mm′

⟨ϕ̃i|ϕ̃m⟩ϕ∗
m(r)ϕm′(r)⟨ϕ̃m′|ϕ̃i⟩ (2.74)
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and

ñ1(r) =
∑
i

fi
∑
mm′

⟨ϕ̃i|ϕ̃m⟩ϕ̃∗
m(r)ϕ̃m′(r)⟨ϕ̃m′|ϕ̃i⟩ (2.75)

The last two terms are localized around each atom and the integrals can be
done in spherical coordinates with no problems from the string variations
near the nucleus, as in augmented methods. Section 13.2 is devoted to the
PAW method and expressions for other quantities i molecules and condensed
matter.

2.4 Hellmann-Feynman theorem

One of the beautiful theorems of physics is the “force theorem” called“Hellmann-
Feynman theorem” for the force conjugate to any parameter in the hamilto-
nian. The important is that the force on a nucleus is given strictly in terms
of the charge density, independent of the electron kinetic energy, exchange
and correlation. The force conjugate to any parameter describing a system,
such as position of a nucleus RI , can always be written

FI = − ∂E

∂RI

(2.76)

The derivative can be written using first-order perturbation theory

− ∂E

∂RI

= −⟨Ψ| ∂Ĥ
∂RI

|Ψ⟩ − ⟨ Ψ

∂RI

|Ĥ|Ψ⟩ − ⟨Ψ|Ĥ| Ψ

∂RI

⟩ − ∂EII

∂RI

(2.77)

EII of the final term is the electrostatic nucleus-nucleus (ion-ion) interac-
tion, which is essential in the total energy calculation, but is only a classical
additive term in theory of electronic structure. Using the fact that at the
exact ground state solution the energy is extremal with respect to all possible
variations of the wavefunction, it follows that the middle two terms in (2.77)
vanish and the only non-zero terms come from the explicit dependence of the
nuclear position.

− ∂E

∂RI

= −⟨Ψ| ∂Ĥ
∂RI

|Ψ⟩ − ∂EII

∂RI

(2.78)

Because the Hellmann-Feynman theorem depends upon the requirement that
the electronic states are at their variational minimum, it follows that there
must be a continuum of “Hellmann-Feynman theorem” that corresponds to
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the addition of any linear variation in Ψ or n. Although such terms vanish in
principle, they can have an enormous impact upon the accuracy and physical
interpretation resulting formulas. The most relevant example in electronic
structure is the case of core electrons: it is more physical and more accurate
computationally to move the electron density in the core region along with
the nucleus rather than holding the density strictly fixed.

Finally, there are drawbacks to the fact that expressions for the force
theorem depends on the electronic wavefunction being an exact eigenstate.
If the basis is not complete and it depends on the position of the nuclei,
then there are additional terms that must be explicitly included so that the
expression for the force given by the Hellmann-Feynman thorem is identical
to the explicit derivative of the energy. Explicit expressions are given for use
in independent-particle Kohn-Sham calculation.



Chapter 3

Dynanic properties of Liquid
B2O3 under high pressure

3.1 Introduction

Crystalline boron oxide (B2O3) in ambient conditions has a trigonal unit cell
in which each boron atom is coordinated to three oxygen atoms with strong
single bonds forming a triangular BO3 unit, and each oxygen atom is twofold
coordinated to boron atoms [13, 14]. Under compression, a high-pressure
phase appears at a pressure of about 6.5 GPa [15, 16]. This structure has
an orthorhombic unit cell which consists of interconnected BO4 tetrahedral
units with six- and eight-membered rings. Each boron atom bonds to four
oxygen atoms to form a distorted tetrahedron with one short bond and three
longer bonds. This reflects the fact that one-third of the oxygen atoms are
still twofold coordinated to boron atoms and the remaining have threefold
coordination. In the vitreous state under pressures up to approximately 10
GPa, the coordination numbers are essentially unchanged, while the planarity
of the BO3 units is lost with increasing pressure [17]. Fourfold-coordinated
boron atoms appear at higher pressures, and increase gradually with increas-
ing pressure [17, 18].

It is well known that the transport properties of vitreous B2O3 (v-B2O3)
are largely affected by the addition of alkali oxides [19]. Whereas the ionic
conductivity of v-B2O3 without doped impurities is very small, it increases
drastically with increasing the amount of alkali oxides added. Due to the
presence of alkali elements as well as excess oxygen atoms, some of the co-
valent bonds between boron and oxygen atoms are broken. As a results,
the network structure of v-B2O3, consisting of threefold-coordinated boron
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and twofold-coordinated oxygen atoms, is considerably modified by the dop-
ing [20]. It is, therefore, considered that these changes in the structural and
bonding properties determine the transport properties of borate glasses, and
enhance the ionic conductivity. In this way, the atomic dynamics in B2O3 is
directly influenced by the modification of the networks of B-O bonds. Since
the local structure of v-B2O3 is modified by compression as described above,
its dynamic properties are expected to change with pressure.

Although many studies on the properties of crystalline and vitreous B2O3

have been reported, there are few on liquid B2O3. It is known that the local
coordination around each atom remains the same upon melting at atmo-
spheric pressure [21], i.e. boron atoms are predominantly threefold coordi-
nated to oxygen atoms, and most of oxygen atoms bridge two adjacent boron
atoms. However, the main difference of the liquid state from the crystalline
and vitreous states comes from the fact that the covalent bonds must be rear-
ranged with long-range atomic diffusion even without doped impurities. Re-
cent first-principles investigation of the structural and bonding properties of
liquid B2O3 [22] has revealed that, under ambient conditions, a non-bridging
oxygen double bonded to a twofold-coordinated boron is always involved
with atomic diffusion accompanied by rearrangement of the covalent bonds
to reduce the formation energy of the overcoordination defects.

Concerning the effects of pressure on the structure of the liquid state, the
position of the first x-ray diffraction peak has been measured as a function of
pressure up to about 5 GPa [23]. The transport properties of liquid B2O3 un-
der pressure have been studied by quenching experiments [24] and computer
simulations [25] with an empirical interatomic potential. The former has re-
vealed that the viscosity of the undercooled melt decreases with increasing
pressure up to 8 GPa. The latter has shown that the diffusivity of atoms is
enhanced by pressure below 15 GPa, as in other covalent liquids, such as SiO2

and GeO2 [26, 27]. It is, however, unclear how the rearrangement process of
the covalent bonds is affected by compression.

In this paper, we investigate the structural, electronic, and dynamic prop-
erties of liquid B2O3 under pressure by ab initio molecular dynamics (MD)
simulations with interatomic forces calculated quantum mechanically. So
far, several first-principles studies for crystalline [28, 29, 30, 31] and vitre-
ous [17, 32, 33] B2O3 under ambient and high pressures have been reported.
However, the liquid properties under pressure have not been investigated
yet from first principles. The purposes of our study are (1) to clarify the
pressure-induced structural change in liquid B2O3, (2) to elucidate the effects
of pressure on the electronic properties, and (3) to discuss the mechanism
of atomic diffusion accompanied by the B-O bond exchange under pressure.
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Although the major results for the dynamic properties have been reported
earlier [34], this paper provides a full description of the calculated results
including the structural and electronic properties.

3.2 Numerical details

We use a system of 120 (48B+72O) atoms in a cubic supercell was used un-
der periodic boundary conditions. The equations of motion for atoms were
solved via an explicit reversible integrator [35] with a time step of ∆t = 1.2 fs.
The atomic forces were obtained from the electronic states calculated using
the projector-augmented-wave (PAW) method [11, 12] within the framework
of density functional theory (DFT) in which the generalized gradient ap-
proximation (GGA) [10] was used for the exchange-correlation energy. The
plane-wave cutoff energies are 30 and 200 Ry for the electronic pseudo-wave
functions and the pseudo-charge density, respectively. The energy functional
was minimized using an iterative scheme [36, 37].Projector functions are gen-
erated for the 2s and 2p states of B and O. The Γ point was used for Brillouin
zone sampling. To obtain a liquid state, we began by carrying out an ab ini-
tio MD simulation for about 5 ps at a temperature of 5000 K starting from
the low-pressure crystalline phase [13]. The temperature is selected to be
high enough to make the system reach a completely disordered state without
the effects of the initial configuration. Then, we decreased the temperature
of the system gradually to a target temperature of 2500 K. the experimental
data [38] obtained up to 1500 K. The temperature of 2500 K was chosen so as
not only to be sufficiently high to maintain the liquid state even at the high
pressures, but also in order to observe enough number of atomic-diffusion
events to analyze the diffusion mechanism in a statistically meaningful way
within a limited amount of simulation time. To determine the density of
the liquid state under pressure, a constant-pressure MD simulation [39] was
performed for 2.4 ps at each given pressure. Using the time-averaged den-
sity, the static and diffusion properties were investigated by MD simulations
in the canonical ensemble [40, 41]. The time-averaged pressure [42, 43] was
calculated at each density, and we obtained the density-pressure relation as
shown in Fig. 3.1. The thermodynamic states investigated in this study cover
a pressure range from 1.4 to 198.8GPa. The quantities of interest were ob-
tained by averaging over 14.4 ∼ 21.6 ps to achieve good statistics after the
initial equilibration, which takes at least 2.4 ps.
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Figure 3.1: Pressure dependence of the density of liquid B2O3 at 2500 K
(solid circles) and 3500 K (open squares).

3.3 Result and Discussion

3.3.1 Structure factor

Figure 3.2 shows the pressure dependence of the structure factors of liquid
B2O3. The solid and dashed lines display the neutron and x-ray structure
factors, Sn(k) and Sx(k), respectively. Sn(k) is calculated from the par-
tial structure factors Sαβ(k), shown in Fig. 3.3, with the neutron scattering
lengths, and Sx(k) is obtained from Sαβ(k) with the x-ray scattering factors.

At pressures below 10 GPa, clear peaks exist at about k = 1.6 and 6.0 Å−1

in the profiles of Sn(k) and Sx(k). Note that the overall profile of Sn(k) in
this pressure range is consistent with the experimental Sn(k) of the vitreous

state [44]. While only Sx(k) has another peak at about 3.2 Å−1 at lower
pressures, the corresponding peak grows in Sn(k) at higher pressures. With

increasing pressure, the peak at about k = 1.6 Å−1 shifts to larger k, and

merge into the peak at about k = 3.2 Å−1 in both Sn(k) and Sx(k). This

shift of the peak at about k = 1.6 Å−1 in Sx(k) is in agreement with that
observed by x-ray scattering experiments [23] up to 5 GPa. The peak at

about k = 6.0 Å−1 also becomes higher at higher pressures.

Figure 3.3 shows the Ashcroft-Langreth partial structure factors Sαβ(k).
The pressure dependence of the profiles of Sn(k) and Sx(k) is well understood
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from Sαβ(k). At lower pressures, both SBB(k) and SOO(k) have the three

peaks at about k = 1.6, 3.2, and 6.0 Å−1, which give the corresponding
peaks in Sn(k) and Sx(k). Because of the cancellation due to the existence
of a negative dip in SBO(k), no clear peak appears in Sn(k) around k = 3.2

Å−1. With increasing pressure, the peak at about k = 1.6 Å−1 shifts to larger
k in SBB(k) and SBO(k), while it disappears around 10 GPa in SOO(k). At

the wavevector of about k = 3.2 Å−1, the peaks grow largely in SBB(k)
and SOO(k), whereas the dip changes only a little in SBO(k) with pressure.
Therefore, the peaks of Sn(k) and Sx(k) grow at the corresponding k when
the pressure increases. At higher pressures, the peak of SOO(k) is much
higher than that of SBB(k).

3.3.2 Pair distribution function

The pressure dependence of the partial pair distribution functions gαβ(r) is

displayed in Fig. 3.4. In gBO(r), a sharp first peak exists at about 1.4 Å
over all pressures, and becomes more asymmetric with increasing pressure.
There are no homopolar bonds in liquid B2O3 under pressure, as gBB(r) and
gOO(r) are zero over the r range of the first peak of gBO(r) even at higher

pressures. Note that a very broad peak appears around 3 Å in the profile of
gBO(r) when the pressure approaches about 30 GPa. This peak is related to
the appearance of ring structures at higher pressures.

Figures 3.5(a)∼3.5(c) show the pressure dependence of the nearest-neighbor
distances rαβ between α- and β-type atoms, which were obtained from the
first-peak positions of gαβ(r). The pressure dependence of the average oxy-
gen coordination number NBO around B atoms is shown in Fig. 3.5(d). We

calculated NBO by the integration of 4πr2nOgBO(r) from r = 0 to 1.9 Å,
which was determined with reference to the first-minimum position at the
lowest pressure [45], where nO is the number density of O atoms. The local
bonding nature remains almost unchanged up to about 3 GPa, because all
three rαβ and NBO have nearly no pressure dependence. This means that
the system is compressed by decreasing the empty space. For P > 3 GPa,
NBO increases gradually with increasing pressure, while rBO still keeps its
value constant up to about 10 GPa, which is consistent with the fact that
the asymmetry of the first peak of gBO(r) becomes larger. With further com-
pression for P > 10 GPa, rBO increases with pressure and has a maximum
at about 50 GPa, while rBB and rOO decrease monotonically. Accompany-
ing these changes, NBO increases and approaches four at about 100 GPa,
indicating that the local structure changes largely with pressure. Note that
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the difference between rBB and rOO becomes larger with increasing pressure.
This implies that the average B-O-B and O-B-O angles change differently
under compression, because rBB and rOO reflect these angles.

3.3.3 Coordination-number distribution
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Figure 3.6: Pressure dependence of the coordination-number distribution f
(n)
αβ

for α-β = (a) B-O and (b) O-B.

Figure 3.6 shows the pressure dependence of the coordination-number

distribution f
(n)
αβ , which is the ratio of N

(n)
αβ /Nα, where N

(n)
αβ is the number

of α-type atoms coordinated to n β-type atoms and Nα is the total number

of α-type atoms. To obtain N
(n)
αβ , the same cutoff distance R = 1.9 Å was

used as in the calculation of NBO. From Fig. 3.6, we see that liquid B2O3

consists mainly of BO3 units connected by bridging O atoms under pressures
up to about 3 GPa, and the BO4 units increase gradually with increasing

pressure for P > 3 GPa. f
(3)
BO and f

(4)
BO are exchanged for each other at

about 25 GPa, while f
(2)
OB and f

(3)
OB are interchanged at a higher pressure

of about 50 GPa. At about 100 GPa, the number of fourfold-coordinated
B atoms approaches about 90 %, and about 5 % of B atoms have fivefold
coordination. Under further compression up to about 200 GPa, one-fourth
of the B atoms have fivefold coordination, and instead fourfold-coordinated
B atoms decrease. Also, fourfold-coordinated O atoms appear under such
high pressures, whereas twofold-coordinated O atoms still exist.
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3.3.4 Electronic density of states
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Figure 3.7: Pressure dependence of the electronic density of states D(E).

Figures 6.6 and 3.8 show the pressure dependence of the total electronic
density of states (DOS), D(E), and the angular-momentum l dependent

partial DOS, Dl
α(E), for α-type atoms, respectively. D(E) is related to

Dl
α(E) as D(E) =

∑
α cα

∑
lD

l
α(E), where cα is the number concentration of

α-type atoms. InD(E), there are two segments below the Fermi level (E = 0)
over all pressures. The peak at around E = −22 eV shifts to lower energies
and its energy range spreads with compression. Another segment consists
of a large peak at about E = −4 eV and a shoulder around E = −9 eV at
lower pressures. Note that the peak at about E = −4 eV originates from the
lone-pair (LP) non-bonding p states around O atoms (see Fig. 3.8(b)). This
peak becomes lower with increasing pressure, and its height are comparable
to the shoulder at higher pressures, which means that some of the LP states
are lost around O atoms. As was seen in Fig. 3.6, fourfold-coordinated B
and threefold-coordinated O atoms increase with increasing pressure, and it
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is, therefore, obvious that the electrons in the LP states are used to form
new bonds between B and O atoms. The 2s and 2p orbitals are hybridized
around B atoms at all pressures as shown in Fig. 3.8(a).

3.3.5 Bond-overlap population

We used population analysis [46, 47] to clarify the change in the bonding
properties due to compression. By expanding the electronic wave functions
in an atomic-orbital basis set, we obtained the overlap population Oij be-
tween the ith and jth atoms and the gross charge Qi for the ith atom. Oij

gives a semiquantitative estimate of the strength of the covalent-like bond-
ing between atoms, and Qi is a quantity that measures the ionicity of each

atom. Figure 6.7 shows the time-averaged distribution pαβ(O) of the overlap

populations Oi∈α,j∈β. At all pressures, there is a clear peak at positive O.
This indicates that the covalent bond between B and O atoms is retained
up to at least 200 GPa. The position of this peak is about O = 0.75 up to
15.5 GPa, which reflects the σ-type covalent B-O bonds in the BO3 units.
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It shifts to lower O = 0.6 between 15.5 and 46.2 GPa, and is unchanged at

pressures over 46.2 GPa. This pressure dependence of pαβ(O) reveals that
the covalent B-O bonds become weak accompanying the increase of the BO4

units. A clear peak also exists at negative O, which comes from the interac-
tion between the LP states around O atoms and the bonding states around
B atoms. This peak grows with increasing pressure, reflecting the increase
of interactions between O and B atoms.

3.3.6 Mulliken charge

Figure 3.10 shows the time-averaged distributions qα(Q) of the gross charges
Qi∈α for α-type atoms. The peak positions of qB(Q) and qO(Q) shift to
smaller and larger Q, respectively, with increasing pressure, i.e. the electrons
around O atoms are transferred toward B atoms. This is consistent with the
fact that the spatial distribution of the electrons that form the LP states
around O atoms at lower pressures spreads to form new B-O bonds with
increasing pressure. We can see that qO(Q) has a shoulder besides the peak
at higher pressures over 46.2 GPa; the shoulder originates from twofold-
coordinated O atoms, while the peak comes from threefold-coordinated O
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atoms. On the other hand, qB(Q) consists of only one peak for this pressure
range, because almost all B atoms have fourfold coordination.

3.3.7 Diffusivity
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Figure 3.11: Pressure dependence of the mean-square displacements dα(t).
The solid and open symbols show dB(t) and dO(t), respectively.

The pressure dependence of the mean-square displacements dα(t) is shown
in Fig. 3.11, where the solid and open symbols show dB(t) and dO(t), respec-

tively. dα(t) is defined as dα(t) =
∑

i∈α⟨(ri(t)− ri(0))
2⟩/Nα, where ri(t) is

the position of the ith atom at time t and the brackets ⟨· · · ⟩ mean average
with respect to the time origin t = 0. Both dB(t) and dO(t) have finite slopes,
i.e. liquid states are reproduced by our simulations. Since the slopes of dB(t)
and dO(t) increase when the pressure is increased from 3.2 to 9.2 GPa, we
see that the atomic diffusion is enhanced by compression. Under further
compression to 28.4 GPa, the slopes of dB(t) and dO(t) decrease. Note that
the slope of dB(t) is larger than that of dO(t) at 28.4 GPa, while dO(t) has a
slightly larger slope at 3.2 and 9.2 GPa.

Figure 3.12 shows the diffusion coefficientsDα for α = B and O atoms as a
function of pressure. They were estimated from the slopes of dα(t). Clearly,
liquid B2O3 has a diffusion maximum around 10 GPa at the temperature



3.3 Result and Discussion 43

of 2500 K. (See the open symbols. The temperature dependence will be
discussed later.) In the pressure range of P < 10 GPa, both DB and DO

increase with increasing pressure similarly to each other, which is consistent
with the observed pressure dependence of the viscosity of the undercooled
liquid [24]. While DO has 10-20 % larger values than DB under pressures up
to about 10 GPa, DB becomes more than two times larger than DO when
the pressure exceeds 20 GPa.
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Figure 3.12: Pressure dependence of the diffusion coefficients Dα for α = B
(circles) and O (squares) atoms. The open and solid symbols indicate Dα at
temperatures of 2500 and 3500 K, respectively.

3.3.8 Mechanism of atomic diffusion

As seen in the previous subsections, B atoms are mainly coordinated to three
O atoms, and almost all O atoms bridge two adjacent B atoms as in the
crystalline phase, even though atoms diffuse in the liquid state. It is obvious
from the sharp first peak of gBO(r) and the profile of Dl

α(E) that the covalent
bonds between B and O atoms are preserved in liquid B2O3. These results are
in good agreement with the recent experimental observations [21]. However,
it is unclear how B-O bonds are exchanged with the diffusion of atoms in the
liquid state while retaining the covalent bonds. To clarify the mechanism of
atomic diffusion, we have investigated the time evolution of bonding nature
by utilizing the population analysis [46, 47]. The bond-overlap populations,



44 Dynanic properties of Liquid B2O3 under high pressure

which give a semiquantitative estimate of the strength of the covalent-like
bonding between atoms, were calculated as a function of time.

We found that one non-bridging O atom double bonded to a twofold-
coordinated B atom is always involved with atomic diffusion accompanied
by the B-O bond switching. A typical example of the generation of a non-
bridging oxygen is shown in Fig. 3.13, where the time evolution of the bond-
overlap populations associated with the B and O atoms of interest is displayed
with snapshots of atomic configurations. In the atomic configuration at 0.01
ps (the bottom panel of Fig. 3.13), all B and O atoms displayed are threefold-
and twofold-coordinated, respectively, to hetero atoms, i.e. there is no bond
defect. As shown in the top panel of Fig. 3.13, OB2−O2(t) begins to increase
at about 0.04 ps, which means that a covalent bond is formed between B2
and O2. We can see this new B2-O2 bond in the snapshot at 0.07 ps. Due to
the formation of the bond, both B2 and O2 are over-coordinated. Since the
over-coordination is energetically unstable, one of the covalent bonds around
the threefold-coordinated O2 atom is broken. It is seen that the bond-overlap
population between B1 and O2, OB1−O2(t), becomes almost zero for t > 0.1
ps, and the covalent bond between these atoms disappears in the snapshot
at 0.13 ps. Note that B1 is coordinated to only two oxygens, while B2 is still
over-coordinated. Finally, the covalent bond between B2 and O1 is broken,
as OB2−O1(t) is almost zero for t > 0.16 ps. While the threefold coordination
of B2 is recovered, O1 is coordinated to only one boron B1, as displayed
in the snapshot at 0.19 ps. In this way, the non-bridging O atom (O1) is
generated with the twofold-coordinated B atom (B1). We see that there is
a double bond between B1 and O1 because OB1−O1(t) has higher values for
t > 0.16 ps after the breaking of the B2-O1 bond. It should be noted that
this process takes place in the participation of only two over-coordinated (one
fourfold-coordinated B and one threefold-coordinated O) atoms, namely only
one BO4 unit.

After about 2 ps, the double bond between B1 and O1 disappears as
shown in Fig. 3.14. First, the non-bridging O1 approaches to B3 to form a
new covalent bond between them. We see that OB3−O1(t) gradually increases
for t > 2.01 ps as shown in the top panel of Fig. 3.14, and that O1 is
bonded to B3 in the atomic configuration at 2.08 ps. It is also seen that
OB1−O3(t) increases for t > 2.07 ps, which means the formation of a covalent
bond between B1 and O3 as displayed in the snapshot at 2.11 ps. In this
configuration, O1 and B1 have the proper coordination numbers, and instead
B3 and O3 are over-coordinated. As OB3−O3(t) becomes nearly zero at about
2.12 ps, the B3-O3 bond is broken, and an atomic configuration with no
bond defect is finally obtained as displayed in the snapshot at 2.18 ps. In
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Figure 3.13: (Top panel) The time evolution of bond-overlap populations
Oij(t) for (a) i = B1, j ∈ O and (b) i = B2, j ∈ O in the process of
the formation of a non-bridging oxygen. The thick solid and thick dashed
lines show Oij(t) associated with the B and O atoms of interest as denoted
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this process, two over-coordinated atoms (B3 and O3) are created as in the
formation process of the non-bridging O atoms.

As displayed in Figs. 3.13 and 3.14, the B-O bonds are exchanged with
the formation of the under-coordinated O and B atoms (O1 and B1) in liquid
B2O3. It seems to be possible that the covalent bonds are exchanged without
the formation of such under-coordinated atoms as in the relaxation process
suggested for vitreous B2O3 [48]. It is, however, necessary to generate two
BO4 groups with sharing two O atoms, namely four over-coordinated atoms
(two over-coordinated B and two over-coordinated O), in this relaxation pro-
cess. The energy necessary to create two BO4 groups is higher than that
for the formation process of the non-bridging O atoms, which requires only
one BO4 group as found in our simulations. We consider that this is the
reason why most of the diffusion processes take place accompanied by the
under-coordinated atoms in liquid B2O3.

The intermediate defect structures with the non-bridging O atoms dou-
ble bonded to twofold-coordinated B atoms are energetically unstable, and
therefore they are eventually recovered as shown in Fig. 3.14. It should be
mentioned that the structure of liquid B2O3 is rather porous as in solids.
Due to the existence of wide void space, the non-bridging oxygens cannot
be bonded to other B atoms immediately after their formation. So the non-
bridging oxygens diffuse while keeping the double bonds for a period of time,
namely 1.7 ps on average, with the shortest time being 0.8 ps and the longest
4.3 ps.

Another important diffusion event accompanied by the covalent-bond
switching is shown in Fig. 3.15, where covalent bonds are exchanged around
the intermediate defect structure with the non-bridging O atom while keep-
ing the double bond between the under-coordinated O and B atoms (O1 and
B1 in the figure). As seen in the top panel of Fig. 3.15, around B1 atom,
initially OB1−O4(t) and OB1−O5(t) are almost zero and finite, respectively, for
t < 0.05 ps, they cross each other at about 0.11 ps, and finally OB1−O5(t)
becomes almost zero while OB1−O4(t) is finite for t > 0.14 ps. This means
that a covalent-bond exchange occurs around B1 atom: the covalent bond
between B1 and O5 is broken, and at almost the same time a new bond
is formed between B1 and O4 (see the atomic configurations in the bottom
panel of Fig. 3.15). In the same say, another covalent-bond exchange oc-
curs around B4 atom: the B4-O4 bond is broken, and the B4-O5 bond is
formed, as seen from the time evolution of OB4−O4(t) and OB4−O5(t). Note
that the coordination number of each atom is unchanged before and after
this event. Especially the double bond between B1 and O1 is retained while
switching the covalent bonds, as OB1−O1(t) keeps high values. Since the
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non-bridging oxygen (O1) is always away from any atoms, it cannot be in-
volved in these concerted bond exchanges. The pressure-induced diffusion
enhancement must be related to the weakening of the covalent-like interac-
tion between atoms accompanying the increase in the coordination number,
as in other covalent liquids [26, 27]. In fact, we found that, in liquid B2O3

under pressures over 3 GPa, long-range atomic diffusion occurs by the usual
concerted reactions as shown in Fig. 3.16, while the nonbridging O atoms are
always involved in diffusion processes at lower pressures [22]. In Fig. 3.16, the
time evolution of the bond-overlap populations Oij(t) associated with the B
and O atoms of interest is displayed with snapshots of atomic configurations.
As displayed in the snapshot at 0.09 ps, two BO4 groups are generated as an
intermediate by forming two new B-O bonds between adjoining BO3 units,
in contrast to the fact that only one BO4 group is required to produce the
nonbridging O atoms. The concerted reactions occur more frequently under
higher pressures, which will result from the covalent-bond weakening due to
the compression, and will enhance the atomic diffusion. We also observed
that the reactions with the nonbridging O atoms decrease with increasing
pressure and almost disappear for P > 10 GPa.

The concerted reactions as well as the reactions with the nonbridging O
atoms involve equal numbers of B and O atoms, and therefore DB and DO

would depend similarly to each other on pressure up to about 10 GPa as seen
in Fig. 3.12. DO has 10-20 % larger values than DB, which may be due to
the lower coordination number of O atoms [34]. The appearance of diffusion
maximum is not surprising but quite natural in the covalent liquids. It is,
however, unusual that the diffusivity of O atoms is reduced more quickly
than that of B atoms with compression above 10 GPa. The important point
is that, under pressures over 20 GPa, the number of fourfold-coordinated B
atoms is much larger than that of threefold-coordinated B atoms, and, on
the other hand, both twofold- and threefold-coordinated O atoms exist.

To consider the anomalous diffusive properties of liquid B2O3 under pres-
sure, it is worth noting that the number of fourfold-coordinated B atoms
becomes larger than that of threefold-coordinated B atoms, as shown in Fig.
3.6(a), when DB and DO are interchanged. We focused on diffusion pro-
cesses associated with fourfold-coordinated B atoms. A typical example is
shown in Fig. 3.17, where the time evolution of the bond-overlap popula-
tions, Oij(t), associated with the B and O atoms of interest is displayed
with snapshots of atomic configurations. Oij(t) yields a semiquantitative es-
timate of the strength of the covalent-like bonding between atoms [46, 47].
In the beginning of this process, the B atom labeled ’B1’ has fourfold coor-
dination. The atomic configuration at 0.02 ps (and also at 0.17 ps) shows
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Figure 3.16: (Top panel) Time evolution of the bond-overlap populations
Oij(t) for (a) i = B1, j ∈ O and (b) i = B2, j ∈ O in the process of bond
switching with two BO3 groups observed at 9.2 GPa. The thick solid and
thick dashed lines show Oij(t) associated with the B (labeled as ‘B1’ and
‘B2’) and O (labeled as ‘O1’ and ‘O2’) atoms of interest. The thin lines show
Oij(t) between the B1 or B2 atoms and their neighboring O atoms except
O1 and O2. (Bottom panel) Atomic configurations at t = 0.00, 0.09 and 0.18
ps. The large and small spheres show B and O atoms, respectively.
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Figure 3.17: (Top panel) The time evolution of bond-overlap populations
Oij(t) for i = B1, j ∈ O in the diffusion process observed at 46.2 GPa.
The thick solid and dashed lines show Oij(t) associated with the B and O
atoms of interest. The thin lines show Oij(t) between the B atom of interest
(labeled ’B1’) and their neighboring O atoms except O1 and O2. (Middle
panel) Atomic configurations at t = 0.02, 0.10, and 0.17 ps. The large and
small spheres show B and O atoms, respectively. (Bottom panel) Extended
view of the atomic configuration at t = 0.17 ps. The arrows denote O atoms
that are twofold coordinated to B atoms.
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that fourfold-coordinated B atoms have a tetrahedral arrangement, which
demands sp3 hybridization around them. As displayed in the top panel of
Fig. 3.17, OB1−O1(t) begins to decrease at about 0.08 ps and almost vanishes
for t > 0.11 ps. This time change means that the covalent bond between
B1 and O1 is broken within 0.03 ps. On the other hand, OB1−O2(t) increases
gradually between 0.08 and 0.15 ps, indicating that a covalent bond is formed
between B1 and O2, taking 0.07 ps to form. As shown in the atomic con-
figuration at 0.10 ps, the B1 atom has threefold coordination with a planar
arrangement before the formation of the new B1-O2 bond is complete. This
planar configuration is considered to be rather stable with sp2 hybridization
around the B1 atom, as seen regularly at pressures lower than 10 GPa. In
this way, one of the B-O bonds is broken quickly, and a new B-O bond is
formed gradually when B atoms move between the fourfold-coordinated sites.

In the diffusion process shown in Fig. 3.17, twofold-coordinated O atoms,
toward which fourfold-coordinated B atoms move, are necessary as B1 moves
toward O2. Note that O2 has twofold-coordination before B1 bonds to it.
As shown in Fig. 3.6(b), twofold coordinated O atoms exist even at high
pressures. In addition, several twofold-coordinated O atoms exist around
each B atom, at least at about 50 GPa (see the bottom panel in Fig. 3.17).
These facts indicate that this diffusion process occurs rather frequently, and
that B atoms can diffuse fairly easily. On the other hand, for the concerted
reaction involving the migration of O and B atoms, threefold-coordinated
B and twofold-coordinated O atoms are necessary. However, the number of
threefold-coordinated B atoms decreases rapidly with increasing pressure for
P > 20 GPa, which means that the concerted reaction is suppressed at such
high pressures. This is why DO decreases rapidly with increasing pressure.

3.3.9 Temperature dependence

In order to investigate the effects of temperature on the properties of liquid
B2O3 under pressure, some MD simulations were carried out at a higher
temperature of 3500 K. Figure 3.18 shows the pressure dependence of gαβ(r)
at 3500 K. From the comparison of each profile with the corresponding gαβ(r)
at 2500 K (Fig. 3.4), we see that the first peaks of all gαβ(r) become broader
because of the larger thermal motion of atoms. However, the peak positions
and the average coordination numbers are almost unchanged. In this sense,
the effects of the increase of pressure to ∼ 50 GPa on the static structure
would be more important than those of the increase of temperature from
2500 to 3500 K.

The pressure dependence of the diffusion coefficients Dα at 3500 K is
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Figure 3.18: Pressure dependence of the partial pair distribution functions
gαβ(r) at a high temperature of 3500 K. The thick solid, thin solid, and thick
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shown in Fig. 3.12 together with that at 2500 K. The maximum behavior of
the diffusivity becomes weaker or disappears when the temperature is higher.
A similar temperature dependence has been seen in liquid SiO2 [26]. Note
that the diffusivity of O atoms becomes much lower than that of B atoms with
increasing pressure even at 3500 K. This is because B atoms will eventually
have fourfold coordination with compression, regardless of temperature.

3.4 Summary

We have investigated the structural, bonding, and dynamic properties of liq-
uid B2O3 under pressures up to about 200 GPa by ab initiomolecular dynam-
ics simulations. The effects of compression on the static structure have been
discussed based on the pressure dependence of the structure factors, the pair
distribution functions, the nearest-neighbor distances, and the coordination-
number distribution. The structure consists mainly of planar BO3 units
up to about 3 GPa, and the number of tetrahedral BO4 units increases
gradually under further compression. The number of fourfold-coordinated
B atoms reaches a maximum of about 90 % at about 100 GPa. Threefold-
coordinated B atoms almost disappear at pressures over 50 GPa, whereas
twofold-coordinated O atoms still exist even under such high pressures. The
bonding properties at each pressure have been examined by population anal-
ysis. It has been seen from the distribution of the bond-overlap populations
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that the covalent bonds weaken due to the structural change from BO3 to
BO4 units. The pressure dependence of the mean-square displacements has
shown that the diffusion maximum occurs at about 10 GPa when the tem-
perature is relatively low. Regardless of temperature, the diffusivity of O
atoms will eventually becomes much smaller than that of B atoms under
higher pressures, while the former is slightly larger than the latter at lower
pressures. This is because the number of threefold-coordinated B atoms de-
creases rapidly with pressure, and the concerted reaction is suppressed.



Chapter 4

Transport properties of liquid
SiO2, GeO2 and SrGeO3

4.1 Introduction

Covalent liquids have been intensively studied because of geological interest,
since they are closely related with igneous processes in the Earth. Especially,
transport properties of covalent liquids under pressure are very interesting
in the sense that an unexpected pressure dependence is observed. For a
number of covalent liquids, such as SiO2, GeO2, silicates and germanates,
have abnormal behavior of the viscosity, i.e. the viscosity significantly drops
with pressure [2, 3]. This anomalous behavior of the viscosity is considered
to be related to the atomic diffusion in the liquids under pressure. It is,
therefore, of particular interest to investigate the pressure dependence of
the microscopic diffusion mechanism in covalent liquids. Recently, molecular
dynamics (MD) studies of liquid GeO2 under pressure have been reported
[49]. It was shown that the diffusivity of atoms increases with pressure, as
in other covalent liquids, such as SiO2 [26] and B2O3[50]. It is, however,
unclear how the rearrangement process of the covalent bonds is affected by
compression. Because the calculated results obtained by empirical potentials
depend on the choice of the potential form, theoretical investigations based on
first-principles theory would be needed to clarify the microscopic mechanism
of atomic diffusion in liquid state.

In this paper, we report on a detailed investigation of atomic diffusion in
liquid SiO2, GeO2 and SrGeO3 by ab initio MD simulations with interatomic
forces calculated quantum mechanically in the framework of the density-
functional theory (DFT). The SiO2 crystal structure is α-quartz phase con-



56 Transport properties of liquid SiO2, GeO2 and SrGeO3

ists of SiO4 tetrahedral local units. The structure of crystalline GeO2 and
SrGeO3 also is well known. The high temperature phase of crystalline GeO2

is α-quartz type structure which is based on corner-sharing GeO4 tetrahedron
[51]. In the structure of crystalline SrGeO3, Ge3O9 molecules form layers and
Sr atoms exist between the layers [52]. The coordination number of Ge to
O atoms is four in both crystalline GeO2 and SrGeO3. In the SrGeO3 the
molecule has two oxygen sites, the bridging oxygen and non-bridging oxy-
gens sites, which have two and one neighboring Ge atoms, respectively. The
local structures of these materials remain the same even in the liquid state,
i.e. there exist non-bridging oxygens, in liquid SrGeO3 while there are few
non-bridging oxygens in liquid GeO2. For this reason, it is expected that
the mechanisms of atomic diffusion in these liquids are different from each
other. The purpose of our study is to clarify the microscopic mechanism of
atomic diffusion in tetrahedral covalent liquids such as liquid SiO2, GeO2

and SrGeO3. We discuss how Si-O or Ge-O bonds are exchanged accompa-
nying the diffusion of atoms and how the diffusion mechanisms change with
pressure.

4.2 Numerical details

The electronic states are calculated using the projector-augmented-wave (PAW)
method [11, 12] within the framework of the density functional theory (DFT)
in which the generalized gradient approximation (GGA) [10] is used for the
exchange-correlation energy. The plane-wave cutoff energies are 30 and 200
Ry for the electronic pseudo-wave functions and the pseudo-charge den-
sity, respectively. The energy functional is minimized using an iterative
scheme [36, 37]. The Γ point is used for Brillouin zone sampling. As the
valence electrons, we include the 4s, 4p and 5s electrons of Sr, 3s and 3p elec-
trons of Si, 4s and 4p electrons of Ge and 2s and 2p electrons of O. Other elec-
trons in the lower energy electronic states of each atom are treated with the
frozen-core approximation. We use two systems of 120 (24Sr+24Ge+72O)
atoms for SrGeO3 and 144 (48Ge or Si +96O) atoms for SiO2 and GeO2

in a cubic supercell under periodic boundary conditions. Using the Nosé-
Hoover thermostat technique [40, 41], the equations of motion are solved via
an explicit reversible integrator [35] with a time step of ∆t = 1.2 fs. To
obtain a liquid state, we begin by carrying out an ab initio MD simulation
for about 5 ps at a temperature of 4000 K starting from the crystalline struc-
ture [51, 52]. The temperature is selected to be high enough to make the
system reach a completely disordered state without the effects of the initial
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configuration. Then, we decrease the temperature of the system gradually to
a target temperature of 3000 K for SiO2 and 2500 K for GeO2 and SrGeO3.
The number density is determined from zero-pressure condition. The target
temperature we have chosen is rather high in order to observe enough number
of atomic-diffusion events to analyze the diffusion mechanism in a statisti-
cally meaningful way within a limited amount of simulation time. Note that
the temperature dependence of physical quantities is not discussed in this
paper, and conclusions derived are independent of the selected temperature.
The simulation time 7.2 ps, is long enough to achieve good statistics.

4.3 Results of liquid SiO2

4.3.1 Coordination number dustribution
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Figure 4.1: Pressure dependence of the coordination-number distribution f
(n)
αβ

for α-β = (a) Si-O and (b) O-Si.

Figure 4.1 shows the pressure dependence of the coordination-number

distribution f
(n)
αβ of liquid SiO2, which is the ratio of N

(n)
αβ /Nα, where N

(n)
αβ

is the number of α-type atoms coordinated to n β-type atoms and Nα is
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the total number of α-type atoms. To obtain N
(n)
αβ , the same cutoff distance

R = 2.1 Å was used as in the calculation of NSiO. From Fig. 4.1, we can
see that liquid SiO2 consists mainly of SiO4 tetrahedral local units connected
by bridging O atoms at ambient pressure. With incresing pressure, fivefold-
coordinated Si atoms increase while fourfold-coordinated Si atoms decrease.
f
(4)
SiO and f

(5)
SiO are exchanged for each other at about 20 GPa while f

(2)
OSi and

f
(3)
OSi are interchanged at a higher pressure of about 40 GPa. Above 20 GPa,

f
(6)
SiO appears, which means that SiO6 octahedral local unit appears. When

pressure increases above 20 GPa, f
(4)
SiO decrease, f

(5)
SiO does not change and f

(6)
SiO

increases. At about 50 GPa, the number of fourfold-coordinated Si atoms
is 15 % and fivefold-coordinated and sixfold-coordinated Si atoms together
accounted for 85 % whereas the number of twofold-coordinated O atoms is
still 40 %.

4.3.2 Diffusion properties

0 10 20 30 40 50

P (GPa)

1e-10

1e-09

d
α
 (

m
2
/s

)

Figure 4.2: Pressure dependence of the diffusion coefficients Dα for α = Si
(circles) and O (squares) atoms.

Figure 4.2 shows the diffusion coefficients Dα for α = Si and O atoms
as a function of pressure. They were estimated from the slopes of mean
aquare displacement. Clearly, there is a diffusion maximum in liquid SiO2

around 20 GPa. In liquid SiO2, atomic diffusion occurs by usual concerted
reaction the same as liquid B2O3 shown in Fig. 3.16. From Fig. 4.1, the
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number of fourfold-coordinated and fivefold-coordinated Si atoms are almost
same at around 20 GPa. This means that the concerted reactions occur more
frequently in this pressure region. In the pressure range of P < 20 GPa, both
DSi and DO increase with increasing pressure similarly to each other. when
the pressure approaches about 50 GPa, DSi becomes more than twice larger
than DO. As shown in Fig. 4.1 almost all Si atoms are overcoordination
such as fivefold or sixfold coordination while bridging O atoms still exist in
this pressure region. Therefore, this anomalous diffusion property can be
explained by the same mechanism of liquid B2O3 shown in 3.17. Namely,
there are diffusion path for Si atoms but there are no diffusion path for O
atoms at about 50 GPa.

4.4 Results of liquid GeO2 and SrGeO3

4.4.1 Pair distribution function
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Figure 4.3: Pair distribution function g(r) of liquid SrGeO3 and GeO2.

Figure 4.3 shows pressure dependence of the partial pair distribution func-
tions gαβ(r) of liquid SrGeO3 (a) and GeO2 (b). The position of the sharp

first peak of gGeO(r) is 1.76 Å for both liquids at ambient pressure. the po-
sition of both liquids shifts to large r because the Ge-O bond becomes weak
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with increasing pressure accompanying the increase in the average number
of O atoms cooordinated to Ge atoms. The oxygen coordination number
around Ge atoms of liquid SrGeO3 and GeO2 approaches nearly 4.5 and 5.1,
respectively, around 23 GPa.

The shape of gGeGe(r) of liquid SrGeO3 is different from that of liquid
GeO2, while the shape of gOO(r) are almost the same. This difference of
gGeGe(r) reflects the fact that there are non-bridging oxygens (NBO) in liquid
SrGeO3, while almost no NBO in liquid GeO2.

4.4.2 Diffusion mechanism under ambient pressure

The local structure of crystal GeO2 and SrGeO3 remain even in liquid state.
It is obvious that the covalent bond between Ge and O atoms are preserved in
both liquids. It is, however, unclear how Ge-O bonds are exchanged with the
diffusion of atoms in the liquid state while retaining the covalent bonds. To
clarify the mechanism of atomic diffusion, we investigate the time evolution
of bonding nature by utilizing the population analysis [46, 47]. The bond-
overlap populations, which give a semiquantitive estimate of the strength
of the covalent-like bonding between atoms, are calculated as a function of
time.

In liquid GeO2, Ge atoms are mainly coordinated to four O atoms and
O atoms bridge two adjacent Ge atoms as in the crystalline phase, even
though atoms diffuse in the liquid state. We find that a non-bridging O
atom double bonded to a Ge atom is always involved with atomic diffusion
accompanied by Ge-O bond switching as in liquid B2O3 [50]. A typical
example of the generation of non-bridging oxygen is shown in Fig. 4.5, where
the time evolution of the bond overlap populations associated with the Ge
and O atoms of interest is displayed with snapshots of atomic configuration.
In the atomic configuration at 0.18 ps (the bottom panel of Fig. 4.5) all Ge
and O atoms displayed are fourfold- and twofold-coordinated, respectively,
to heteroatoms, i.e., there is no bond defect. As shown in the top panel
of 4.5, OGe2−O2(t) begins to increase at about 0.2 ps, which means that a
covalent bond is formed between Ge2 and O2. We can see this new Ge2-O2
bond in the snapshot at 0.27 ps. Due to the formation of the bond, both Ge2
and O2 are overcoordinated. Since the overcoordination is unstable, one of
covalent bonds around O2 is broken (in the snapshot at 0.38 ps). Note that
Ge1 is coordinated to only three oxygens, while Ge2 is still over-coordinated.
Finally, the covalent bond between Ge2 and O1 is broken. While fourfold-
coordination around Ge2 atom is recovered, O1 is coordinated only one Ge
atom (Ge1) as displayed in the snapshot at 0.60 ps. In this way, the non-
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bridging oxygen is generated.

In crystalline SrGeO3, all Ge atoms bond to two bridging oxygens and
two non-bridging oxygen. This form is also the most stable in the liquid state
as in the crystalline states. When Ge-O bond is broken, the local structure is
deformed, for example, Ge atom might be bonding to three bridging oxyges
and only one non-bridging oxygen. A typical example of the bond breaking is
shown in Fig. 4.6. In the atomic configuration at 0.05 ps, Ge1 bonds to three
bridging oxygens and only one non-bridging oxygen. Since this form is not
stable, one of bridging oxygens around Ge1 tries to be non-bridging oxygen.
As shown in the top panel in Fig. 4.6, OGe2−O1(t) begins to decrease at about
0.15 ps. the covalent bond between Ge2 and O1 is broken, as OGe2−O1(t) is
almost zero for t > 0.35 ps. In the snapshot at 0.35 ps, Ge2 is threefold-
coordinated to O atoms, and Ge1 has the most stable form, i.e., bonds to
two bridging oxygens and two non-bridging oxygens.

The disappearance process of threefold-coordinated Ge atom (Ge2) is
shown in Fig. 4.6. First, the threefold-coordinated Ge2 approaches non-
bridging oxygen O2 to form a new covalent bond between them. We see that
OGe2−O2(t) gradually increases for t > 0.12 ps as shown in the top panel of
Fig. 4.6, which means the formation of covalent bond between Ge2 and O2
as displayed in the snapshot at 0.37 ps.

4.4.3 Diffusion mechanism under high pressure
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Figure 4.7 shows the diffusion coefficients Dα for α= Ge and O atoms as
a function of pressure. Clearly, only liquid GeO2 has a diffusion maximum
around 5 GPa, while Dα decreases monotonically in liquid SrGeO3. In liquid
GeO2, the atomic diffusion with concerted reaction appears when pressure
increases. Figure 4.8 shows this process at about 4 GPa. The concerted
reactions with two over-coordinated Ge atoms can take place because Ge
atoms are more easily coordinated to five O atoms under higher pressure. The
important point is that non-bridging oxygen is not required in this mechanism
while the formation of non-bridging oxygens are always involved in diffusion
process at ambient pressure. Since liquid SrGeO3 has non-bridging oxygens
in normal condition, the formation of non-bridging oxygens is not needed for
atomic diffusion at ambient pressure. This is why the diffusivities of liquid
SrGeO3 are much higher than those of liquid GeO2 which does not have
non-bridging oxygens at ambient conditions.
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4.5 Discussion

Altough liquid SiO2, GeO2 and SrGeO3 have similar local unit (tetrahedral
local unit), it is seen a clear distinction of the dynamic properties, especially
diffusion properties under pressure. Liquid SiO2 have diffudion maximum
and dynamic assymetry (Si atom can move easier than O) under pressure.
On the other hand, liquid GeO2 have only diffusion maximum under pressure.
When it comes to liquid SrGeO3, it does not even have diffusion maximum
under pressure. The reason why liquid GeO2 does not have dynamic as-
symetry can be understood from the phase diagram of GeO2. Figure 4.9

Figure 4.9: Pressure-temperature phase diagram of GeO2.

shows the pressure-temperature phase diagram of GeO2 [24]. Unlike SiO2,
the rutile GeO2 which consists of GeO6 units is the most stable phase at room
temerature and pressure. That is, high energy does not need to be trans-
formed into GeO6 local unit compared to transformation of SiO6. If almost
all Si atoms are overcoordination in liquid SiO2, It is difficult to diffuse for O
atom. However, there are diffusion path for O atoms in liquid GeO2 because
it is easier to transform GeO5 into GeO6 than transformation of SiO5. That
is, O atoms can move as well as Ge atoms. This is why liquid GeO2 does not
have dynamic assymetry.

With regard to liquid SrGeO3, there are two types of covalent bond in
a tetrahedral GeO4 unit. One is the single bond between Ge and bridging
O. The other is the double bond between Ge and nonbridging O. In liquid
SrGeO3, atomic diffusion occurs by transformation single bond into double
bond and vice versa as shown in Fig. 4.5. Since over-coordinated Ge atoms
are not needed in this mechanism, pressure does not enhance the atomic
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diffusion. Therefore, the diffusivities of liquid SrGeO3 decrease monotonically
with pressure.

4.6 Summary

The diffusion properties of liquid SiO2, GeO2 and SrGeO3 under pressure are
inveistigated by ab initio molecular dynamics simulations. Our simulation
reveal the origin of anomalous diffusion properties common to all covalent
liquids under pressure. The usual concerted reaction with generating overco-
ordination gives the diffusion maximum under pressure. Atomic diffusion of
liquid SiO2 and liquid GeO2 occurs with the cocerted reaction while atomic
diffusion of liquid SeGeO3 does not need the overcoordination. These distinc-
tions gives whether diffusion coefficients increases or not with pressure. With
regaed to dynamic assymetry, it is orignated from the energy differences be-
tween the low-pressure phase and the high-pressure phase of crystalline state.



Chapter 5

Metalization in liquid Selenium
under high pressure

5.1 Introduction

Both crystalline selenium and tellurium in ambient conditions have a trigonal
structure in which each atom is coordinated to two other atoms with strong
covalent bonds forming a chain structure. The structural and bonding prop-
erties of the crystals are determined by four valence p electrons [53]. Two of
them form σ-type covalent bonds between atoms, and the rest occupy non-
bonding states which are called lone-pair (LP) states. These crystals behave
as a semiconductor, where the valence and conduction bands are formed by
the LP and anti-bonding σ∗ states, respectively. Under pressure, a similar
sequence of structural transitions is exhibited by crystalline selenium [54, 55],
tellurium [56, 57, 58, 59], and their mixtures [60] accompanied by a discon-
tinuous increase in the coordination number. All the high pressure states
show metallic properties.

On melting at ambient pressure, the chain structure is basically preserved
in liquid Se and Te. While liquid Te exhibits semi-metallic properties due to
a high density of three-fold coordinated defects [61], liquid Se shows semicon-
ducting properties as the crystalline phase does. Since large chain molecules
are maintained in liquid Se, it has a large viscosity near the triple point [62].
Accompanying the decrease of the average chain length with increasing tem-
perature and pressure, the electrical conductivity of liquid Se increases, and
a metallic state appears near the critical point in spite of the volume expan-
sion [63, 64, 65]. In relation to such semiconductor-metal (SC-M) transition,
the temperature dependence of the structure has been thoroughly studied by
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x-ray diffraction measurements [66] and first-principles theory [67, 68].

Recently, Brazhkin et al. [69] have measured the viscosity of liquid Se
at pressures up to 6.3 GPa by real-time radiography. They found that the
viscosity decreases largely with pressure along the melting curve in the semi-
conducting state, and experiences a further significant drop at the pressure
where the metallization occurs. They suggested that this observed viscos-
ity decrease is related to the chain defragmentation. However, the details
of pressure effects on the chain structure of liquid Se are still unknown, be-
cause x-ray diffraction experiments [70, 71, 72] have been carried out so far
in only a limited range of pressure: Raty et al. [70] have investigated the
pressure-induced structural change between 3.0 and 4.1 GPa, Tsuji [71] has
reported the x-ray diffraction pattern at 4.4 and 8.4 GPa, and Katayama
et al. [72] have performed x-ray diffraction experiments in a pressure range
from 2.6 to 4.9 GPa. These experimental studies commonly suggest that the
local atomic structure of metallic liquid Se under pressure is similar to that
of liquid Te.

The pressure dependence of the atomic structure of liquid Te has, on the
other hand, been investigated both experimentally and theoretically in detail.
Funamori and Tsuji [73] have measured synchrotron x-ray diffraction of liquid
Te under pressure up to 22 GPa. They found that there is a maximum
at about 6 GPa in the pressure vs nearest-neighbor distance curve, while
the coordination number increases monotonically with pressure. Shimojo
et al. [74] have carried out ab initio molecular dynamics (MD) simulations
for liquid Te under pressure. They concluded that there are two stages in
the compression process. In the first stage, the nearest-neighbor distance
increases with pressure up to 6 GPa due to a formation of a weak covalent
bonding state between Te atoms. In the second stage, the anisotropy of
atomic configuration around each atom reduces with increasing pressure.

In this paper, we investigate the structural, bonding, and dynamic prop-
erties of liquid Se under pressure by ab initio MD simulations. The purposes
of our study are to clarify the structure of liquid Se at high pressures, and
to elucidate the microscopic relation between the structural changes and the
pressure-induced SC-M transition. We also discuss a comparison with the
static structure of liquid Te under pressure.

5.2 Numerical details

In MD simulations, the atomic forces are obtained from the electronic states
calculated by the projector-augmented-wave (PAW) method [11, 12] within
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the framework of density functional theory (DFT). The generalized gradient
approximation (GGA) [10] is used for the exchange-correlation energy. The
plane-wave cutoff energies are 15 and 100 Ry for the electronic pseudo-wave
functions and the pseudo-charge density, respectively. The energy functional
is minimized using an iterative scheme [36, 37].Projector functions are gen-
erated for the 4s, 4p, and 4d states. The Γ point is used for Brillouin zone
sampling. The equations of motion for atoms were solved via an explicit
reversible integrator [35] with a time step of ∆t = 2.4 fs. A system of 81
atoms in a cubic supercell is used under periodic boundary conditions. The
system-size dependence of the atomic structure is discussed in the Appendix.

Table 5.1: Densities ρ (g/cm3) used in MD simulations of liquid Se in the
canonical ensemble. The relative volumes V/V0, where V0 is the volume at

ρ = 3.79 g/cm3 (P = 0 GPa, T = 560 K), and the time-averaged pres-
sures [42, 43] P (GPa) are also listed.

ρ (g/cm3) V/V0 P (GPa) T (K)
3.91 0.97 0.1 560
4.51 0.84 0.9 650
5.06 0.75 3.3 800
5.42 0.70 5.0 1000
5.78 0.66 7.0 1000
6.14 0.62 9.4 1000
7.30 0.52 28.1 2000
7.89 0.48 39.2 2000
9.52 0.40 85.9 2000

To determine the density of the liquid state under pressure, a constant-
pressure MD simulation [39] is performed for 2.4 ps at each given pressure.
The temperatures are along the experimental melting curve [69]. Using the
time-averaged density, the static and diffusion properties are investigated by
MD simulations in the canonical ensemble [40, 41]. The time-averaged pres-
sure [42, 43] is calculated at each density, and we obtain the density-pressure
relation as listed in Table. 5.1. The thermodynamic states investigated in this
study cover a density range from 3.91 to 9.52 g/cm3, and a pressure range
from 0.1 to 85.9 GPa. The quantities of interest are obtained by averaging
over 14.4 ∼ 21.6 ps to achieve good statistics after the initial equilibration,
which takes at least 2.4 ps.
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5.3 Results and discussion

5.3.1 Structure factor

Figure 5.1 shows the pressure dependence of the structure factor S(k) of
liquid Se. The solid lines display the calculated S(k). The results of x-ray
diffraction experiments [66, 72] are plotted by the open circles. It is seen
that the calculated results are in good agreement with experiments. With

increasing pressure, the first peak around 1.8 Å−1 at 0.1 GPa shifts to larger
k, and its intensity increases. In contrast, the second peak decreases its height
with pressure, and almost disappears above 9 GPa. The peaked behavior at
the highest pressure 85.8 GPa indicates that the system falls into a partially
ordered state.
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Figure 5.1: Pressure dependence of the total structure factor S(k). The
solid lines and open circles show the calculated and experimental S(k), re-
spectively. The curves are shifted vertically as indicated by the figures in
parentheses.
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5.3.2 Pair distribution function

The pressure dependence of the pair distribution function g(r) of liquid Se
is displayed by the solid lines in Fig. 5.2. A sharp first peak exists at about

2.4 Å, well separated from the second peak, at 0.1 GPa. This peak reflects
the strong covalent bonding between the intrachain nearest-neighbor atoms.
With increasing pressure, the second peak shifts to smaller r, and the first
minimum becomes shallower. At 7.0 and 9.4 GPa, the minimum almost
disappears, and the second peak becomes a shoulder. At higher pressures, the
second peak merges into the first peak, and the height grows with pressure.
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Figure 5.2: Pressure dependence of the pair distribution function g(r). The
solid lines show g(r) of liquid Se and the dashed lines with open circle show
g(r) of liquid Te. The curves are shifted vertically as indicated by the figures
in parentheses.

Figure 5.3 shows the pressure dependence of the coordination number N
and the nearest-neighbor distance r1 (the first-peak position of g(r)). The
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coordination number is obtained in three ways; (A) NA is obtained by inte-

grating 4πr2ρ0g(r) up to r1, and multiplying it by two, where the ρ0 denotes

the number density, (B) NB is obtained by integrating 4πr2ρ0g(r) up to the

first-peak position of 4πr2g(r), and multiplying it by two, and (C) NC is by

integrating 4πr2ρ0g(r) up to the first-minimum position of g(r), rmin = 2.7

Å, at 0.1 GPa. In Fig. 5.3(a), the circles, squares, and triangles show NA, NB,
and NC, respectively. All NA, NB, and NC decrease slightly with pressure
below 5 GPa. Since g(r) has the sharp first peak, NA and NB have simi-
lar values to each other. However, above 5.0GPa, there is a large difference
among them. While NA increases almost linearly with the volume reduction
above 5 GPa, NB increases drastically from about 2 to 7 between 5 and 10
GPa. In this pressure range, g(r) has a very broad profile, and, therefore,
a discrepancy exists between NA and NB. Unlike NA and NB, NC increases
only slightly with pressure. As shown in Fig. 5.3(b), r1 increases only a little
below 5 GPa. When the pressure exceeds 5 GPa, r1 is extended abruptly,
reflecting the broad shape of g(r). r1 has a maximum around 20 GPa, and
decreases with decreasing the volume above that pressure. A more detailed
discussion on the changes of the local structure will be given later.

5.3.3 Electronic density of states

Figure 5.4 shows the pressure dependence of the total electronic density of
states (DOS), D(E), and the angular-momentum l dependent partial DOS,
Dl(E). D(E) is related to Dl(E) as D(E) =

∑
lDl(E). In D(E), there are

two segments below the Fermi level (EF = 0) at 0.1 GPa. The electronic
states below −10 eV and above −6 eV originate mainly from the 4s and
4p electrons, respectively. They are well separated even when the pressure
increases. There are two peaks at about -5 eV and -2 eV, which correspond to
p-like bonding and p-like non-bonding states, respectively. The DOS above
EF comes from p-like anti-bonding states. At 0.1 GPa, D(E) has a deep
dip at EF corresponding to the semiconducting properties of liquid Se. The
value of D(EF) increases when the pressure increases up to 5.0 GPa. In the
sense that D(EF) does not change so much above 5.0 GPa, the metallization
is completed around this pressure.

5.3.4 Bond-overlap population

We used population analysis [46, 47] to clarify the change in the bonding
properties due to the SC-M transition. By expanding the electronic wave
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functions in an atomic-orbital basis set, we obtain the overlap population
Oij(t) between the ith and jth atoms as a function of time t. Oij(t) gives
a semiquantitative estimate of the strength of the covalent-like bonding be-

tween atoms. Figure 5.5 shows the time-averaged distribution p(O) of the

overlap populations Oij(t). In p(O), there is a peak clearly at about O = 0.7

at 0.1 GPa. With increasing pressure, the peak shifts to smaller O, and
becomes broad, which indicates that the covalent-bonding interaction weak-

ens accompanying the metallization. Above 5.0 GPa, the profile of p(O)

for O > 0 has no clear peak, though we can recognize a shoulder around

O = 0.3 below 10 GPa. The peak around O = −0.05 at 0.1 GPa corresponds
to the repulsive interaction between the next-nearest neighbor atoms within
the chain due to the LP states. Although this peak becomes broad with

pressure, a new peak grows in the negative O region at higher pressures than
10 GPa.

5.3.5 Pressure-induced metallization of liquid Se

2 4 6
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Figure 5.6: Pair distribution function g(r) at 9.4 GPa. The solid and dashed
lines show g(r) at 1000 and 500 K, respectively.

As was seen in Fig. 5.3(a), all NA, NB and NC are almost two below
5 GPa, which means that the chain structure remains up to this pressure.
The slight decrease of them with pressure indicates that the average chain
length shortens under pressure. From the pressure dependence of D(EF) at

the Fermi level displayed in Fig. 6.6 as well as that of p(O) in Fig. 6.7, it is
suggested that the pressure-induced metallization is advanced up to 5 GPa,
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and that the system has the metallic properties at higher pressures. It is
concluded from these results that liquid Se is metalized under compression
while the chain structure is maintained in the similar way as the metallization
near the critical point accompanying the volume expansion [66, 67]. Note that
the first minimum of g(r) becomes shallower with increasing pressure from
0 to 5 GPa (Fig. 5.2), which results from the frequent occurrence of bond
breaking and bond forming in Se chains under pressure. In other words, such
strong interaction between Se chains accompanied with their rearrangement
plays an important role for the pressure-induced metallization.

5.3.6 Covalent-like interaction in the metallic state
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Figure 5.7: (a) The time evolutions of the overlap populations Oij(t). (b) The
time evolutions of the atomic distance dij(t) for the atomic pair corresponding
to the bold line in (a).

Between 5 and 10 GPa, NA and NB as well as r1 increase rapidly with
compression as shown in Fig. 5.3. This indicates a considerable structural
change in this pressure range. As shown in Fig. 5.2, g(r) at 7.0 and 9.4 GPa
have a peculiar shape in the sense that g(r) has no clear peaks, and exceeds
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one in a wide range of r from 2.4 to 4.0 Å. This characteristic profile of g(r)
seems to mean that the covalent interactions disappear in liquid Se at these
pressures. In order to clarify the origin of the peculiar shape of g(r), it is
essential to uncover the inherent structure of these states by eliminating the
effects of thermal fluctuations. For this purpose, we decrease the temperature
of the system at 9.4 GPa from 1000 to 500 K, while keeping the volume the
same, i.e. V/V0 = 0.62. Figure 5.6 compares g(r) obtained at 500 K with
that at 1000 K. When the temperature effects are reduced, two peaks appear

at 2.6 and 3.7 Å [45]. The coordination numbers at 500 K are NA = 3.2,
NB = 3.4, and NC = 2.0. Since g(r) has the clear first peak, NA and NB

are consistent with each other. At 1000K, the dip between these two peaks
disappears due to larger thermal motion of atoms, and, as a result, g(r) at
7.0 and 9.4 GPa has a peculiar shape.

To discuss the bonding properties between atoms at this volume in detail,
the time evolution of Oij(t) between a focused (ith) atom selected arbitrarily

and its surrounding (jth) atoms within the distance of 5 Å is shown in Fig.
5.7(a). It is seen that the ith atom interacts with several atoms with finite
Oij(t) > 0, out of which are one or two atoms with large Oij(t) ∼ 0.4. Figure
5.7(b) shows the time evolution of the distance dij(t) between the ith and jth
atoms, whose Oij(t) is displayed by the bold line in Fig. 5.7(a). It is obvious
that Oij(t) is strongly correlated with dij(t); when the distance is larger

dij(t) ∼ 3.5 Å for t < 3 ps, Oij(t) is almost zero, and when the distance

becomes smaller dij(t) ∼ 2.6 Å after 3 ps, Oij(t) comes to be finite. In
conclusion, each atom interacts with neighboring atoms through the covalent-
like bonding with finite Oij(t) > 0 as a remnant of chain structure even
though the system is in the metallic state for the pressure range of 5 to 10
GPa (the volume V/V0 range of 0.6 to 0.7). These atomic pairs form the first

peak of g(r) at 2.6 Å.

5.3.7 Comparison with liquid Te

According to ab initioMD simulations [74], the coordination number of liquid
Te is NA = 2.5, 5.0, 6.3, and 7.0 at 0, 4, 12, and 18 GPa, respectively.
Considering this pressure dependence, g(r) of liquid Te is compared with
that of liquid Se as displayed by the dashed lines with open circles in Fig.
5.2. Although there is no state in liquid Se well corresponding to that at 0
GPa in liquid Te, the shape of g(r) of liquid Te under pressure is in good
agreement with that of liquid Se above 28.1 GPa. These results confirm that
the local structure of liquid Se at high pressures is similar to that of liquid
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Te.

5.3.8 Dynamic properties

Figure 5.8(a) shows the diffusion coefficients D as a function of pressure,
which are estimated from the slopes of the mean squared displacement as

D = lim
t→∞

⟨
{ri(t)− ri(0)}2

⟩
6t

, (5.1)

where ri(t) is the position of the ith atom at time t, and ⟨· · · ⟩ means taking
the average over all atoms and time.
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Figure 5.8: Pressure dependence of (a) the diffusion coefficient D and (b)
the share viscosity η.

We see that D of liquid Se increases with increasing pressure up to about
5 GPa and temperature up to 1000 K along the experimental melting curve.
Since this pressure dependence of D results from the changes of both tem-
perature and pressure, we do not discuss the pure effect of pressure on the
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dynamic properties. It should be noted, however, that the volume contrac-
tion enhances the atomic diffusion in covalent liquids, such as liquid SiO2 [26]
and B2O3 [34] , due to weakening of the strong covalent-bonding interaction
between atoms. In liquid Se, the same effect of pressure should exists while
it has the semiconducting properties well below 5 GPa. To compare with the
experimental observation, we estimate the viscosity η by using the Stokes-
Einstein formula as shown in Fig. 5.8(b). The pressure dependence of η is in
qualitative agreement with experiments [69, 75].

The normalized velocity auto-correlation function ϕ(t) and its Fourier

transform ϕ(ω) are defined as

ϕ(t) =
⟨vi(t) · vi(0)⟩
⟨vi(0) · vi(0)⟩

, (5.2)

ϕ(ω) =

∫ ∞

0

ϕ(t) cos(ωt) dt, (5.3)

where vi(t) is the velocity of the ith atom at time t. Figure 5.9 shows the

pressure dependence of ϕ(t) and ϕ(ω). At 0.1 GPa, ϕ(t) has an oscillating
behavior reflecting the strong covalent bonding in the semiconducting state.

The peak of ϕ(ω) at 230 cm−1 corresponds to the stretching motion of Se-
Se bonds. Since the covalent-like interaction becomes weak with increasing
pressure as shown in Fig. 5.7, ϕ(t) shows less oscillating behavior as displayed

by the dashed line for 5 GPa, and the corresponding ϕ(ω) consists of a broad

peak at a lower frequency ∼50 cm−1. On the other hand, in the metallic
state, ϕ(t) again shows an oscillation as seen at 9.4 and 28.1 GPa, which is

considered as the cage effects exhibited by typical liquid metals. ϕ(ω) has a

shoulder or broad peak at a relatively high frequency around 150 cm−1.

5.4 Summary

We have investigated the structural and bonding properties of liquid Se under
pressure up to 85.9 GPa by ab initio molecular dynamics simulations. From
the analyses of the pair distribution function, the electronic density of states,
and the bond-overlap population, the microscopic mechanism of pressure-
induced metallization of liquid Se has been revealed. It has been found that
a covalent-like interaction exists in the metallic state in the pressure range
from 5 to 10 GPa, which gives a characteristic feature of the static structure.
It has been confirmed that the local structure of liquid Se and Te under high
pressure is similar to each other. The pressure dependence of the dynamic
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properties, such as the diffusion coefficient and the velocity auto-correlation
function, has also been investigated.



Chapter 6

Polymerization transition in
liquid AsS under pressure

6.1 Introduction

The microscopic mechanism of structural changes in covalent materials un-
der pressure is a topic of great interest in condensed-matter physics. From
the geological viewpoint, not only well-known materials such as SiO2, but
arsenic chalcogenides, especially arsenic monosulfide AsS, which are formed
at the boundary between the Earth’s upper mantle and crust under pres-
sures of 5-7 GPa, have also attracted considerable attention as minerals [76].
Under ambient conditions, crystalline realgar AsS has a monoclinic struc-
ture consisting of As4S4 molecules [77, 78].The molecule is made of As atoms
threefold coordinated to two S and one As atoms with S atoms bridging
two adjacent As atoms. At pressures of about 7 GPa, realgar AsS under-
goes a polymorph transition to another molecular phase with a supposedly
orthorhombic structure [76].

It is known that, under low-pressure conditions, As4S4 molecules remain
even upon melting. However, the structural properties and dynamics of liquid
AsS under pressure are not well understood. Within the As4S4 molecule,
atoms are connected by covalent bonds, so the rearrangement of the covalent
bonds must occur under compression. While liquid arsenic chalcogenides
show semiconducting properties at ambient conditions, high pressure leads
to metallization. To investigate the microscopic mechanism of the pressure-
induced semiconductor-metal (SC-M) transition, it is important to consider
the relationship with the structural changes along with the rearrangement of
the covalent bonds.
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The temperature dependence of the SC-M transition in liquid arsenic
chalcogenides has been extensively studied both experimentally [79, 80, 81]
and theoretically [82, 83, 84, 85]. The mechanism of this temperature-induced
SC-M transition in liquid As2S3 and As2Se3 is closely related to the structural
change with increasing temperature from the network to chain-like struc-
ture [83, 84, 85].

However, we are unaware of theoretical studies of the SC-M transition in
liquid arsenic sulfides under pressure.

X-ray diffraction measurements of liquid AsS have clarified the pressure
effects on structural properties [86], and two structural changes have been
proposed to occur with increasing pressure in the liquid state. The first
structural change is from a molecular liquid to a nonmetallic polymerized
liquid at 1.6-2.2 GPa. The second structural change is from this nonmetallic
polymerized liquid to a metallic liquid at 4.6-4.8 GPa. The viscosity of liquid
AsS under high pressure has also been measured [87]. It is highly anoma-
lous that the viscosity increases with pressure up to 2 GPa, after which it
drops with further compression. For covalent liquids, the viscosity is strongly
related to the covalent interactions, so studying the pressure effects on the
bonding properties of liquid AsS to understand the pressure dependence of
the viscosity is warranted.

In this paper, we investigate the structural and bonding properties and
the dynamics of liquid AsS under pressure using ab initio molecular dynamics
(MD) simulations. We have recently clarified the microscopic mechanisms of
the pressure-induced SC-M transition in monatomic covalent liquid Se [88],
and this paper extends this research to compound covalent liquids. A key
point to grasp in understanding the properties of this kind of liquid under
pressure is that the covalent interactions remain in the metallic state, as
indicated earlier for liquid Si [89, 90] as well as for liquid Se [88]. The pur-
poses of our study are (1) to elucidate the microscopic relationship between
the structural changes and the pressure-induced SC-M transition and (2)
to clarify the pressure effects on the dynamic properties in relation to the
covalent interactions in liquid AsS.

6.2 Numerical details

In the MD simulations, a system of 160 (80As+80S) atoms in a cubic supercell
is used under periodic boundary conditions. The equations of motion for
atoms are solved via an explicit reversible integrator [35] with a time step
of ∆t = 2.0 fs. A constant-pressure MD simulation [39] is performed for 4.8
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ps at each given pressure to determine the density of the liquid state under
pressure. Using the time-averaged density, the static and diffusion properties
are investigated by MD simulations in the canonical ensemble [40, 41] at a
temperature of 1300 K. The quantities of interest are obtained by averaging
over 14.4 ∼ 21.6 ps to achieve good statistics after the initial equilibration,
which takes at least 2.4 ps.

The atomic forces are obtained from the electronic states calculated us-
ing the projector-augmented-wave method [11, 12] within the framework of
density functional theory. Projector functions are generated for the 4s, 4p,
and 4d states of As and the 3s, 3p, and 3d states of S. The plane-wave cut-
off energies for the electronic pseudo-wave functions and the pseudo-charge
density are 20 and 150 Ry, respectively. The exchange-correlation energy is
treated by the generalized gradient approximation (GGA) [10]. The Γ point
is used for Brillouin zone sampling. The energy functional is minimized using
an iterative scheme [36, 37].

6.3 Results

6.3.1 Volume-pressure relation
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Figure 6.1: Volume as a function of pressure for liquid AsS at 1300 K.

The time-averaged pressure [42, 43] is calculated at each density, and
leads to the volume-pressure relation shown in Fig. 6.1. The thermodynamic
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states investigated in this study cover a density range from 2.79 to 5.17
g/cm3, and a pressure range from 0.1 to 15.8 GPa. Figure 6.1 shows that
the pressure dependence of the volume changes qualitatively at around 2
GPa. This feature suggests that a first-order liquid-liquid transition occurs
in liquid AsS, which is related to the transition from the molecular liquid to
the polymeric liquid, as described in detail below.

6.3.2 Structure factor
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Figure 6.2: Pressure dependence of the total structure factor S(k). The
solid lines show the calculated S(k), and the open circles represent the S(k)
obtained by x-ray diffraction measurements [86]. The curves are shifted
vertically as indicated by the figures in parentheses.
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Figure 6.2 shows the pressure dependence of the structure factor S(k) of
liquid AsS. The solid lines represent the calculated S(k), which are obtained
from the partial structure factors Sαβ(k) with the x-ray scattering factors.
The results of x-ray diffraction experiments [86] are indicated by open circles.
The calculated results are in fairly good agreement with experiments. A re-
markable feature exhibited in S(k) is the first-sharp diffraction peak (FSDP)

near k = 1 Å−1. This peak reflects the existence of some structural character-
istics in an intermediate range, such as the presence of As4S4 molecules below
2 GPa. The position of the FSDP gradually shifts to larger wavevectors and
the intensity decreases with increasing pressure. Above 4.1 GPa, there is no

clear FSDP. The height of the peak near k = 2 Å−1 increases with compres-

sion, whereas the peak height near k = 4 Å−1 decreases. Figure 6.3 shows
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Figure 6.3: Pressure dependence of the partial structure factors Sαβ(k). (a)
The solid lines show SAsS(k). (b) The solid and dashed lines indicate SAsAs(k)
and SSS(k), respectively. The curves are shifted vertically as indicated by the
figures in parentheses.
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the pressure dependence of Sαβ(k). We see that the FSDP shown in Fig.
6.2 is mainly determined by the As-As correlation, although the As-S cor-
relation also contributes to forming the FSDP. The S-S correlation has only
a shoulder at the position of FSDP. The intensities of these peaks decrease
drastically for pressures above 1.3 GPa, which corresponds to the breakdown
of As4S4 molecules in the liquid under compression. The peak of SAsAs(k)

near k = 2 Å−1 splits into two peaks for pressures above 4.1 GPa. Above 2.6

GPa, a shoulder appears in SSS(k) near k = 1.8 Å−1. The decrease of the

intensity of the peak in S(k) near k = 4 Å−1 originates from the decrease in
the SAsS(k) peak.

6.3.3 Pair distribution function
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Figure 6.4: Pressure dependence of the pair distribution functions gαβ(r). (a)
The solid lines show gAsS(r). (b) The solid and dashed lines indicate gAsAs(r)
and gSS(r), respectively. The curves are shifted vertically as indicated by the
figures in parentheses.

The pressure dependence of the pair distribution functions gαβ(r) of liquid
AsS is shown in Fig. 6.4. Since As4S4 molecules remain intact up to 1.3 GPa,
the shape of gαβ(r) is almost unchanged. Above 1.9 GPa, gαβ(r) is largely
different from those at lower pressures because the As4S4 molecule is broken.
In particular, the first minimum and second peak of gAsS(r) disappear with
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increasing pressure. Note that, above 2.6 GPa, the peak reflecting to the

formation of S-S homopolar bonds appears clearly near r = 2.1 Å in gSS(r).
The S-S homopolar bond also exists in liquid As2S3 at ambient pressure [91].
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Figure 6.5: Pressure dependence of the nearest-neighbor distances rαβ for (a)
α-β = As-As, (b) α-β = As-S, and (c) α-β = S-S. (d) Pressure dependence of
the average coordination numbers Nαβ. The circles, squares, and diamonds
show NAsS, NAsAs and NSS, respectively. The open and solid symbols indicate

N
(I)
αβ and N

(II)
αβ , respectively (see text).

Figure 6.5 shows the pressure dependence of the nearest-neighbor dis-
tances rαβ [the first-peak positions of gαβ(r)]. In Fig. 6.5(c), the open circles
indicate the position of the peak in gSS(r) which exists from ambient pressure,
and the solid circles show the peak of the homopolar bonds above 2.6 GPa.

At ambient pressure, rAsS, rAsAs, and rSS are 2.62, 2.25, and 3.38 Å, respec-
tively. These distances are almost the same as for the crystalline state [92]
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and remain almost unchanged up to 1.3 GPa. Above 1.9 GPa, the As-S and
S-S covalent bonds lengthen gradually with increasing pressure, as indicated
by the solid circles in Figs. 6.5(b) and 6.5(c), whereas no such change is seen
in rAsAs (Fig. 6.5(a)).

Figure 6.5(d) shows the pressure dependence of the partial coordination
numbers Nαβ for α-β = As-S (circles), As-As (squares), and S-S (diamonds).

The coordination numbers are obtained in two ways: (I) N
(I)
αβ are obtained

by the integration of 4πr2ρβgαβ(r) up to the first minimum position rmin
αβ

of gαβ(r) at 0.1 GPa for As-S and As-As, and at 2.6 GPa for S-S (rmin
AsS =

2.7, rmin
AsAs = 3.0, and rmin

SS = 2.35 Å), where ρβ denotes the number density

of β-type atoms. (II) N
(II)
αβ are obtained by the integration of 4πr2ρβgαβ(r)

up to the first minimum of r2gαβ(r) at each pressure. At ambient pressure,
NAsS = 2 and NAsAs = 1, irrespective of the method of calculation. These
values are the same as for the crystalline state consisting of As4S4 molecules.

Above 1.9 GPa, both NAsS and NAsAs begin to increase. Note that N
(II)
AsS

and N
(II)
AsAs increase drastically above 10 GPa as shown by the solid symbols,

which indicates that the first-coordination shell changes significantly in this
pressure range, as discussed in Sec. 6.4. Above 2.6 GPa, NSS has finite values,

and increases with compression. Different from N
(II)
AsS and N

(II)
AsAs, N

(II)
SS does

not show the sudden increase at pressures over 10 GPa, but keeps a similar
value of about 0.1.

6.3.4 Electronic density of states

Figure 6.6 shows the pressure dependence of the total electronic density of
states (DOS) D(E) and the partial DOS Dα(E). The electronic states below
−8 eV and above −6.5 eV originate mainly from the hybridization of s and
p electrons, respectively. They are well separated from each other even for
pressures up to 15.8 GPa. The DOS above EF (E = 0) originates from p-like
anti-bonding states. At 0.1 GPa, D(E) has a small gap at EF, which cor-
responds to the semiconducting properties of the liquid. Although the gap
remains at pressures up to 1.3 GPa, the value of D(EF) becomes finite above
1.9 GPa, and increases with increasing pressure, which indicates that metal-
lization follows the rupture of As4S4 molecules. It should, however, be noted
that having a finite value of D(EF) does not directly prove that the system
has the metallic properties. It is also well known that GGA underestimates
band gaps in semiconductors. In addition to these facts, at pressures of 1.9-
4.1 GPa, a deep dip is recognized at EF. Therefore, we consider that the
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Figure 6.6: Pressure dependence of the electronic density of states D(E)
and the partial electronic density of states Dα(E). The bold-solid lines indi-
cate D(E). The thin-dashed and thin-solid lines show DAs(E) and DS(E),
respectively.

system is not completely metalized but has some semiconducting properties
over this pressure range even after polymerization. In this sense, our calcu-
lations are consistent with the experimental observations [86], which suggest
that nonmetallic polymerized liquid is metalized at 4.6-4.8 GPa. The shape
of D(E) does not change significantly for pressures above 4.1 GPa, indicating
that metallization is completed at this pressure.

6.3.5 Bond-overlap population

We use population analysis [46, 47] to clarify changes in bonding properties
associated with compression. By expanding the electronic wave functions in
an atomic-orbital basis set, we obtain the overlap population Oij(t) between
the ith and jth atoms as a function of time t. Oij(t) gives a semi-quantitative
estimate of the strength of the covalent-like bonding between atoms. Note
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that pαβ(O) is normalized so that

∫ ∞

Omin

pαβ(O) dO gives the average number

of β-type atoms that have overlap populations greater than Omin around one
α-type atom.

Figure 6.7 shows the time-averaged distribution pαβ(O) of the overlap

populations Oij(t). In pAsS(O) and pAsAs(O), clear peaks exist near O = 0.7

and O = 0.4, respectively, up to 1.3 GPa, which reflects the covalent-bond

interactions within As4S4 molecules. Above 1.3 GPa, pAsS(O) and pAsAs(O)

increase with pressure in the ranges of 0 < O < 0.5 and 0 < O < 0.3,
respectively, because bond exchange and bond rupture occur more frequently

at higher pressures. Up to 5.9 GPa, the peaks in pAsS(O) and pAsAs(O)
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remain near O = 0.7 and O = 0.4, respectively, which indicates that the
covalent interactions survive in this pressure range. The shift of these peaks

to smaller O with increasing pressure means that the covalent interactions
weaken, which is why rAsS and rSS increase with pressure, as indicated by

the solid circles in Fig. 6.5. Above 2,6 GPa, pSS(O) has a broad peak near

O = 0.8, which corresponds to the pressure-induced appearance of the S-

S homopolar bonds. For O < 0, the profiles of pαβ(O) are significantly
different below and above 1.9 GPa, reflecting the transition from molecular
to polymeric liquid.

6.3.6 Diffusion coefficient
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Figure 6.8: Pressure dependence of the diffusion coefficients dα for α = As
(circles) and α = S (squares).

The pressure dependence of the diffusion coefficients dα is shown in Fig
6.8. Up to 1.3 GPa, dα decrease with increasing pressure while remaining the
As4S4 molecule intact. In molecular liquids, long-range molecular diffusion
must occur in order for atoms to diffuse long range. As pressure increases
from 0.1 to 1.3 GPa, the volume of the system largely decreases as shown
in Fig. 1. Therefore, the free space between molecules is reduced and the
molecular diffusion path is significantly limited. In addition, we observed
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that direct interactions between molecules become stronger, i.e., new bonds
are almost formed between neighboring molecules at 1.3 GPa. As a result,
diffusion coefficients decrease rapidly.

Above 1.9 GPa, the pressure dependence changes qualitatively. Although
the system exhibits metallic properties in the sense that there is no energy gap
in the DOS at EF in this pressure range (as shown in Fig. 6.6), covalent inter-
actions exist between atoms (as shown in Fig. 6.7). Since each bond weakens
with an increase in the number of neighboring atoms, bond exchange occurs
easily and frequently, and the diffusion coefficients increase above 1.9 GPa.
Under further compression, dα eventually decrease so that a local maximum
occurs around 5 GPa, as seen in typical covalent liquids [34, 93]. The pressure
dependence of dα corresponds well to the experimentally measured pressure
dependence of the viscosity [87] . Note that the experimental measurements
were performed just above the melting temperature at each pressure, whereas
all simulations were carried out at 1300 K. However, changing the pressure in
the order of GPa has a stronger effect than changing the temperature by an
order of 100 K, as suggested by Fig. 2 of ref. 12. Therefore, the qualitative
pressure dependence of the calculated dα agrees with that of the experimental
viscosity.

As for temperature dependence, the transition pressure of polymerization
will increase and the diffusion maximum will appear more clearly when the
temperature decreases.

6.4 Discussion

We discuss here the pressure-induced structural changes in relation to the co-
valent interactions. Each pair distribution function gαβ(r) is resolved accord-
ing to the strength of the interatomic covalent bonds. The bold-dashed, thin-

solid, and thin-dashed lines in Fig 6.9 show g
(+)
αβ (r), g

(−)
αβ (r), and g

(0)
αβ (r) ob-

tained from atomic pairs with Oij(t) ≥ δ, Oij(t) ≤ −δ, and −δ < Oij(t) < δ,
respectively (we use δ = 0.01). At 0.1 GPa, the first peak of gAsS(r) consists

of only g
(+)
AsS(r), whereas the second peak consists of mainly g

(−)
AsS(r). A similar

profile is apparent in gAsAs(r), i.e., g
(+)
AsAs(r) and g

(−)
AsAs(r) form the first and

second peak, respectively, of gAsAs(r). Note that g
(+)
AsS(r) and g

(+)
AsAs(r) have

broad peaks at 3.2∼3.5 Å, which comes from inter-molecular interactions,

whereas the peaks of g
(−)
AsS(r) and g

(−)
AsAs(r) correspond to intra-molecular in-

teractions. With increasing pressure, the broad peaks of g
(+)
AsS(r) and g

(+)
AsAs(r)
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shift to smaller r, and merge into their respective first peaks. However, the

peaks of g
(−)
AsS(r) and g

(−)
AsAs(r) remain well separated from their first peaks.

These results mean that the increase in average coordination number ac-
companying the polymerization transition is due to bond formation between
atoms belonging to different molecules; that is, after the transition, atoms
belonging to different molecules come into the first coordination shell.

At 15.8 GPa, g
(−)
AsS(r) and g

(−)
AsAs(r) interpenetrate g

(+)
AsS(r) and g

(+)
AsAs(r), re-

spectively. Consequently, the coordination numbers N
(II)
AsS and N

(II)
AsAs increase

drastically, as shown in Fig. 6.5(d). We consider that the covalent nature of
the liquid becomes quite weak in this pressure range.
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Regarding the S-S correlation, g
(−)
SS (r), which originates from intra-molecular

correlation, provides the main contribution at 0.1 GPa to the peak of gSS(r)

at 3.3 Å. g
(+)
SS (r) also has a small peak, which corresponds to inter-molecular

interactions. These results show that no clear chemical bonds exist between S
atoms at 0.1 GPa. With increasing pressure, a peak appears near 2.1 Å that

consists of g
(+)
SS (r), which indicates the formation of S-S homopolar bonds

between different molecules. Note that the peak of g
(+)
SS (r) near 3.3 Å shifts

to smaller r with increasing pressure. At 15.8 GPa, this peak is almost at
the same position as the peak of gAsAs(r). This fact implies that the order
in the atomic configuration, which originates from the covalent interactions
that are a remnant of the molecular liquid, disappears at this pressure.

6.5 Summary

By using ab initio molecular dynamics simulations, we have investigated the
structural and bonding properties and the dynamics of liquid AsS under
pressures up to 15.8 GPa. The present work confirms that the metallization
of liquid AsS follows the pressure-induced transition from molecular to poly-
meric liquid. The profiles of the bond-overlap populations show that covalent
interactions persist in the metallic state, which determines the pressure de-
pendence of the dynamic properties. After polymerization, the As-S bond
lengthens with increasing pressure, and the diffusion coefficients exhibit a
local maximum near 5 GPa.



Chapter 7

Energy transport in
light-harvesting dendrimer

7.1 Introduction

Harvesting energy from sunlight is of paramount importance for the solu-
tion of the global energy problem [94], for which synthetic supermolecules
such as light-harvesting dendrimers [95] are attracting great attention [96].
In these molecules, electronic excitation energy due to photoexcitation of
antennas located on the periphery of the molecules is rapidly transported
to the photochemical reaction centers at the cores of the molecules, which
in turn perform useful work such as photosynthesis and molecular actua-
tion [97]. A number of experimental [98, 99, 100] and theoretical [101] works
have addressed rapid energy transport mechanisms in light-harvesting den-
drimers. Though such energy transfer is conventionally attributed to either
dipole-dipole interactions (Forster mechanism) or the overlapping of donor
and acceptor electronic wave functions (Dexter mechanism) [95], atomistic
mechanisms of rapid electron transport in these dendrimers remain elusive.
Here, we perform quantum-mechanical (QM) molecular dynamics (MD) sim-
ulations incorporating nonadiabatic electronic processes [102, 103] to identify
atomistic mechanisms of rapid energy transport after photoexcitation of a
light-harvesting dendrimer. The results reveal the key molecular motion (i.e.
thermal vibration of the aromatic rings in the peripheral antennas), which
significantly accelerates the energy transport based on the Dexter mecha-
nism. The simulation results also elucidate the effect of temperature and
solvent on the electron transport rate, which explains recent experimental
observations.
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7.2 Numerical details

The simulated system consists of a zinc-porphyrin core (labeled“ core” in
Fig. 7.1(a)) and a benzyl ether-type antenna. In the antenna, there are three
aromatic rings connected by ether oxygen atoms, out of which one aromatic
ring is directly connected to the zinc-porphyrin core. We hereafter refer to
this ring as“ intermediate”(labeled“ inter”in Fig. 7.1(a)) and the other
two rings bonded to the intermediate ring as“peripheries”(labeled“peri”
in Fig. 7.1(a)). The periodic boundary condition is employed with a suprecell

of dimensions 18× 18× 24 Å3, which is large enough to avoid the interaction
between periodic images of the molecule. Namely, the total energy changes

only slightly ( 0.01 meV/atom) when a larger supercell of 20× 20× 26 Å3

is used.

7.3 Result and discussion

7.3.1 Simulation result of the ground state

We first calculate the electronic structure of the system based on the density
functional theory (DFT) The spatial distribution of some of the one-electron
wave functions in the ground state is shown in Fig. 7.1(b), where the atomic
positions are relaxed so as to minimize the total energy. It is seen from Fig.
7.1(b) that the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) spread only within the core, which is
consistent with the fact that electrons and holes photoexcited in the periph-
eries eventually move to the core. Figure 7.1(b) also shows the wave function
of the occupied molecular orbital (MO) with the n-th highest energy but
one (denoted as HOMO-n, where n = 1-4) and that of the unoccupied MO
with the m-th lowest energy but one (denoted as LUMO+m, where m =
1-4). The wave functions of HOMO-1, HOMO-2, LUMO+1, and LUMO+2
are distributed mainly within the core. The eigenenergies of LUMO and
LUMO+1 are almost degenerate within 0.01 eV, and they are separated well
from the other states; the energy difference between HOMO and LUMO is
about 2.0 eV, and that between LUMO+1 and LUMO+2 is about 1.3 eV. In
contrast to these core states, HOMO-3, HOMO-4, LUMO+3, and LUMO+4
spread mainly within the peripheries. To study the effect of thermal molecu-
lar motions on the electronic wave functions, we next perform adiabatic MD
simulation at a temperature of T = 300 K in the canonical ensemble, where
the electrons stay in the ground state and the atomic forces are calculated
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(side view)
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core
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inter
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Figure 7.1: (a) Simulated dendrimer consisting of a zinc-porphyrin core (la-
beled‘ core’) and a benzyl ether-type antenna that has one“ intermediate”
(labeled‘ inter’) and two“peripheries”(labeled‘peri’) rings. The brown,
blue, grey, red, and white balls indicate Zn, N, C, O, and H atoms, respec-
tively. (b) Spatial distribution of electronic wave functions in the ground
state, for HOMO, HOMO-n (MO with the n-th lowest energy but one, n =
1-4), LUMO, and LUMO+m (MO with the m-th highest energy but one,
m = 1-4), where red and green colors represent the isosurfaces of the wave
functions with the values of 0.013 and -0.013 a.u., respectively.

based on the DFT [104]. The left panel of Fig. 7.2 shows the time evolution of
electronic eigenenergies ϵi during the MD simulation. From the time average
of these eigenenergies, we calculate electronic densities of states (DOS) Dα(E)
projected to the wave functions of the atoms in molecular subsystems [47],
where α = core, inter, peri for the zinc-porphyrin core, intermediate ring,
and peripheral rings, respectively. The right panel of Fig. 7.2 shows Dcore(E)
(black solid curve), Dinter(E) (red dashed curve), and Dperi(E) (blue solid
curve) at T = 300 K, along with the eigenenergies of the optimized structure
at T = 0 K in Fig. 7.1 (horizontal lines). In Dcore(E), there are peaks at 0.1,
2.1, and 3.3 eV (the origin of energy is taken at the HOMO eigenenergy at
0 K), whereas Dperi(E) has peaks at -0.3 and 4 eV. The differences between
these energies are in good agreement with photo-absorption measurements at
25 ◦C [105]; the absorption peaks for the zinc-porphyrin core have been ob-
served at the photon energies of about 2.2 and 3.0 eV (known as Q and Soret
bands, respectively), and that for the peripheries has been observed around
4.4 eV. Even at a finite temperature of 300 K, the two core states, LUMO
and LUMO+1, are not mixed with the other states, represented by the clear
distinct peak at 2.1 eV in Dcore(E) (right panel in Fig. 7.2). In contrast,
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LUMO+2, which also spreads only within the core at 0 K, mixes with the
states in the intermediate and peripheral rings due to thermal fluctuation
at 300 K, and Dcore(E) above 3 eV overlaps with Dinter(E) and Dperi(E).
The left panel of Fig. 7.2 exhibits multiple crossings of eigenenergies in this
energy range. When an eigenenergy is well separated from the others, its
wave function has a large amplitude only within the core or one of the pe-
ripheries as shown in Figs. 7.2(a) and 7.2(b), respectively. On the other
hand, the wave function spreads over both peripheries, when the LUMO+3
and LUMO+4 energies approach each other (Fig. 7.2(c)). Also, at a cross-
ing of the LUMO+2 energy with another eigenenergy, the wave function
spreads over both the core and a periphery (Fig. 7.2(d)). This suggests that
electrons photoexcited in the peripheries are transferred to the core through
such extended state, i.e., by the Dexter mechanism. A similar situation is
observed for the occupied states (HOMO, HOMO-1, ...), which suggests that
hole transport also occurs with the same mechanism.
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Figure 7.2: (Left panel) Time evolution of electronic eigenenergies during
adiabatic MD simulation for the ground state. Spatial distribution of an
electronic wave function is also shown for (a) LUMO+2 at 3 fs, (b) LUMO+4
at 20 fs, (c) LUMO+3 at 47 fs, and (d) LUMO+2 at 52 fs. (Right panel)
Time-averaged electronic densities of states Dα(E), where the black solid, red
dashed, and blue solid curves are for the core, intermediate, and peripheries,
respectively.
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7.3.2 Simulation results of the excited state

In order to confirm that a photoexcited electron indeed transfers based on
the Dexter mechanism, we perform nonadiabatic MD simulations that in-
corporate electronic transitions through the fewest-switches surface-hopping
(FSSH) method [102] along with the Kohn-Sham (KS) representation of time-
dependent (TD) DFT [103]. The nuclei are treated classically in the adiabatic
representation, i.e., the atomic forces are calculated from the (excited) elec-
tronic eigenstates for the current nuclear positions. Switching probability
from the current adiabatic state to another is computed from the density-
matrix elements obtained by solving the TDKS equations [103], and nona-
diabatic transitions between adiabatic states occur stochastically[102]. We
have estimated the many-body correction on an electron-hole pair excitation
based on Casida’s linear-response TDDFT [106] and found that the switching
probability is modified by at most a few percent. The TDKS-FSSH simula-
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Figure 7.3: Time evolution of electronic eigenenergies in TDKS-FSSH sim-
ulation. The red circles denote energies of the electronic states occupied by
the photoexcited electron. The spatial distribution of the wave function of
the photoexcited electron is also shown at time t = (a) 0, (b) 10, and (c) 20
fs.

tions are initiated by exciting an electron from the HOMO-4 to LUMO+4
state at time t = 0, corresponding to the ultraviolet-light excitation in ex-
periments [105]. We also calculate the distribution of oscillator strengths
using Casida’s linear-response TDDFT method [106], which agrees well with
the observed absorption spectra. An example of the time evolution of the
eigenenergies is shown in Fig. 7.3 (supplementary movie S1 shows this pro-
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cess). Just after the excitation, the wave function of the occupied LUMO+4
is distributed mainly in the left periphery (Fig. 7.3(a)). At 6 fs, a transi-
tion from LUMO+4 to LUMO+3 occurs, accompanied by the transfer of the
electron to the right periphery (Fig. 7.3(b)). Note that the eigenenergy of
the right periphery is not always lower than that of the left periphery due to
their crossings. At 17 fs, another transition to LUMO+2 occurs, causing the
wave function of the occupied state to reside mainly within the core (Fig.
7.3(c)).

7.3.3 Effects of the environments

As demonstrated above, the crossings of eigenenergies ϵi due to thermal
motions of atoms are crucial for electron transfer. With larger fluctuation
of eigenenergies, the crossings are more frequent, resulting in fast energy
transfer. The fluctuation of eigenenergies can be estimated from adiabatic
MD simulations. We obtain the average standard deviation of eigenenergies,
where is the time-averaged value and denotes the average over i = LUMO+2,
LUMO+3, LUMO+4, as well as over time. From the time evolution of ϵi in
Fig. 7.2, σ is calculated to be 0.13 eV at 300 K. When the temperature is
decreased to 100 K, our MD simulation exhibits much smaller fluctuation,
σ = 0.02 eV, which indicates that the energy transfer should be slower at
lower temperatures. This explains a recent experiment on light-harvesting
dendrimers [99], in which a remarkable temperature dependence of photolu-
minescence intensities indicates that the energy transfer from the peripheries
to the core is suppressed at low temperatures (i.e. below 100 K). Since pho-
toluminescence experiments for dendrimers are carried out in a solvent [99],
we also consider the environmental effects on the electron transfer. To study
the effect of the anhydrous tetrahydrofuran (THF) solvent used in the ex-
periment, we explicitly introduce 14 THF molecules around the dendrimer
as shown in Fig. 7.4(a) and treat them quantum-mechanically as well. The
weak dispersion (van der Waals) interactions between the dendrimer and
THF molecules are treated semiempirically,in the adiabatic MD simulations.
The time evolution of electronic eigenenergies at 300 K is shown in Fig.
7.4(b), where both the results with and without the THF solvent are plot-
ted. It is obvious that the solvent suppresses the fluctuation of eigenenergies,
as the corresponding σ is reduced to only 0.04 eV.
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Figure 7.4: (a) A snapshot of atomic configuration. Dendrimer consisting of
a zinc-porphyrin core with three benzenes and a benzyl ether-type antenna
is surrounded by 14 THF molecules. The brown, blue, grey, red and white
spheres represent Zn, N, C, O and H atoms, respectively. (b) Time evolution
of electronic eigenenergies during adiabatic MD simulation at 300 K. The
black and red curves are obtained from MD simulations with and without
THF solvent, respectively.

7.3.4 Transfer time

In order to estimate the electron transfer time, additional TDKS-FSSH simu-
lations are carried out, and Fig. 7.5 shows the time evolution of the existence
probability Rα(t) (α = core or antenna) of a photoexcited electron obtained
from the ensemble average over 40 simulations. Here, the solid and dashed
curves show Rα(t) for the core and antenna regions, respectively, which are
calculated in the same way as Dα(E) (the antenna region is defined as the
intermediate plus the peripheries). The electron transfer time is estimated

to be 40 fs. The corresponding electron transfer rate, 0.025 fs−1, is found
to be orders-of-magnitude larger than that due to the competing Forster
mechanism.

7.4 Summary

Our quantum-mechanical molecular dynamics simulation incorporating nona-
diabatic electronic transitions reveals the key molecular motion that signif-
icantly accelerates the energy transport based on the Dexter mechanism.
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Figure 7.5: Time evolution of the existence probability Rα(t) of a photoex-
cited electron. The solid and dashed lines indicate Rα(t) for the core and
antenna regions, respectively.

An essential feature of the electronic structure to support the rapid electron
transfer is the existence of unoccupied levels in the peripheries just above
LUMO+2 of the core, and that of occupied levels in the peripheries just be-
low HOMO of the core. Crossings of these energy levels occur due to thermal
fluctuation even in the ground state. Upon photoexcitation, the motion of
aromatic rings connected by ether bonds enhances the lowering of the energy
of the photoexcited state, thereby promoting such crossings further. The ac-
celeration is less pronounced in the presence of solvent at low temperatures,
which explains recent experimental observations.



Chapter 8

Summary

The dynamic and electronic properties of covalent liquids are studied by ab
initio molecular dynamics simulation. The findings from this study are as
follows;

(i) Liquid B2O3, SiO2 and GeO2 has diffusion maximum under high pres-
sure. The diffusion mechanism in these three liquids always involves
overcoordinated atoms such as BO4, SiO5 and GeO5. High pressure
leads to the forming overcoordination, that is, the diffusion coefficients
increase with increasing pressure. On the other hand, the diffusivity
of liquid SrGeO3 decreases monotonically with increasing pressure. In
liquid SrGeO3, atomic diffusion occurs by switching back and forth be-
tween single and double bond. In other words, liquid SrGeO3 does not
need overcoordinated atoms when atoms diffuse. This is the reason why
liquid SrGeO3 does not have diffusion maximum under high pressure.
In addition, liquid B2O3 and SiO2 have dynamic asymmetry under high
pressure. That is, the diffusion coefficients of higher coordinate atom
(Si in SiO2, B in B2O3) is more than twice that of the other atom (
O in both liquid). The origin of this anomaly is that bridging oxygen
still exists as diffusion path at higher pressure region where almost all
other atoms (Si, B) is over coordination. In this pressure region, there
are diffusion path for Si or B atom but there are no diffusion path for
O atom. On the other hand, liquid GeO2 which has similar local unit
with liquid SiO2 does not have dynamic asymmetry. In GeO2, it does
not need high energy to make overcoordinated atoms compared to SiO2

or B2O3. That is, diffusion path exists for O atoms as well as Ge atoms
despite high pressure. This is the reason why dynamic asymmetry does
not appear in liquid GeO2.
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(ii) In liquid chalcogenide, the covalent-like interaction which is a remnant
of ambient pressure plays important role for the pressure-induced met-
alization. Even after metallization, there is a microscopic covalent-like
interaction between atoms, which results in a peculiar behavior in both
liquids. For liquid Se, after metallization, there is a characteristic first
coordination shell in which each atom interacts with neighboring atoms
through covalent like bonding as a remnant of chain structure. As a
result, the radial distribution function of liquid Se under pressure has
a peculiar shape in the sense that there are no clear peaks like in a
dilute gas. For liquid AsS, the distance between As and S becomes
longer with increasing pressure even after metallization. In addition,
the diffusion coefficients have local maximum in the pressure range of
the metallic state.

(iii) In the light-harvesting dendrimer, energy transport from antennas to
core occors with Dexter mechanism. An essential feature of the elec-
tronic structure to support the rapid electron transfer is the existence
of unoccupied levels in the peripheries just above LUMO+2 of the core,
and that of occupied levels in the peripheries just below HOMO of the
core. Crossings of these energy levels occur due to thermal fluctua-
tion even in the ground state. Upon photoexcitation, the motion of
aromatic rings connected by ether bonds enhances the lowering of the
energy of the photoexcited state, thereby promoting such crossings fur-
ther. The acceleration is less pronounced in the presence of solvent at
low temperatures, which explains recent experimental observations [13].
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