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Moving, merging, and annihilating Dirac points are studied theoretically in the tight-binding model on
honeycomb lattice with up-to third-nearest-neighbor hoppings. We obtain a rich phase diagram of the topological
phase transitions in the parameter space of direction-dependent hoppings. We obtain the conditions for the three
Dirac points to merge and for the tricritical points. We find that only very small third-nearest-neighbor hoppings
are enough for the existence of the merging of three-Dirac-points and the tricritical points, if the system is
sufficiently anisotropic. The density of states is obtained to be D(ε) ∝ |ε|1/3 when three Dirac points merge, and
D(ε) ∝ |ε|1/4 at the tricritical points. It is possible to realize these topological phase transitions in the ultracold
atoms on the optical lattice, strained monolayer graphene, or strained bilayer graphene.
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I. INTRODUCTION

Massless Dirac fermions are realized in various fields
in condensed matter physics and some have attracted
much interest recently, e.g., graphene,1–3 the organic con-
ductor α-(BEDT-TTF)2I3,4,5 and iron-based superconductor
BaFe2As2.6 These materials have the Dirac points and the
linear band structure near the Fermi energy.

The moving, merging, and annihilating Dirac points due
to a breaking of the rotational symmetry were studied7

and observed recently in the ultracold atoms on an optical
lattice.8 Many authors have theoretically studied the merging
Dirac points in α-(BEDT-TTF)2I3,9 strained or twisted bilayer
graphene,10–14 and the honeycomb lattice with third-nearest-
neighbor hoppings.15 Most of the studies have used the
effective model, which describe the energy near the Dirac
points.

The energy band of graphene is obtained by first-principles
band calculations,16–18 and the band structure near the Fermi
energy can be reproduced by a simple tight-binding model.19

If hoppings are only between the nearest sites and they are
independent of the direction, there are two Dirac points at
K and K′ in the Brillouin zone. Reich et al.20 have shown
that up to third-nearest-neighbor hoppings are necessary to
describe the band structure in all Brillouin zones. They have
obtained that the nearest-neighbor, the next-nearest-neighbor,
and the third-nearest-neighbor hoppings are 2.79–2.97 eV,
0.073–0.68 eV, and 0.3–0.33 eV, respectively.20

A finite gap is important for the application to nanodevices.
There are two routes to open a finite gap at the Dirac points.
One route is via a violation of the inversion symmetry. The
violation of the inversion symmetry can be caused by the
difference of the onsite potentials on A and B sublattices
or the sublattice-dependent second-neighbor hoppings.21,22

The finite gap observed experimentally in graphene on a
SiC substrate23 is caused by the breaking of the inversion
symmetry.

The other route to open a finite gap is realized by making
two Dirac points with opposite topological number merge

and annihilate.7,9–15 When the hoppings between nearest sites
become different in three directions, the Dirac points move
from K and K′ to one of the three inequivalent M points (M1,
M2, and M3), merge into a semi-Dirac point and annihilate
to make a finite energy gap. In order to make a finite gap in
monolayer graphene, we need deformations of the order of
20% caused by a strong uniaxial strain24 or a shear strain,25

which are difficult to realize. However, the parameters can
be controlled in the ultracold atoms on the optical lattice and
the merging and annihilating Dirac points are observed.8 It
has been shown that the strained or twisted bilayer graphene
is modeled by the single-layer honeycomb lattice with the
third-nearest-neighbor hoppings, the strength of which are near
the half of the nearest-neighbor hoppings.14

In this paper we study the tight-binding model on the
honeycomb lattice with up to third-nearest-neighbor hoppings,
and we study the moving and the merging of the Dirac points
by changing the strength of direction-dependent hoppings. We
obtain interesting phase diagrams, in which we can see the
merging of three Dirac points and the tricritical points. The
density of states due to Dirac points and merged Dirac points
are calculated.

The model is given in Sec. II. The topological number
and the Berry phase of the Dirac points are discussed in
Sec. III. In Sec. IV we study the phase diagram in which
we consider only the phase transition due to the merging of
two Dirac points at M1, M2, M3, and �. Moving Dirac points
are studied in the model with direction-dependent nearest-
neighbor hoppings in Sec. V. Rich phase diagrams in the
model with direction-dependent nearest-neighbor and third-
nearest-neighbor hoppings are studied in Sec. VI. Section VII
is the conclusions, and detailed calculations are given in the
appendices.

II. TIGHT-BINDING MODEL ON HONEYCOMB LATTICE

We study the tight-binding electrons on the honeycomb
lattice (see Fig. 1). There are two sublattices, A and B (open
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FIG. 1. (Color online) Honeycomb lattice and hoppings. Filled
circles (•) and open circles (◦) are sites in A sublattice and
B sublattice, respectively. v1 and v2 are the unit vectors. The hoppings
between the nearest sites, the next-nearest sites, and the third-nearest
sites are shown in (a), (b), and (c), respectively, and they are
considered to depend on the direction and the sublattices.

and filled circles in Fig. 1), which form triangular lattices. We
take the unit vectors as
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and the vectors connecting the nearest sites as
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where a is the lattice constant. Hereafter, we set a = 1.
We consider the direction-dependent hoppings between

nearest sites (ta , tb, and tc), the next-nearest sites (t ′a , t ′b, t ′c,
t ′′a , t ′′b , and t ′′c ) and the third-nearest sites (t3a , t3b, and t3c), as
shown in Fig. 1. The hoppings between the next-nearest sites
within the A sublattice are labeled by t ′a , t ′b, and t ′c, and those
within the B sublattice are labeled by t ′′a , t ′′b , and t ′′c . The site
energies at the A sublattice and the B sublattice are taken as
εA and εB , respectively. The Hamiltonian is given by

H =
∑

k

c
†
kEkck, (6)

where

ck =
(

ak

bk

)
, (7)

ak and bk are the annihilation operators at A and B sublattices,
respectively,

Ek =
∑

μ=0,1,2,3

εμ(k)σμ, (8)

σ0 is the 2 × 2 unit matrix, σj (j = 1, 2, and 3) are Pauli
matrices, and

ε0(k) = 1
2 (εA + εB) − (t ′c + t ′′c ) cos(v1 · k)

− (t ′b + t ′′b ) cos(v2 · k) − (t ′a + t ′′a ) cos[(v2 − v1) · k],

(9)

ε1(k) = −ta cos(δa · k) − tb cos(δb · k) − tc cos(δc · k)

− t3a cos(2δa · k) − t3b cos(2δb · k) − t3c cos(2δc · k),

(10)

ε2(k) = −ta sin(δa · k) − tb sin(δb · k) − tc sin(δc · k)

− t3a sin(−2δa · k) − t3b sin(−2δb · k)

− t3c sin(−2δc · k), (11)

ε3(k) = 1
2 (εA − εB) − (t ′c − t ′′c ) cos(v1 · k)

−(t ′b − t ′′b ) cos(v2 · k) − (t ′a − t ′′a ) cos[(v2 − v1) · k].

(12)

The energy is given by

E±(k) = ε0(k) ±
√√√√ 3∑

j=1

[εj (k)]2. (13)

The nearest-neighbor hoppings and the third-nearest-
neighbor hoppings connect the sites in A and B sublattices,
while the next-nearest hoppings connect sites within A
sublattice or B sublattice. Therefore, the nearest hoppings
and the third-nearest-neighbor hoppings appear only in the
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off-diagonal elements [Eqs. (10) and (11)], and the next-
nearest hoppings appear only in the diagonal elements [Eqs. (9)
and (12)].

There are no gaps at k = k∗, when ε1(k∗) = ε2(k∗) =
ε3(k∗) = 0. In general, each of the equations εi(k) = 0 (i = 1,
2, and 3) gives the line in the plane of kx and ky . Therefore, it is
only in rare cases that three lines [εi(k) = 0 (i = 1, 2, and 3)]
intersect at the same point.21,22 However, when the system has
an inversion symmetry, i.e., A and B sublattices are equivalent,
we get

ε3(k) = 0, (14)

and there exist Dirac points where two lines [ε1(k) = 0 and
ε2(k) = 0] intersect. Hereafter, we study the system with
inversion symmetry, i.e., Eq. (14) is satisfied.

As we have discussed, the next-nearest-neighbor hoppings
appear only in ε0(k) and ε3(k). Therefore, the next-nearest-
neighbor hoppings do not affect the existence and the location
of the Dirac points in the system with inversion symmetry.
They only affect the energy dispersion near the Dirac points,
i.e., they may tilt a Dirac cone. Since we are interested in
the location of the Dirac points and the topological phase
transitions, we ignore the effects of the next-nearest-neighbor
hoppings in this paper.

III. TOPOLOGICAL NUMBER

We define ε(k) and φ(k) by

ε1(k) = ε(k) cos[φ(k)], (15)

ε2(k) = ε(k) sin[φ(k)]. (16)

Then the matrix given in Eq. (8) is written as

Ek = ε(k)(cos[φ(k)]σ1 + sin[φ(k)]σ2), (17)

and it is diagonalized as

U−1
k EkUk = ε(k)σ3, (18)

where

Uk = e−i
φ(k)

2 σ3e−i π
4 σ2 = 1√

2

(
e−i

φ(k)
2 −e−i

φ(k)
2

ei
φ(k)

2 ei
φ(k)

2

)
. (19)

Therefore, the vectors,

�±(k) = 1√
2

(
±e−i

φ(k)
2

ei
φ(k)

2

)
, (20)

are the eigenvectors of the matrix Ek with eigenvalues ±ε(k).
In Fig. 2, we plot the lines given by ε1(k) = 0 (thin blue

lines) and ε2(k) = 0 (thick green lines) for ta = tb = tc = 1,
t3a = t3b = t3c = 0 in (a) and ta = tb = tc = 1, t3a = t3b =
t3c = 0.2 in (b). The Dirac points are given by the intersection
points of the blue lines and the green lines, which are at

K =
(

0,
4π

3

)
, (21)

K′ =
(

0,−4π

3

)
, (22)

and their equivalent points related by the reciprocal lattice
vectors. We also plot the vector [ε1(k),ε2(k)] in Fig. 2.
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FIG. 2. (Color online) Lines for ε1(k) = 0 (thin blue lines)
and ε2(k) = 0 (thick green lines). Parameters are ta = tb = tc = 1,
t3a = t3b = t3c = 0 in (a), and ta = tb = tc = 1, t3a = t3b = t3c = 0.2
in (b). Orange circles show K, K′ and their equivalent points. Small
purple circles are Mi (i = 1, 2, and 3) and their equivalent points,
and triangles are � and their equivalent points. Arrows show the
vectors [ε1(k),ε2(k)]. Dirac points appear at the intersection points
of the blue lines and the green lines, which are K and K′ in both
figures. New green circular lines appear around k = 0, if t3a > ta/8
as shown in (b). The Dirac points are, however, only at the K and K′,
if t3a < ta/3. The topological numbers are +1 and −1 for K and K′,
respectively.

The Dirac points are the cores of the vortex for the vector
[ε1(k),ε2(k)]. The topological number is +1 and −1 at K and
K′, respectively. Note that the configurations of the arrows
have a topological number +1, if they are clockwise or
counterclockwise rotating flows around the core, or if all
arrows are pointing out or into the cores, since φ(k) changes
+2π when k goes counterclockwise around the core. The
configurations of the arrows have a topological number −1,
if they are pointing out the core in the ±x direction and
pointing into the core in the ±y direction, for example. Since
the eigenstates are given by φ(k) [Eq. (20)], the topological
number ±1 is related to the Berry phase of ±π .

IV. MERGING DIRAC POINTS AT M OR � IN THE
BRILLOUIN ZONE

When k∗ is a Dirac point, −k∗ is also a Dirac point if the
system is invariant with respect to the time-reversal operation,
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which is always the case in this paper. Two Dirac points, which
are exchanged by time-reversal operation, can merge only at
the points k∗ where k∗ and −k∗ are the same or are different
by the reciprocal lattice vectors. These points are only four
points in the Brillouin zone, M1, M2, M3, and �,

M1 =
(√

3π

3
,π

)
, (23)

M2 =
(

2
√

3π

3
,0

)
, (24)

M3 =
(√

3π

3
, −π

)
, (25)

� = (0,0). (26)

From the equation

ε1(M1) = ε2(M1) = 0, (27)

we obtain the condition for two Dirac points to merge at M1

as

ta + tb − tc = t3a + t3b + t3c : M1. (28)

FIG. 3. (Color online) Planes given by Eqs. (28)–(31) in the
parameter space of ta , tb, and tc in the case of (a) t3a = t3b = t3c = 0
and (b) t3a = t3b = t3c > 0. On the planes labeled by M1, M2, M3,
and �, two Dirac points merge at M1, M2, M3, and �, respectively.
The 3D space is divided into 14 regions, R1–R4, Ra , Rb, Rc, R∗

1 –R∗
4 ,

R∗
a , R∗

b , and R∗
c when t3a = t3b = t3c = 0. The regions, R∗

1 , R∗
2 , etc.

are given by the inversion of R1, R2, etc. When t3a = t3b = t3c �= 0, a
regular tetrahedral region R0 appears around the origin, as shown in
the inset of (b). Topological phase transitions occur and the number
of the Dirac points changes by two when parameters intersect the
planes, M1, M2, M3, and �.

Similarly we obtain the conditions for two Dirac points to
merge at M2, M3, and � as

−ta + tb + tc = t3a + t3b + t3c : M2, (29)

ta − tb + tc = t3a + t3b + t3c : M3, (30)

and

−ta − tb − tc = t3a + t3b + t3c : �, (31)

respectively. We plot the planes given by Eqs. (28)–(31) in the
parameter space in ta , tb, and tc in the cases of t3a = t3b = t3c =
0 and t3a = t3b = t3c > 0 in Fig. 3. The phase diagram in the
tb/ta − tc/ta plane (Fig. 4) can be obtained as the intersection
of the phase diagram in 3D plot (Fig. 3) and the plane of
constant ta , as shown in Fig. 5.

If t3a + t3b + t3c = 0, the ta − tb − tc space is divided into
14 regions by four planes, Eqs. (28)–(31), as shown in Fig. 3(a).
There are two gapless Dirac points when parameters are in the
regions labeled by R1, R2, R3, and R4 and their inversion
regions, R∗

1 , R∗
2 , R∗

3 , and R∗
4 in Fig. 3. The regions, R1, R2,

R3, and R4, correspond to the shaded regions in Fig. 4, where
a two-dimensional plot of the phase diagram is shown in the
tb/ta-tc/ta plane. On the planes and lines (M1, M2, M3, and
�) in Figs. 3 and 4, topological phase transition occurs and
two Dirac points merges at M1, M2, M3, or � in the Brillouin
zone. The phase diagram for t3a + t3b + t3c = 0 is the same as
obtained previously.7

We show the 3D plot of the phase diagram in Fig. 3(b)
for t3a + t3b + t3c > 0. Although it is invisible in the main
figure in Fig. 3(b), there is a regular tetrahedron region R0

around the origin (0,0,0) as shown in the inset in Fig. 3(b).
We plot the phase diagram in the plane of the tb/ta-tc/ta plane
for ta = 1 and t3a = t3b = t3c = 0.19 in Fig. 6. If the third-
nearest-neighbor hoppings are finite, the number of the Dirac
points can be larger than 2 and Dirac points can merge at the
points other than M1, M2, M3, and �. The topological phase
transitions caused by these merging Dirac points are shown by
the orange lines in Fig. 6, which we will discuss in Sec. VI.

The boundary lines M1 and M3 in the tb/ta-tc/ta plane
move closer and the regions R1 and R2 becomes narrower, as
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FIG. 4. (Color online) Phase diagram in the plane of tb/ta-tc/ta
for the tight-binding electrons on honeycomb lattice with direction-
dependent nearest-neighbor hoppings (t3a = t3b = t3c = 0).
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FIG. 5. (Color online) 3D plot of the phase diagrams for
(a) t3a = t3b = t3c = 0.19 and (b) 0.4. The intersection with the plane
ta = 1 is the phase diagram in Figs. 6 and 15(b). Three Dirac points
merge when parameters are at P1, P2, or P3, and T1, T′

1, T2, and T3 are
tricritical points, which are discussed in Sec. VI and the appendices.

t3a + t3b + t3c becomes large, as seen in Fig. 5(a). When t3a +
t3b + t3c = ta , the boundaries (M1 and M3) in the tb/ta-tc/ta
plane overlap and the regions R1 and R3 disappear in the phase
diagram in the tb/ta-tc/ta plane. If t3a + t3b + t3c > ta , M1 and
M3 lines are exchanged and the new region R0 appears, as seen
in Fig. 5(b).

V. MOVING DIRAC POINTS WITH ONLY NEAREST
NEIGHBOR HOPPINGS

In this section, only nearest neighbor hoppings are consid-
ered (t ′a = t ′b = t ′c = t ′′a = t ′′b = t ′′c = 0 and t3a = t3b = t3c =
0). When |ta|, |tb|, and |tc| satisfy the “triangle inequality,”∣∣∣∣ |tb||ta| − 1

∣∣∣∣ � |tc|
|ta| � |tb|

|ta| + 1, (32)

there are two Dirac points at k = ±k∗. The position of the
Dirac points is obtained by the equations7,21,22,26

cos(v1 · k∗) = t2
c − t2

a − t2
b

2tatb
, (33)

0.6 0.8 1 1.2 1.4
t b  / t a
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1.4

t c
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2

2

2

0

0

0

4

6

6

4
M

2

R1

M 1

M 3

T1

t3a = t3b = t3c = 0.19,  ta  = 1
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T1′

T3

T2
Rb
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FIG. 6. (Color online) Phase diagrams in the tb/ta-tc/ta plane for
ta = 1 and t3a = t3b = t3c = 0.19. When the third-nearest-neighbor
hoppings are finite, phase transition lines M1, M2, M3, and � are
shifted and new transition lines appear, as discussed in Sec. VI and
the Appendices. The phase diagrams for other values of third-nearest-
neighbor hoppings calculated numerically are shown in Figs. 14 and
15. The numbers in the figures indicate the numbers of the Dirac
points in the Brillouin zone.

cos(v2 · k∗) = t2
b − t2

a − t2
c

2tcta
, (34)

cos[(v1 − v2) · k∗] = t2
a − t2

b − t2
c

2tbtc
. (35)

Note that the third equation [Eq. (35)] is satisfied if the first
and the second equations [Eqs. (33) and (34)] are satisfied and

tbtc sin(v1 · k∗) sin(v2 · k∗) > 0. (36)

The condition, Eq. (32), is fulfilled in the regions R1, R2, R3,
R4, R∗

1 , R∗
2 , R∗

3 , and R∗
4 , in Fig. 3(a). We plot the trajectories

of the Dirac points as tc is changed for ta = tb = 1 in Fig. 7.
When tc = 1 two Dirac points are located at K and K′ (up
triangles and down triangles labeled by “1” in Fig. 7). The
Dirac points move to M1 and the equivalent points as tc
increase (blue broken lines and black lines in Fig. 7), and
they merge at M1 and the equivalent points when tc = 2.
Dirac points annihilate when tc > 2. Merging of two Dirac
points causes a topological phase transition, and this phase
boundary is shown as M1 in Figs. 3 and 4. On the other
hand, when tc is decreased, Dirac points move in the opposite
direction. Dirac points approach the midpoint of M2 and
M3, ±(M2 + M3)/2 = ±(

√
3π/2, −π/2). When tc = 0, the

system becomes one dimensional and two bands intersect on
the line. The smallest triangles with the label “0” in Fig. 7
should be considered as singular points for the location of
Dirac points as tc → 0. As seen in Figs. 3(a) and 4, ta = tb = 1
and tc = 0 is the line [in Fig. 3(a)] or the point (in Fig. 4) of
intersection for the boundary planes or lines of M2 and M3.
When tc is changed to be negative, the parameters move into
the region R4 in Fig. 3(a) and in Fig. 4. Dirac points move on
the cyan broken lines and the red lines in Fig. 7 and merge at
� when tc = −2.

Similarly, if we change ta with fixing tb = tc = 1, Dirac
points move on the vertical lines, i.e., the figure is rotated by
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FIG. 7. (Color online) Locations and trajectories of the Dirac
points as a function of tc with ta = tb = 1 being fixed. Only nearest
neighbor hoppings are considered. Solid and broken lines are the
trajectories of the Dirac points, which are converted by the space
inversion of each other. Up triangles and down triangles are the
position of the Dirac points at tc indicated at the figure. When tc = 2
and tc = −2, two Dirac points merge at the M1 point ( π√

3
,π ) and

the � point (0,0), respectively. When tc = 0 the system becomes
one dimensional. Therefore, the smallest up and down triangles
are not the Dirac points, but Dirac points approach these points
as tc → 0.

120 degrees. In that case Dirac points merge at M2 and the
equivalent points when ta = 2.

In Fig. 8 we plot a set of trajectories as tc is changed (|tb −
ta| � tc � tb + ta) for several values of tb/ta > 0. Dirac points
are located in the triangular regions around K and K′, when the
parameters ta , tb, and tc are in the R1 region in Fig. 3. Similarly,
we obtain that the Dirac points move in other triangular regions
in Fig. 9 when ta , tb, and tc are in R2, R3, or R4 regions
in Fig. 3. In Fig. 9 we plot the regions for the Dirac points
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FIG. 8. (Color online) Locations of the Dirac points
in the anisotropic honeycomb lattice with ta = 1, tb =
0.1,0.2, . . . 0.9,1.0,1.1, . . . 1.9,2.0,3.0,4.0, . . . 9.0,10.0. The lines
are the trajectories of the Dirac points for |tb − ta| < tc < tb + ta
[region R1 in Fig. 3(a)].
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FIG. 9. (Color online) Divided regions of the moving Dirac points
in the case of (ta,tb,tc) being in the regions of R1, R2, R3, and R4 in
Fig. 3(a).

when parameters ta , tb, and tc are in R1, R2, R3, and R4 in
Fig. 3.

VI. DIRAC POINTS IN THE SYSTEM WITH
THIRD-NEAREST-NEIGHBOR HOPPINGS

When the third-nearest-neighbor hoppings are finite, more
than two Dirac points are possible to exist. For simplicity we
assume all hoppings, ta , tb, tc, t3a , t3b, and t3c are positive.
Generalization to the negative hoppings is straightforward.

A. Symmetric case (C6v)

In this subsection we discuss the symmetric system,

t ≡ ta = tb = tc, (37)

t3 ≡ t3a = t3b = t3c. (38)

Bena and Simon15 have studied this model. They have shown
that new Dirac points appear when t3 > t/3. As shown in
Fig. 2, the blue lines, which are given by ε1(k) = 0, and the
green lines, which are given by ε2(k) = 0, have intersection
points only at K and K′, when t3 < t/3. Derivation is given
in Appendix A. The blue lines and the green lines touch
at M1, M2, and M3, when t3 = t/3 (Fig. 10). We perform
power series expansions of ε1(k) and ε2(k) about M2 and
obtain

ε1(k) ≈ +t

(
kx − 2

√
3π

3
− 1

24
k2
y

)
, (39)

ε2(k) ≈
√

3

3
t

(
kx − 2

√
3π

3
+ 1

8
k2
y

)
, (40)

when t3 = t/3. This means that a merged Dirac point exists at
M2 when t3 = t/3 and the energy is given by

√
[ε1(k)]2 + [ε2(k)]2 ≈ t

√
4

3

(
kx − 2

√
3π

3

)2

+
(

k2
y

12

)2

,

(41)
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� 1 1

kx

1

2

ky

π

π

FIG. 10. (Color online) Lines for ε1(k) = 0 (thin blue lines) and
ε2(k) = 0 (thick green lines) for ta = tb = tc = 1, t3a = t3b = t3c =
1/3. Green and blue lines touch at M1, M2, and M3.

i.e., the energy is proportional to |kx − k∗
x | in one direction

and proportional to (ky − k∗
y )2 in another direction. The

merged Dirac points, which have these energy dispersions,
are called semi-Dirac points.27 When the semi-Dirac points
exit, density of states is proportional to the square root of the
energy7

D(ε) ∝ √
ε, (42)

and the energy of the Landau levels varies as B2/3

(Ref. 28).
When t3 is larger than t/3, each touching point of blue

and green lines changes to a pair of the intersection points,
i.e., each semi-Dirac point separate into two Dirac points with
topological number ±1, and there exist eight Dirac points, as
shown by D1, D2, and D3 around K (=D0) in Fig. 11. As t3/t

-1

k x

k y

1 π

π

1

2

K

K
D1

D2

D3 =D0

FIG. 11. (Color online) Lines for ε1(k) = 0 (thin blue lines) and
ε2(k) = 0 (thick green lines) for ta = tb = tc = 1, t3a = t3b = t3c =
0.4. Dirac points appear at K and K′ and additional points (red
circles, D1, D2 and D3). The topological number is −1 and +1 for
the additional three points around K and K′, respectively.

becomes large, two Dirac points stay at K and K′ and other
Dirac points move from M1, M2, and M3 to K and K′. Three
Dirac points moving to K for 1/3 < t3/t < 1/2 (D1, D2, and
D3 in Fig. 11) have the topological number −1 and three Dirac
points moving to K′ have the topological number +1. When
t3 = t/2, four Dirac points merge at K and K′. In that case two
blue lines and two green lines intersect at K and K′, as shown
in Fig. 12. The merged Dirac points at K and K′ have the
topological number −2 and +2, respectively [1 × (+1) + 3 ×
(−1) = −2 at K, for example]. The topological number at K
can also be obtained as follows. For (kx,ky) ≈ K = (0,4π/3),
we write

kx = κ cos(θ ), (43)

ky − 4
3π = κ sin(θ ). (44)

When t3 = t/2, we obtain

ε1(k) ≈ 3
8 tκ2 cos(2θ ), (45)

ε2(k) ≈ − 3
8 tκ2 sin(2θ ). (46)

Comparing these equations with Eqs. (15) and (16), we obtain

φ(k) = −2θ, (47)

and the topological number of the vector [ε1(k),ε2(k)] at K is
−2. The energy at this point is obtained as

√
[ε1(k)]2 + [ε2(k)]2 ≈ 3

8
t

[
k2
x +

(
ky − 4

3
π

)2]
, (48)

which has been obtained by Bena and Simon.15 In this case
the density of states is constant near ε ≈ 0.

When t3 > t/2, eight Dirac points appear again. Two Dirac
points are at K and K′ having topological number +1 and −1,
respectively. There exist three Dirac points with topological
number −1 around K and three Dirac points with topological
number +1 around K′. They form the equilateral triangles as in

� 1 1

kx

1

2

k y

π

π

FIG. 12. (Color online) Lines for ε1(k) = 0 (thin blue lines) and
ε2(k) = 0 (thick green lines) for ta = tb = tc = 1, t3a = t3b = t3c =
0.5. Four Dirac points around K and K′ merge and the topological
number becomes ∓2 at K and K′, respectively.
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2

1

1-1 π

π

D1

D2D3

kx

ky

K =D0
K

FIG. 13. (Color online) Lines for ε1(k) = 0 (thin blue lines) and
ε2(k) = 0 (thick green lines) for ta = tb = tc = 1, t3a = t3b = t3c =
0.6. Dirac points are located at the intersection points of green lines
and blue lines, i.e., K, K′, D1, D2, and D3.

the case of t/3 < t3 < t/2, but the triangles are upside down,
as shown in Fig. 13 for t3 = 0.6t .

B. Direction-dependent hoppings with third-nearest
neighbor hoppings

If the hoppings depend on the direction, the phase diagram
becomes much richer. Even if the hoppings between the third-
nearest-neighbor sites are small, there appear new phases as
shown in Fig. 6. Two Dirac points can merge at the point other
than M1, M2, M3, and �. When a pair of the Dirac points merge
at k∗, which are neither M1, M2, M3, nor �, in the Brillouin
zone, another pair should merge at −k∗ simultaneously, since
we study the system with time-reversal symmetry. Therefore,
when the parameters are moved across these phase boundary
lines (orange lines in Fig. 6 and curved lines in Figs. 14 and 15),
the number of the Dirac points changes by four, i.e., 0 ↔ 4,
2 ↔ 6, and 4 ↔ 8.

When the system has the reflection symmetry (C2v symme-
try) we can obtain the analytical expressions for some special
points (P1, P2, P3, Q1, Q2, and Q3) in the phase diagram
(see Appendix B). At P1, P2, and P3 in the phase diagram in
tb/ta − tc/ta plane, three Dirac points merge. There exist the
tricritical points, at which three phases with zero, two, and
four Dirac points terminate, in the parameter space in tb and
tc, which we label as T1, T′

1, T2, and T3.
In order to make the discussion simpler, we assume

the third-nearest-neighbor hoppings are independent of the
direction, i.e., we take t3 ≡ t3a = t3b = t3c. We plot P1, P2,
P3, T1, T′

1, T2, and T3 as lines in the 3D plot in ta − tb − tc
space in Fig. 5. In the tb − tc plane at ta = 1, these points are
obtained as

P1 =
(

2t
3/2
3√

3t3 − 1
,

2t
3/2
3√

3t3 − 1

)
, (49)

P2 = (
3t3 − 4t3

3 ,1
)
, (50)
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FIG. 14. (Color online) Phase diagram in the tb-tc plane obtained
numerically at ta = 1 and t3a = t3b = t3c = 0.25, 0.3, and 1/3. The
numbers of the Dirac points in the Brillouin zone is shown in the
figure.

and

P3 = (
1,3t3 − 4t3

3

)
. (51)

Note that while P1 exists only for t3 > 1/3, P2 and P3 exist
for any value of t3 �= 0. The points Q1, Q2, and Q3 are given
in Appendix B 2. We find that Q1 exists when t3 > 1/5, and
Q2 and Q3 exist when t3 > 1/4.
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FIG. 15. (Color online) Phase diagram in the tb-tc plane at ta = 1
and t3a = t3b = t3c = 0.36, 0.4, and 0.4058. The numbers in the figure
indicate the number of the Dirac points in the Brillouin zone.

The tricritical points are given as

T1 =
(

1 + 3t3

2
+ 1 + t3

2

√
1 − 5t3

1 + 3t3
,

1 + 3t3

2
− 1 + t3

2

√
1 − 5t3

1 + 3t3

)
, (52)

T′
1 = [(T1)y,(T1)x], (53)

T2 =
(

1 − 3t3

2
+ 1 − t3

2

√
1 + 5t3

1 − 3t3
,

−1 + 3t3

2
+ 1 − t3

2

√
1 + 5t3

1 − 3t3

)
, (54)

and

T3 = [(T2)y,(T2)x]. (55)

Note that T1 and T′
1 exist when 0 < t3 < 1/5, and T2 and T3

exist when 0 < t3 < 1/3.
The phase transition line connections Pi , Qi , and Ti are

obtained numerically and shown in Figs. 14 and 15 for t3 =
0.25, 0.3, 1/3, 0.36, 0.4, and 0.4058. The number of the Dirac
points in the Brillouin zone changes by two when the phases
are divided by the straight line and it changes by four when
the phases are separated by the curved line.

In Fig. 16 we show the regions where Pi and Qi locate.
We plot the t3 dependences of the coordinates of Pi , Qi , and
Ti in Fig. 17. At the tricritical points, four Dirac points with
topological numbers, +1, +1, −1, and −1, merge at one of
Mi in the Brillouin zone.

The density of states are calculated in Appendix D. We
obtain

D(ε) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ε| at Dirac point√|ε| when two Dirac points merge

(semi-Dirac point)

|ε| 1
3 when three Dirac points merge

P1,P2,P3

|ε| 1
4 at tricritical point

T1,T′
1,T2,T3.

(56)
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FIG. 16. (Color online) Locations of the parameters for three
Dirac points to merge (P1, P2, and P3) and for two Dirac points to
merge in the axisymmetric case (Q1, Q2, and Q3). When t3 = 0.5
all points are at (1,1). They do not exist in the shaded region (0 <

t3 < 1/5 for Q1, 0 < t3 < 1/4 for Q2 and Q3, and 0 < t3 < 1/3 for
P1). The regions labeled as Ra , Rb, Rc, R0, R2, R4, and R∗

3 , are those
shown in Fig. 3. The vertical lines labeled as M1, M2, and M3 show
that Pi and Qi (i = 1, 2, and 3) are on the boundaries (M1, M2, and
M3, respectively).
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FIG. 17. (Color online) Coordinates of the special points in the
phase diagram in the tb/ta-tc/ta plane as a function of t3 (t3 = t3a =
t3b = t3c and ta = 1). At P1, P2, and P3 [Eqs. (49)–(51)], three Dirac
points merge, and at Q1, Q2, and Q3 [Eqs. (B16)–(B18)], two Dirac
points merge on the symmetric line (kx = 0) in the Brillouin zone.

Note that although the topological number of the merged point
of three Dirac points is the same as that of the ordinary Dirac
point, energy dependences of the density of states are different.

In Fig. 18 we show how Dirac points move when ta is
changed when other parameters are taken as tb = tc = 1 and
t3a = t3b = t3c = 0.4. The 3D plots of the energy are given in
Figs. 19 and 20. When ta = 1, Dirac points are located at K
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FIG. 18. (Color online) The moving Dirac points by changing ta
with fixed tb = tc = 1 and t3a = t3b = t3c = 0.4.
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FIG. 19. (Color online) 3D plot of the energy as a function of the
wave number for the parameters in Fig. 18 (ta � 1).

and apexes of the regular triangle (black circles in Fig. 18, see
also Fig. 11). As ta becomes larger, two Dirac points on the ky

axis come closer and merge when ta = 41/40 = 1.025 [this
set of parameters corresponds to Q2 or Q3 in Fig. 15(b) with
exchanging ta and tb (or tc)]. These Dirac points disappear
when ta > 1.025. Other Dirac points move to M1 and M3 and
they merge when ta = 1.2. When ta becomes smaller, three of
the four Dirac points near K merge when ta = 0.944 [this set
of parameters corresponds to P2 or P3 in Fig. 15(b), see also
Fig. 21] and one Dirac point remains after three Dirac points
merge (ta < 0.944). Another one of the four Dirac points move
to M2 and merges when ta = 0.8.

VII. CONCLUSIONS

We study the Dirac points of the electrons on the hon-
eycomb lattice with up-to third-nearest-neighbor hoppings.
Since the next-nearest-neighbor hoppings do not affect the
location of the Dirac points, we study the location of the
Dirac points and the phase diagram in the parameter space
in the direction-dependent nearest-neighbor hoppings (ta , tb,
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FIG. 20. (Color online) 3D plot of the energy as a function of the
wave number for the parameters in Fig. 18 (ta < 1).

and tc) and the third-nearest-neighbor hoppings (t3a , t3b, and
t3c). Dirac points are obtained as the intersection points of two
kinds of lines, which are given by ε1(k) = 0 and ε2(k) = 0.
Dirac points move from K and K′, where Dirac points exist
if hoppings are independent of the direction. We obtain the
trajectories of the Dirac points as the direction-dependent
hoppings are changed. The topological phase transitions occur
when Dirac points merge and disappear. We obtain the phase
diagram in the parameter space of the direction-dependent
hoppings. In each phase there are 0, 2, 4, 6, or 8 Dirac points,
half of which have the topological number +1 and the other
half have the topological number −1. The number of the Dirac
points in the Brillouin zone changes by two when two Dirac
points merge at M1, M2, M3, or �, and it changes by four when
two pairs of Dirac points merge at other points in the Brillouin
zone, ±k∗. When parameters are at P1, P2, or P3, three Dirac
points with the topological number +1, −1, and −1 (or −1,
+1, and +1) merge. Four Dirac points with topological number
+1, −1, −1, and −1 (−1, +1, +1, and +1) merge at K (K′)
only when ta = tb = tc = 2t3a = 2t3b = 2t3c. We also obtain
that there are tricritical points T1, T′

1, T2, and T3, where three
phases with 0, 2, and 4 Dirac points terminate. There are

ky
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FIG. 21. (Color online) Lines for ε1(k) = 0 (thin blue lines)
and ε2(k) = 0 (thick green lines) for (a) ta = 1, tb = tc = 1.13137,
t3a = t3b = t3c = 0.4, and (b) ta = 0.944, tb = tc = 1, t3a = t3b =
t3c = 0.4. In both cases three Dirac points merge on the ky axis
near K and K′. The set of parameters in (a) is P1 in Fig. 15(b), and
the set of parameters in (b) corresponds to P2 and P3 in Fig. 15(b)
with exchanging ta and tb. With the anisotropy of ta and tb = tc, three
Dirac points (D0, D2, and D3) move from those in Fig. 11 and merge.

no parameter regions where two Dirac points with the same
topological number merge.

The density of states D(ε) for ε ≈ 0 is proportional to
|ε|, √

ε, ε1/3, ε1/4, and constant at the Dirac point, the
merged point of two Dirac points (with topological number
±1 and ∓1), the merged point of three Dirac points (two of
them have the topological number ±1 and the other has the
topological number ∓1), the tricritical point, and the merged
point of four Dirac points (three of then have the topological
number ±1 and the other has the topological number ∓1),
respectively.

Although the density of states becomes zero at ε = 0,
the Dirac points contribute to the conductivity when the
chemical potential is at the Dirac points.2,3,29 On the isotropic
honeycomb lattice with only nearest-neighbor hoppings, two
Dirac points at K and K′ contribute equally to the conductivity.
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Even if the Dirac points move or the number of the Dirac
points becomes larger than two due to the direction-dependent
nearest-neighbor and third-nearest-neighbor hoppings, the
conductivity caused by each Dirac point will be the same as far
as the energy barrier separating the Dirac points is much larger
than the energy scale of temperature and impurity scattering.
When two Dirac points merge and annihilate, a finite gap
is opened at that point and the system becomes insulator
when all Dirac points are annihilated. The conductivity due to
merged Dirac points will be interesting and further studies are
required.

In order to realize these topological phase transitions,
only small third-nearest-neighbor hoppings are necessary, if
the anisotropy is sufficiently large. Since the third-nearest-
neighbor hoppings in monolayer graphene are estimated to
be finite (about 0.1 t),20 new topological phase transitions
will be realized, if a strong uniaxial strain can be applied to
graphene. On the other hand, if there are large third-nearest-
neighbor hoppings, small anisotropy is enough to realize these
topological phase transitions. The strained bilayer graphene
is considered to have large effective third-nearest-neighbor
hoppings.14 Thus the topological phase transitions discussed
in this paper are expected to be observed in the strained
bilayer graphene. The parameters in ultracold atoms on the
optical lattice can be controlled.8 Therefore, these topological
phase transitions can be realized in the ultracold atoms on
the optical lattice, strained monolayer graphene, or strained
bilayer graphene.

APPENDIX A: DIRAC POINTS IN A
SYMMETRIC SYSTEM (C6v)

We study the system with C6v symmetry in this Appendix,
i.e., we set

t ≡ ta = tb = tc, (A1)

and

t3 ≡ t3a = t3b = t3c. (A2)

Then ε1(k) and ε2(k) [Eqs. (10) and (11)] are written as

ε1(k) = −t

[
cos

(√
3

3
kx

)
+ 2 cos

(√
3

6
kx

)
cos

(
1

2
ky

)]

− t3

[
cos

(
2
√

3

3
kx

)
+ 2 cos

(√
3

3
kx

)
cos(ky)

]
,

(A3)

and

ε2(k) = −t

[
sin

(√
3

3
kx

)
− 2 sin

(√
3

6
kx

)
cos

(
1

2
ky

)]

+ t3

[
sin

(
2
√

3

3
kx

)
− 2 sin

(√
3

3
kx

)
cos(ky)

]
.

(A4)

In Figs. 2 and 10–12, we plot the lines for ε1(k) = 0 (thin
blue lines) and for ε2(k) = 0 (thick green lines). The massless
Dirac points are given by the intersection points of the blue

lines and the green lines. We obtain ε2(k) = 0 if kx = 0 from
Eq. (A4). From the symmetry of the system, we obtain that
ε2(k) = 0 on the thick green lines in Fig. 2(a). When t3 = 0
there are no other solutions of ε2(k) = 0.

In order to find other solutions of ε2(k) = 0 in the case of
t3 �= 0, we expand ε2(k) around kx = 0 and obtain

ε2(k) ≈
√

3

3

(
− t + t cos

ky

2
+ 2t3 − 2t3 cos ky

)
kx + O

(
k2
x

)
.

(A5)

The intersection points of green lines [ε2(k) = 0] and ky axis
are obtained by the equation

√
3

3

(
− t + t cos

k(2)
y

2
+ 2t3 − 2t3 cos k(2)

y

)
= 0. (A6)

We obtain

cos
k(2)
y

2
= t ± |t − 8t3|

8t3
. (A7)

This equation has the solution k(2)
y = 2nπ with integers n,

and other solutions exist if t3 > t/8. As seen in Figs. 2 and
10–12, there are circularlike green lines around k = 0. Note
that all � points are not equivalent if we consider ε1(k) and
ε2(k) separately, while they are equivalent if we consider√

[ε1(k)]2 + [ε2(k)]2.
As seen in Figs. 2(b) and 10, if t3 < t/3, Dirac points are

only at K and K′, since green lines and blue lines intersect
only at K and K′. In order to examine the number of Dirac
points, we also expand ε1(k) with respect to kx around kx = 0.
Then we obtain

ε1(k) ≈ −t

(
1 + 2 cos

ky

2

)
− t3(1 + 2 cos ky) + O(kx).

(A8)

We obtain from ε1(k) = 0 at kx = 0 that

cos
k(1)
y

2
= −t ± |t − 2t3|

4t3
, (A9)

which gives the intersection points of blue lines [ε1(k) = 0]
and ky axis. We obtain that the solution of Eq. (A9) is only
k(1)
y = ±4π/3 + 4nπ (K and K′, and their equivalent points)

if t3 < t/3. If t3 > t/3, there exist other solutions of Eq. (A9),
which are the intersection points of blue ellipse and ky axis,
which we call D1 as shown in Fig. 11 for t3 = 0.4t . Because
of the symmetry the new Dirac points for t3 > t/3 make an
equilateral triangle around K and K′, as shown in Fig. 11 (D1,
D2, and D3). If t3 = t/2, four Dirac points merge at K and K′
as shown in Fig. 12.
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APPENDIX B: DIRAC POINTS IN AN AXISYMMETRIC
SYSTEM (C2v)

In this Appendix we study the system, which has C2v

symmetry, i.e.,

tb = tc ≡ tbc, (B1)

t3b = t3c ≡ t3bc. (B2)

In this case the system has π rotational symmetry and the
reflectional symmetry with respect to the x axis and the vertical
line x = √

3/6. We obtain

ε1(k) = −ta cos

(√
3

3
kx

)
− 2tbc cos

(√
3

6
kx

)
cos

(
1

2
ky

)

− t3a cos

(
2
√

3

3
kx

)
− 2t3bc cos

(√
3

3
kx

)
cos(ky),

(B3)

and

ε2(k) = −ta sin

(√
3

3
kx

)
+ 2tbc sin

(√
3

6
kx

)
cos

(
1

2
ky

)

+ t3a sin

(
2
√

3

3
kx

)
− 2t3bc sin

(√
3

3
kx

)
cos(ky).

(B4)

It is obtained that ε2(k) = 0 when kx = 0 and some of the
Dirac points are on the ky axis, as in the C6v case (Appendix A).
As in Appendix A, the intersection points of the green lines
[ε2(k) = 0] and the ky axis are obtained by

√
3

3

(
− ta + tbc cos

k(2)
y

2
+ 2t3a − 2t3bc cos k(2)

y

)
= 0. (B5)

We obtain

cos
k(2)
y

2
=

tbc ±
√

t2
bc − 16tat3bc + 32t3at3bc + 32t2

3bc

8t3bc

. (B6)

The intersection points of the blue lines [ε1(k) = 0] and the ky

axis are obtained by

−ta − 2tbc cos
k(1)
y

2
− t3a − 2t3bc cos k(1)

y = 0. (B7)

From this equation we obtain

cos
k(1)
y

2
=

−tbc ±
√

t2
bc − 4tat3bc − 4t3at3bc + 8t2

3bc

4t3bc

. (B8)

1. Three Dirac points merge

If the solutions of Eqs. (B6) and (B8) exist and they are the
same, three Dirac points (D0, D2, and D3 in Fig. 11) merge
at the ky axis as shown in Fig. 21. We obtain that three Dirac
points merge on the ky axis when the equation

(ta − t3a − 2t3bc)t2
bc + 4t2

3at3bc = 0 (B9)

is satisfied. Thus, we obtain that three Dirac points merge on
the ky axis if [ta,tb(=tbc),tc(=tbc)] is given by

(ta,tb,tc) =
(

ta,
2t3a

√
t3bc√−ta + t3a + 2t3bc

,
2t3a

√
t3bc√−ta + t3a + 2t3bc

)
,

(B10)

or

(ta,tb,tc) =
(

t3a + 2t3bc − 4
t2
3at3bc

t2
bc

,tbc,tbc

)
. (B11)

Equation (B10) is real when t3a + 2t3bc > ta .
In Figs. 6, 14, and 15, we plot the phase diagram in the

tb-tc plane by taking ta = 1 and t3a = t3bc ≡ t3. We find three
Dirac points merge when tb and tc are at the P1, P2, or P3,
which are given in Eqs. (49)–(51). In order to derive P1 we
take ta = 1 in Eq. (B10), and in order to derive P2 (P3) we take
tbc = 1 in Eq. (B11) and exchange ta and tc (ta and tb). For
example, if we take t3a = t3bc = 4/10, we obtain three Dirac
points merge on the ky axis if (ta,tb,tc) = (1,4

√
2/5,4

√
2/5) ≈

(1,1.13137,1.13137), which corresponds to P1 in Fig. 15(b),
and (ta,tb,tc) = (0.944,1,1), which corresponds to P2 and P3

in Fig. 15(b).
In Fig. 21 we show these two cases. At these parameters

three Dirac points, D0, D2, and D3, merge on the ky axis, as
shown in Fig. 21. When parameters are those of Fig. 21(a),
which correspond to P1 in Fig. 15(b), D1 does not exist, while
D1 exists when parameters are those of Fig. 21(b), which
correspond to P2 and P3 in Fig. 15(b). This difference can be
understood by noting the following fact in Fig. 15(b): When
parameters move from the point ta = tb = tc = 1 to P1, they
intersect the line M2, which shows that Dirac points merge
and annihilate at M2 in the Brillouin zone when they cross the
line M2. On the other hand parameters do not intersect any
lines labeled M1, M2, and M3 when they move from the point
ta = tb = tc = 1 to P2 or P3.

When parameters are changed through these critical values,
three Dirac points merge and one Dirac point survives. The
topological number (Berry phase) of the Dirac point at D0

is +1, while those at D1, D2, and D3 are −1. As a result,
the merged point of three Dirac points has the topological
number −1. However, the merged point is not a simple Dirac
point. The energy changes linear in one direction in the wave
number and cubic in other direction, and the density of states
is proportional to ε1/3, as we show in Appendix D.

2. Two Dirac points merge

Two Dirac points merge on the ky axis when two solutions
of Eq. (B8) become the same, which happens when

t2
bc − 4tat3bc − 4t3at3bc + 8t2

3bc = 0, (B12)

and

|tbc| < 4|t3bc|. (B13)

Thus, we obtain that two Dirac points merge on the ky axis if
[ta,tb(=tbc),tc(=tbc)] is given by

(ta,tb,tc) =
(

t2
b

4t3bc

− t3a + 2t3bc,tbc,tbc

)
, (B14)
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ky
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D =D  0         1
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D3

FIG. 22. (Color online) Lines for ε1(k) = 0 (thin blue lines) and
ε2(k) = 0 (thick green lines) for ta = 1, tb = tc = 0.980 and t3a =
t3b = t3c = 0.4. This set of parameters is Q1 in Fig. 6(c).

or

(ta,tb,tc) = [ta,2
√

(ta + t3a − 2t3bc)t3bc,

2
√

(ta + t3a − 2t3bc)t3bc]. (B15)

When t3a = t3bc ≡ t3 and ta = 1, we obtain the special
points in the phase diagram in tb − tc plane as

Q1 = [2
√

t3(1 − t3),2
√

t3(1 − t3)] : (t3 > 1/5), (B16)

Q2 =
(

t3 + 1

4t3
,1

)
: (t3 > 1/4), (B17)

and

Q3 =
(

1,t3 + 1

4t3

)
: (t3 > 1/4). (B18)

For example, if we take t3a = t3bc = 4/10, we obtain
two Dirac points merge at (ta,tb,tc) = (1,2

√
6/5,2

√
6/5) ≈

(1,0.980,0.980), which corresponds to Q1 in Fig. 15(b), and
at (ta,tb,tc) = (41/40,1,1) = (1.025,1,1), which corresponds
to Q2 and Q3 in Fig. 15(b). In these values of parameters,
two Dirac points D0 and D1 merge on the ky axis as shown in
Fig. 22.

We obtain the phase diagram numerically in Figs. 14 and 15.
For example, in Fig. 15(b), the triangularlike region enclosed
by the line, P1-S1-Q3-P2-Q1- P3-Q2-S2-P1, is the parameter
region of tb and tc where the additional Dirac points exist when
ta = 1, and t3a = t3b = t3c = 0.4. Therefore, the apexes of the
triangularlike region in Fig. 15(b) are P1 = (1.131,1.131),
P2 = (0.994,1), and P3 = (1,0.994), and the line passes on
Q1 = (0.980,0.980), Q2 = (1.025,1), and Q3 = (1,1.025).

APPENDIX C: TRICRITICAL POINTS

In this Appendix we give the analytical expression for the
tricritical points. When t3a + 2t3bc < ta , P1 does not exist in
the phase diagram in the tb/ta-tc/ta plane. In this case the
lines P2-Q3 and P3-Q2, on which two Dirac points merge,
terminate tangentially on the M1 and M3 line at the tricritical

points, which we call T3 and T2, respectively (see Fig. 14).
When 6t3bc − t3a < ta , Q1 does not exist, and tricritical points
(T1 and T′

1) appear on the M2 line. In the following we give
the analytical expressions of T1, T′

1, T2, and T3.
We study the case

tb = ta − tc + t3a + t3b + t3c. (C1)

Then the merged Dirac point (semi-Dirac point) exists at M2

and the equivalent points, for example, k = (0,2π ). We expand
ε1(k) and ε2(k) around k = (0,2π ) and obtain

ε1(k) ≈ α(ky − 2π )2 + β(ky − 2π )kx + γ k2
x, (C2)

ε2(k) ≈ δ1(ky − 2π ) − δ2kx, (C3)

where

α = 1
8 (−ta − t3a + 3t3b + 3t3c), (C4)

β =
√

3

12
(ta − 2tc + t3a − 3t3b + 5t3c), (C5)

γ = 1
8 (ta + 5t3a + t3b + t3c), (C6)

δ1 = 1
2 (ta − 2tc + t3a + 3t3b − t3c), (C7)

and

δ2 =
√

3

2
(ta − t3a + t3b + t3c). (C8)

The line given by ε2(k) = 0 goes through (0,2π ) and it is
obtained as

ky − 2π ≈ δ2

δ1
kx. (C9)

On the other hand there are no lines near (0,2π ) given by
ε1(k) = 0, if β2 − 4αγ < 0. We show the example in Fig. 23
(ta = 1.45, tb = 1.35, tc = 1, and t3a = t3b = t3c = 0.3). If tb
is changed smaller, the semi-Dirac point becomes a pair of
Dirac points near k = (0,2π ) as shown in the left figure in
Fig. 23.

If β2 − 4αγ > 0, ε1(k) = 0 gives two lines,

ky − 2π ≈ −β ±
√

β2 − 4αγ

2α
kx, (C10)

t   = t   = t   = 0.33a       3b       3c

t  =1  t  =1.45  t  =1.35c            a                    b
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FIG. 23. (Color online) Example for a pair of Dirac points that
merge at M. Lines of ε1(k) = 0 (thin blue line) and ε2(k) = 0 (thick
green line).
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FIG. 24. (Color online) Example for a pair of Dirac points that
merge at M. Lines of ε1(k) = 0 (thin blue line) and ε2(k) = 0 (thick
green line).

as shown in Figs. 24 and 25 [(ta,tb,tc) = (1.6,1.5,1) and
(1.8,1.7,1), respectively, and t3a = t3b = t3c = 0.3].

As seen in the left figures in Fig. 24, the merged Dirac points
at k = (0,2π ) disappear or become two Dirac points, when
we change tb larger or smaller, respectively. Since there are
other Dirac points in Fig. 24, this topological phase transition
separate the phases with two Dirac points and four Dirac
points. On the other hand, as seen in the left figures in Fig. 25,
the merged Dirac points at k = (0,2π ) become two Dirac
points or disappear, when we change tb larger or smaller,
respectively. Since there are no other Dirac points in Fig. 25,
the topological phase transition is the transition between two
phases with two Dirac points and zero Dirac points in this

t  =1  t  =1.8  t  =1.7c            a                 b

t   = t   = t   = 0.33a       3b       3c

ky

π

kx
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0.10 0.05 0.05 0.100
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0.10 0.05 0.05 0.100
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t  =1  t  =1.8  t  =1.7003c            a                 b

FIG. 25. (Color online) Example for a pair of Dirac points that
merge at M. Lines of ε1(k) = 0 (thin blue line) and ε2(k) = 0 (thick
green line).

parameters. The tricritical point, on which three phases with
zero, two, and four Dirac points terminate in the parameter
space, happens when one of the lines ε1(k) = 0 coincides with
the line ε2(k) = 0,

δ2

δ1
= −β −

√
β2 − 4αγ

2α
. (C11)

Tricritical points T1 and T′
1 can be obtained by solving

Eq. (C11) with respect to tc as a function of ta , t3a , t3b, and t3c.
We obtain

t̃c± = ta + t3a + t3b + t3c

2
+ 2(t3b − t3c)t3a

ta + t3a + t3b + t3c

± ta − t3a + t3b + t3c

2

√
ta + t3a − 3(t3b + t3c)

ta + t3a + t3b + t3c

+
[

2(t3b − t3c)

ta + t3a + t3b + t3c

]2

.

(C12)

Since T1 and T′
1 are on the line M2 in the phase diagram in the tb-tc plane with ta = 1, we obtain from Eq. (C12) and taking

ta = 1

(T1)x = (1 − t̃c− + t3a + t3b + t3c)|ta=1

= 1 + t3a + t3b + t3c

2
− 2(t3b − t3c)t3a

1 + t3a + t3b + t3c

+ 1 − t3a + t3b + t3c

2

√
1 + t3a − 3(t3b + t3c)

1 + t3a + t3b + t3c

+
[

2(t3b − t3c)

1 + t3a + t3b + t3c

]2

,

(C13)

(T1)y = (t̃c−)|ta=1

= 1 + t3a + t3b + t3c

2
+ 2(t3b − t3c)t3a

1 + t3a + t3b + t3c

− 1 − t3a + t3b + t3c

2

√
1 + t3a − 3(t3b + t3c)

1 + t3a + t3b + t3c

+
[

2(t3b − t3c)

1 + t3a + t3b + t3c

]2

,

(C14)

(T′
1)x = (1 − t̃c+ + t3a + t3b + t3c)|ta=1

= 1 + t3a + t3b + t3c

2
− 2(t3b − t3c)t3a

1 + t3a + t3b + t3c

− 1 − t3a + t3b + t3c

2

√
1 + t3a − 3(t3b + t3c)

1 + t3a + t3b + t3c

+
[

2(t3b − t3c)

1 + t3a + t3b + t3c

]2

,

(C15)
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and

(T′
1)y = (t̃c+)|ta=1

= ta + t3a + t3b + t3c

2
+ 2(t3b − t3c)t3a

ta + t3a + t3b + t3c

+ ta − t3a + t3b + t3c

2

√
ta + t3a − 3(t3b + t3c)

ta + t3a + t3b + t3c

+
[

2(t3b − t3c)

ta + t3a + t3b + t3c

]2

.

(C16)

We obtain Eqs. (52) and (53) by taking t3a = t3b = t3c = t3 in Eqs. (C13)–(C16).
The tricritical points T2 and T3 are obtained as follows. By solving Eq. (C11) with respect to ta , we obtain the critical value

of ta as a function of tc, t3a , t3b, and t3c as

t̃a = tc − t3a − t3b − t3c

2
+ 2(t3a − t3b)t3c

tc − t3a − t3b − t3c

+ tc − t3a − t3b + t3c

2

√
tc + 3t3a + 3t3b − t3c

tc − t3a − t3b − t3c

+
[

2(t3a − t3b)

tc − t3a − t3b − t3c

]2

.

(C17)

The tricritical point T2 is on the line M3 in the phase diagram in the tb-tc plane, i.e., the merged Dirac points are located at M3

instead of M2. Since the above calculation has been done for M2, we change ta → tb → tc → ta and t3a → t3b → t3c → t3a ,
cyclically, in order to obtain T2. Then taking ta = 1, we obtain

(T2)x = 1 − t3a − t3b − t3c

2
+ 2(t3b − t3c)t3a

1 − t3a − t3b − t3c

+ 1 + t3a − t3b − t3c

2

√
1 − t3a + 3t3b + 3t3c

1 − t3a − t3b − t3c

+
[

2(t3b − t3c)

1 − t3a − t3b − t3c

]2

(C18)

and

(T2)y = (T2)x − 1 + t3a + t3b + t3c

= −1 − t3a − t3b − t3c

2
+ 2(t3b − t3c)t3a

1 − t3a − t3b − t3c

+ 1 + t3a − t3b − t3c

2

√
1 − t3a + 3t3b + 3t3c

1 − t3a − t3b − t3c

+
[

2(t3b − t3c)

1 − t3a − t3b − t3c

]2

.

(C19)

We obtain Eq. (54) by taking t3a = t3b = t3c = t3 in Eqs. (C18)
and (C19).

We can obtain T3 by changing t3a → t3b → t3c → t3a ,
cyclically, in Eqs. (C18) and (C19). Then we obtain Eq. (55)
similarly.

APPENDIX D: DENSITY OF STATES

We study the density of states D(ε) for |ε|  1 in this
appendix.

1. Density of states due to Dirac points

First we study the density of states due to Dirac point. A
Dirac point (k∗) is given by the intersection points of two lines,
ε1(k) = 0 and ε2(k) = 0, in the Brillouin zone. Two lines can
be approximated as straight lines near the Dirac points. We
take power series expansions of ε1(k) and ε2(k) about k∗. By
rotating the kx-ky axes appropriately and taking k∗ = 0 for
simplicity, we can write

ε1(k) ≈ 1√
2
C(kx + uky), (D1)

ε2(k) ≈ 1√
2
C ′(kx − uky), (D2)

where C(>0), C ′(>0), and u(>0) are constants. The density
of states due to this Dirac point is calculated as

D(ε) = 1

SBZ

∫∫
dkxdkyδ(|ε| −

√
[ε1(k)]2 + [ε2(k)]2)

= 1

SBZ

π

CC ′u
|ε|, (D3)

where SBZ is the area of the Brillouin zone. We obtain that the
density of states is proportional to |ε|.

2. Density of states due to merged Dirac points

The merged Dirac points at k = k∗ are classified into four
types:

(a) Two lines which are given by ε1(k) = 0 and ε2(k) = 0
touch in the order n at k = k∗.

(b) One of the lines makes a loop and it shrinks into a point
at k = k∗.

(c) The equation ε2(k) = 0 gives two intersecting lines at
k = k∗, and the line given by the equation ε1(k) = 0 touches
with one of the line in the order m at k = k∗.

(d) Both equations ε1(k) = 0 and ε2(k) = 0 give two lines
intersecting at k = k∗.

There may be other possibilities, for example more than
two lines are given by the equation ε2(k) = 0 in type (c) and
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(d), or two lines given by ε2(k) = 0 touch each other with order
�(�2) at k = k∗ in type (c). We neglect these possibilities for
simplicity, since these cases are not realized in our present
study.

When ta = tb = tc = 1 and t3a = t3b = t3c = 1/3, two
Dirac points merge at M1, M2, and M3 (see Fig. 10). At
k = (2

√
3π/3,0), two lines touch quadratically (n = 2), which

is type (a). At k = (0,π ), which is the equivalent point to
k = (2

√
3π/3,0), the line given by the equation ε1(k) = 0

shrinks into a point (compare with Fig. 11), which is type (b).
Although the merged Dirac point at k = (0,π ) looks different
from that at k = (2

√
3π/3,0), the energy around these points√

[ε1(k)]2 + [ε2(k)]2 is the same. Type (c) of the merged Dirac
points can be seen in Fig. 22, where two Dirac points, D0 and
D1, merge on the ky axis when ta = 1, tb = tc = 0.980, and
t3a = t3b = t3c = 0.4.

When the parameters are at the tricritical points in the phase
diagram (T1, T′

1, T2, and T3), ε1(k) = 0 gives two lines and one
of the lines touches cubically with the line given by ε2(k) = 0
[see the point k = (0,2π ) in Figs. 24 and 25]. This is type
(c) with cubic touching (m = 3). Four Dirac points with the
topological numbers +1, +1, −1, and −1 merge at this point.
In the same parameters for the tricritical point, type (a) with
n = 4 is realized at k = (2

√
3π/3,0) (not shown).

First we study the density states for the merged Dirac points
of type (a). If two lines touch in the order n, we perform the
affine transformation, i.e., rotation, translation, and stretching
in the momentum space, and we can write

ε
(a)
1 (k) ≈ 1√

2

(
kx + unk

n
y

)
, (D4)

ε
(a)
2 (k) ≈ 1√

2

(
kx − unk

n
y

)
, (D5)

where un(>0) is a constant. The topological number at this
point is ±1 if n is odd and 0 if n is even. In this case we
obtain √[

ε
(a)
1 (k)

]2 + [
ε

(a)
2 (k)

]2 =
√

k2
x + u2

nk
2n
y . (D6)

The density of states is obtained as

D(a)(ε) = 1

S ′
BZ

2
√

π�
(

2n+1
2n

)
(un)

1
n �

(
n+1
2n

) |ε| 1
n , (D7)

where S ′
BZ is the area of the Brillouin zone after the affine

transformation. We obtain the Dirac point by taking n = 1.
When two Dirac points merge, we obtain a semi-Dirac point
(energy depends linearly on the one direction of the momentum
and quadratically in the other direction), which is obtained by
taking n = 2. If three Dirac points merge, n = 3 is realized, as

seen in the merged points near k = (2
√

3π/3,2π/3) in Fig. 21.
At the tricritical point in the phase diagram in the parameter
space, n = 4 is realized [at k = (2

√
3π/3,0) for the parameters

in Figs. 24 and 25, although that point is not shown in these
figures].

Next we study the density of states due to the merged Dirac
point of type (b). Type (b) of the merged Dirac points can be
described after the affine transformation as

ε
(b)
1 (k) ≈ kx, (D8)

ε
(b)
2 (k) ≈ C ′′(k2

x + k2
y

)
, (D9)

where C ′′(>0) is a constant. In this simplification ε
(b)
1 (k) = 0

gives a straight line and ε
(b)
2 (k) = 0 gives the point k = (0,0).

We obtain
√

[ε(b)
1 (k)]2 + [ε(b)

2 (k)]2 = |kx | + O(k2
x) in the kx

direction and C ′′k2
y in the ky direction. Therefore, Eqs. (D8)

and (D9) describe semi-Dirac points and the density of states is
proportional to

√
ε. Indeed, the density of states is calculated

as

D(b)(ε) ∝
∫

2|ε|
√

C ′′√ε2 − k2
x

√√
ε2 − k2

x − C ′′k2
x

dkx

= 2
√|ε|√
C ′′

∫
1√

1 − x2
√√

1 − x2 − C ′′ε2x2
dx

≈ 2
√

π�
(

1
4

)
√

C ′′�
(

3
4

)√
|ε|, (D10)

where the integral should be performed where the integrand is
real and we have neglected higher order terms in ε.

The merged Dirac point of type (c) is described by

ε
(c)
1 (k) ≈ kx, (D11)

ε
(c)
2 (k) ≈ ky

(
kx − u′km

y

)
. (D12)

In this case ε
(c)
1 (k) = 0 gives a straight line and ε

(c)
2 (k) =

0 gives an intersecting straight line and a curve touch-
ing to the first line at k = (0,0) in the mth order [if
m = 1, ε

(c)
2 (k) = 0 gives two intersecting lines]. We ob-

tain
√

[ε(c)
1 (k)]2 + [ε(c)

2 (k)]2 = |kx | in the kx direction and
u′|ky |m+1 in the ky direction. Therefore, type (c) with m is
similar to type (a) with n = m + 1. We obtain the density of
states due to this merged points as

D(ε)(c) ∝ |ε| 1
m+1 . (D13)

The simplest case of type (d) is realized in the case ta = tb =
tc = 1 and t3a = t3b = t3c = 1/2 as discussed in Sec. VI A. In
that case the topological number is two and the density of
states is independent of the energy for |ε| ≈ 0.
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