〔教材研究〕

熊本県産化石にみられる定向進化

尚桐髙校 田代正之

生物の進化についての教材は、高校の生物 地学、中学校の理科2分野に、象の身、馬の 足、人間の頭骨、フメリナ、アンモナイト、 キサゴなどの例がしばしば取扱ってあります。 これまでに、熊本地学会で行なった化石採 集の巡検会で、すでにおなじみの化石種にみ られる定向進化の実例を中生代の二枚貝を中 心にあげてみたいと思います。

(のモノチス

モノチスは中生代三畳紀の重要な示準化石 です。今年8月の巡検会で、八代郡深山谷の ものを採集された方、又、坂本付近のモノチ スも、これまでの巡検会で採集してある方が 多数おられることと思います。九州産のモノ チスについては、田村(1965)の詳しい 研究がありますので、その中から、特に定向 的な進化を示している表面の肋の変化を産出 層順の古い種からその表面の放射肋の変化を みるとその放射状の肋が時代と共化少なくな っていくのが判ります。(会誌紙13参照) typicaでは放射状肋が約50 本ですが、 densistriata, ochotica, pachyplaura と肋は2次肋、3次肋の弱い肋に変っていき zabaikalicaでは、ついにその表面から肋 が消えてしまっています。

のアカンソトリゴニア

この仲間は中生代白亜紀に栄えました。天草の御所浦層群、上・下益城の御船層群、見 獄山層から産します。八代の宮地層からも一 種採集されています。図1は、この仲間を時 代順に並べたものです。(田村、田代 1967) Ac.morianaとAc.longilova は本県に に出ていません。 最も古い moriana でに、 エリア(三角貝の各部の名称は会誌25号参 照)の全表面に傾斜した小肋があります。 B グループのものは、エリアの後方の小肋が消 失しています。全表面の肋の数も少なくなっ ています。 D.E.Fグループではエリアの小 肋はわずかに数本が穀頂近くにみとめられる のみで、デイスクの肋も少なく、たるんでし まっています。一方、Ac.pusturosa(c)は エリアの傾斜した肋が、 つぶ状にをり、その つぶの配例が一見八形にみえます。エリアに 八形の小肋をもつ仲間は、スカプロトリゴニ アとよばれていますが、 この仲間は、日本で も、外国では、だいたいこの時代以後に栄え ています。 pustulosaは、おそらく、スカ プロトリゴニアの祖先形であり、この仲間は アカンソトリゴニアから分かれたといえそう です。

余談ですが、アカンソトリゴニアの製頂の 装飾は、しばしば、ジュラ紀の坂本層等から でるミオフオレラ(ハイダイア)という三角 貝の仲間とみまがりほど、そっくりをことが あります。これは、おそらくアカンソトリゴ ニアの祖先形が、ミオフオレラに近いもので あることを意味していると思います。

◎アピオトリゴニアとヘテロトリゴニア

図2は、日本産のアピオトリゴニア、ヘテロトリゴニア、ミクロトリゴニアの種を図示したものです。(下のものほど古い種)このうち、熊本県産の種は、Ap.minor, Ap. oblique costata, Ap. utoensis n. sp., Ap. postonodosa, Ap. obsolata, Eet. granosa, Het. himenourensis n. sp. м.

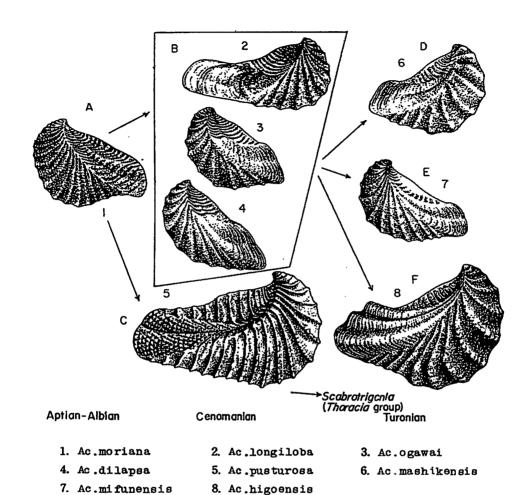
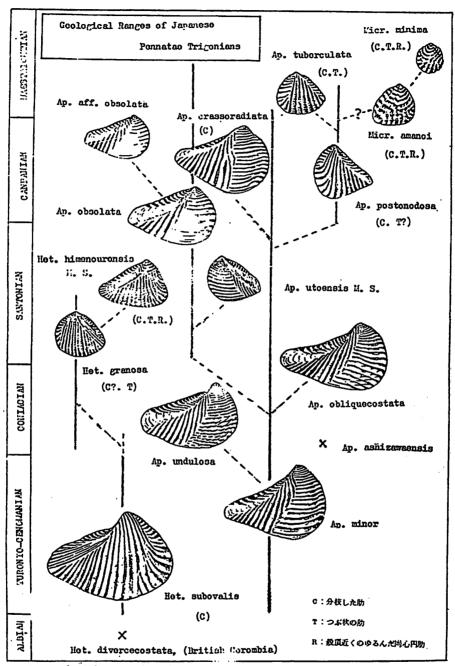



図 1. アカンソトリゴニアの進化

s.,があります。鹿児島よりMicr.amanoiができます。これらは各々産出時代にずれがありますが、皆姫浦層群より産します。アピオトリゴニアのデイスクの装飾は図のように、古い種では比較的規則的なL型の肋があり、この肋は平滑です。このL型の肋は時代とともに、前方の方でとぎれたり、傾斜したりしますが、最後には前方の肋は前部にせまくおしつめられ、後部の亜放射状の肋が次第に前方へ進出し、前半に達した亜放射状肋は、前

腹縁付近で分枝しはじめます。その段階では 肋はいっぱんにつぶ状の突起をもったものに 変っています。ヘテロトニゴニアでも、アピ オトリゴニアと同様にディスクの肋は、最初 規則的な L型から→分枝した肋→つぶ状突起 の肋と変っていき、特に Hot_himenourensis では、殻頂にゆるい平滑 な同心円状の肋が出 現しています。この殻頂の特ちようは、ミク ロトリゴニアによくにております。もしミク ロトリゴニアが、アピオトリゴニアのもっと

NAKANO (1957) SAITO (1962) に一部道加して作成

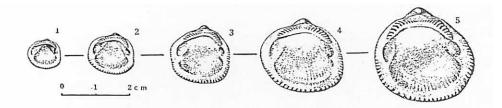


図 3. Gly cymeris (Hanaia) solida NAGAOの成長に伴う形態変化

も新しい形態を示しているものであると考えると、アピオトリゴニアとヘテロトリゴニアの定向的な進化は、時代的なずれ(ヘテロトリゴニアが早い)をのぞけば、非常ににた過程を経ていることが判ります。

◎ケリキメリス

生物の個体発生は、その生物の進化のあとをくり返すといわれていますが、天草御所浦層群産のGlycymeris solida (= G. amakusensis var.solida)を幼型から成長型まで並べてみると、その変化がよく判ります。(図3)図3-1の幼型は、世界でもっとも古い種とされているヨーロッパ下部白亜紀産の種によくにています。図3の2は岩手県宮古の下部白亜紀産の種(G.traipensis)

やイギリスのグリーンサンド(下部白亜紀)の種ににています。図3の3ー4は、宮古の下部白亜紀上部の種(G.densilineata)や八代宮地層産のG.matsumotoi n.sp.M.S.によくにています。本種(soliola)は上部白亜紀最下部より産していますが、この成長型図3の5は、北海道の三笠砂岩のG.katsurazawensis n.sp.M.S.に表われています(三笠砂岩は御所浦層群よりや今新しい)。図4は、日本産グリキメリスの各亜属を系統樹にしたものですが、solidaの成長型が、上部白亜紀上部のG.amakusensisによくにていることも興味あるものです。

◎アンソニア

との貝は、白亜紀に栄えた特殊な二枚貝で

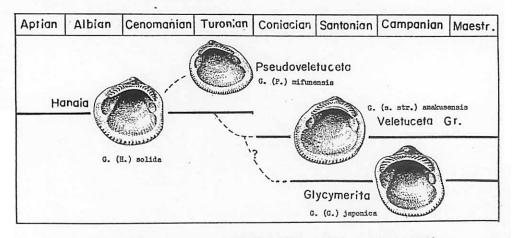
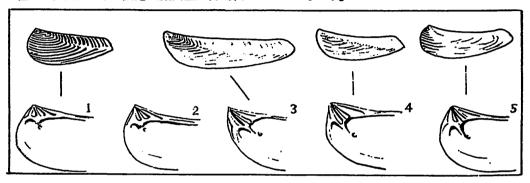



図4. 日本産白亜紀グリキメリスの系統樹(亜属)。図は、みな熊本県産種

ナギナタか、えんどうのさやの様な型をした ものです。アンソニアについてはまだ錐者自 身研究の段階で、未発表の資料ですが、これ も時代の古いものから順に並べると図5の様 な変化がみとめられるようです。古い種の二 種では、歯板の下の支えの肋が短かく、新し いものほど長くなっています。

以上あげたいくつかの化石は、次々その産出する岩相は、似かよったもので、環境への適応による進化とは考えにくいと思われます。 やはり定向的な進化の実例としたがもっともいいようです。

- ① Auth.subcantiana 下部白亜紀(宮古層群) ② Auth.sp.nov. 下部白亜紀 (宮地層)
- ③ Auth.japonica 上部白亜紀(御所補層群) ④ Auth.sp.nov.— 上部白亜紀
- ⑤ Auth.sp.nov. —— 上部白亜紀(御船居群)

(御所浦層群)

図 5. アンソニアの時代に伴う歯板と表面装飾の変化

文 献

HAYAMI I.(1965)Lower Cretaceous marine pelecypods of Japan.Men.Fac. Sci., Kyushu Univ. [D] Geol., vol.15.

NAKANO M.(1957)On the Cretaceous Pennatae Trigonians in Japan. Japan, Jour. Geol. Geogr. Vol. 28 Nosl-3.

TAMURA M(1965) Monotis (Entomonotis) from Kyushu, Japan.

能大教育学部紀要 K13

TAMURA M.and TASHIRO M. (1967) Cretaceous Trigoniids from The Mifune Group. 旗大教育学部紀要 16.15

田代正之(1969 M.S.): Upper Cretaceous Glycymerids in Japan:日本古生物 学会 11月例会講演資料

田代正之(1970 M.S.): Pennatae trigonian の表面装飾の変化と 姫浦層群産の 2 新 種について 日本古生物学会 9月例会講演資料

地学会誌

田村 実:熊本県化石産地めぐり(9)モノチス (エントモノチス)産地 低13

田代正之:熊本県産三角貝について 版25

田代正之:日本産上部白亜系タマキ貝について 版31