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The d-matrix elements of SO(4) are given by direct integration after an analytic contin-
uation from an integral formula for the boost matrix elements of SO(3,1) and given in terms
of a linear combination of e−imθ with the vector addition coefficients. The boost matrix
elements of SO(3,1) are given in terms of finite number of hypergeometric functions with the
argument 1 − e−2ζ and then are expressed in terms of e−2sζ . Various symmetry relations
for the d- and boost matrix elements are given. The vector addition coefficient of SO(4) is
given in terms of the product of the vector addition coefficient of SO(3) and the 9-j symbol.

§1. Introduction

The Lorentz group of SO(3,1) appears in the theory of special relativity. The
representation theory of the SO(3,1) group is important in relativity physics and is
studied in detail. In particular, the explicit expression of their boost matrix elements
is sometimes needed as in the case of the d-matrix elements of SO(3) in the non-
relativistic quantum mechanics. The expression of the boost matrix elements is given
through an integral formula1) with the d-matrix elements of SO(3) and the explicit
expression can be given by an integration of the integral formula. The d-matrix
elements of SO(4) are obtained by an analytic continuation of the parameters in the
boost matrix elements.

On the other hand, it is known that the d-matrix elements of SO(4) is given
by sum of product of the vector addition coefficients of SO(3) and eimθ. The boost
matrix elements of SO(3,1) gives the d-matrix elements through an analytic contin-
uation of the parameters and is shown to be well-known results.

In an article, we integrate the formula continued from that of SO(3,1) and show
the matrix elements of O(4), though the results are known. In appendix, the vector
addition coefficient of SO(4) is given by the product of the vector addition coefficient
of SO(3) and the 9-j symbol.

∗) Retired from Department of Physics, Kumamoto University.
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§2. Integration

The integral expression for the boost matrix elements of SO(3,1) is given as
follows:1)

d
(ρ,K)
j′(m)j(ζ) =

1

2

√
(2j′ + 1)(2j + 1)

√
Γ (ρ− j′ + 1)Γ (ρ+ j′ + 2)

Γ (ρ− j + 1)Γ (ρ+ j + 2)

×
∫ π

0
sin θd

(j′)
K,m(θ)(cosh ζ − cos θ sinh ζ)ρd

(j)
K,m(θ′)dθ, (2.1)

where ρ is some complex number which characterizes the representation together
with K, and j, j′ and m are known-numbers characterizing the representation of
SO(3) and ζ denotes a real parameter of the Lorentz group and θ′ is given in terms
of θ

cos θ′ =
cos θ cosh ζ − sinh ζ

cosh ζ − cos θ sinh ζ
.

The d-matrix elements of SO(3) are given as follows:

d
(j)
m′,m(θ) =

√
(j +m)!(j −m′)!

(j −m)!(j +m′)!

eiπ(m
′−m)

Γ (m−m′ + 1)
(cos

θ

2
)m+m′

(sin
θ

2
)m−m′

×F (m− j, j +m+ 1;m−m′ + 1; sin2
θ

2
) (2.2)

=

√
(j −m)!(j +m′)!

(j +m)!(j −m′)!

1

Γ (m′ −m+ 1)
(cos

θ

2
)2j(tan

θ

2
)m

′−m

×F (−m− j,−j +m′;m′ −m+ 1;− tan2
θ

2
). (2.3)

where F (a, b; c; z) denotes the hypergeometric function given in App A.1. It is noted
that the expressions of (2.2) and (2.3) hold for m′ ≥ m and m′ ≤ m due to a factor
like Γ (m′ −m+ 1) in front of the hypergeometric function.

It follows from the expressions (2.1) and (2.3) etc. that the following relations
hold:

d
(ρ,K)
j′(m)j(ζ) = d

(ρ,m)
j′(K)j(ζ),

d
(ρ,K)
j′(m)j(ζ) = d

(ρ,−K)
j′(−m)j(ζ),

d
(ρ,K)
j′(m)j(ζ) = d

(−ρ−2,K)
j′(m)j (−ζ),

d
(ρ,K)∗

j′(m)j (ζ) = d
(ρ∗,K)
j′(m)j (ζ). (2.4)

§3. d-matrix elements of SO(4)

The d-matrix elements of SO(4) are well-known in an elegant form. Let us show
the matrix elements from (2.1) by an analytic continuation of the complex number
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ρ to the number J of SO(4) and of the ζ to the complex number iθ. Then, the
expression (2.1) becomes as follows:

d
(J,K)
j′(m)j(ζ) =

1

2

√
(2j′ + 1)(2j + 1)

√
(J − j′)!(J + j′ + 1)!

(J − j)!(J + j + 1)!

×
∫ π

0
sin θd

(j′)
K,m(θ)(cosh ζ − cos θ sinh ζ)Jd

(j)
K,m(θ′)dθ, (3.1)

where the notation ζ remains instead of the iθ in order to avoid the confusion with
the integration variable θ. The ζ is written in the iθ after the integration. It is to
show the following expression of the d-matrix elements of SO(4) by integration of
(3.1)

d
(J,K)
j′(m)j(θ) = Σm′(

1

2
(J +K),

1

2
(m+m′),

1

2
(J −K),

1

2
(m−m′); j′,m)

×(
1

2
(J +K),

1

2
(m+m′),

1

2
(J −K),

1

2
(m−m′); j,m)e−im′θ, (3.2)

though it is easily shown by using the relation SO(4)≃ SO(3)⊗ SO(3) (App.A.5).
The vector addition coefficient has various expressions and one of them is given as
follows2)

( j1,m1, j2,m2; jm) = eiπ(j1−m1) (j + j2 −m1)!

(j2 − j +m1)!

×

√
(2j + 1)(j1 + j2 − j)!(j + j2 − j1)!(j +m)!(j1 +m1)!(j2 −m2)!

(j1 + j2 + j + 1)!(j + j1 − j2)!(j − j1 + j2)!(j −m)!(j1 −m1)!(j2 +m2)!

×F (m− j,m1 − j1, j1 +m1 + 1;m1 − j − j2, j2 − j +m1 + 1; 1), (3.3)

The function F in (3.3) is a hypergeometric function with a unit argument defined
in App.A.1.

We insert the explicit form of the d-matrix elements (2.3) into (3.1) together
with the assumption K ≥ m which is permitted without loss of generality because
of the symmetries of the d-matrix of SO(3). By using the relation

cosh ζ − cos θ sinh ζ = e−ζ cos2
θ

2
+ eζ sin2

θ

2
,

and the formula of the integral∫ π/2

0
cosp θ sinq θdθ =

1

2

Γ (p+1
2 )Γ ( q+1

2 )

Γ (p+q
2 + 1)

, Re(p, q) > −1,

we integrate (3.1) to get

d
(J,K)
j′(m)j(ζ) =

√
(2j′ + 1)(2j + 1)

×

√
(J + j′ + 1)!(J − j′)!(j −m)!(j +K)!(j′ −m)!(j′ +K)!

(J + j + 1)!(J − j)!(j +m)!(j −K)!(j′ +m)!(j′ −K)!
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×Σn1,n2,se
iπ(n1+n2) Γ (−j′ −m+ n1)Γ (−j′ +K + n1)

Γ (−j′ −m)Γ (−j′ +K)Γ (K −m+ 1)n1!

× Γ (−j −m+ n2)Γ (−j +K + n2)

Γ (−j −m)Γ (−j +K)Γ (K −m+ 1)n2!
e−(J−K+m−2s−n2)ζ

×Γ (J − j + 1)Γ (J + j′ −K +m− n1 − n2 − s+ 1)Γ (K −m+ n1 + n2 + s+ 1)

Γ (J − j − s+ 1)Γ (J + j′ + 2)s!
,

(3.4)

which becomes after summing over n1, n2 to make the hypergeometric functions

d
(J,K)
j′(m)j(ζ) =

√
(2j′ + 1)(2j + 1)

×

√
(J + j′ + 1)!(J − j′)!(j −m)!(j +K)!(j′ −m)!(j′ +K)!

(J + j + 1)!(J − j)!(j +m)!(j −K)!(j′ +m)!(j′ −K)!

× 1

Γ (K −m+ 1)Γ (K −m+ 1)
Σt

× Γ (J − j + 1)Γ (J + j′ −K +m− t+ 1)Γ (K −m+ t+ 1)

Γ (J − j − t+ 1)Γ (J + j′ + 2)t!

× F (−j′ −m,−j′ +K,K −m+ t+ 1;K −m+ 1,−J − j′ +K −m+ t; 1)

× F (−j −m,−j +K,−t;K −m+ 1, J − j − t+ 1; 1)e−(J−K+m−2t)ζ . (3.5)

By using the relation (A.4), we obtain

F ( −j′ −m,−j′ +K,K −m+ t+ 1;K −m+ 1,−J − j′ +K −m+ t; 1)

=
Γ (−J − j′ +K −m+ t)Γ (−J + j′)

Γ (−J +K + t)Γ (−J −m)

×F (−j′ −m, j′ −m+ 1,−t;K −m+ 1,−J −m; 1), (3.6)

F ( −j −m,−j +K,−t; k −m+ 1, J − j − t+ 1; 1)

= eiπ(j+m) Γ (J − j − t+ 1)Γ (−J + j)

Γ (J +m− t+ 1)Γ (−J −m)

×F (−j −m, j −m+ 1,−t;K −m+ 1,−J −m; 1). (3.7)

(3.5) becomes by using (3.6) and (3.7) as follows:

d
(J,K)
j′(m)j(ζ) =

√
(2j′ + 1)(2j + 1)

×

√
(J + j′ + 1)!(J − j′)!(j −m)!(j +K)!(j′ −m)!(j′ +K)!

(J + j + 1)!(J − j)!(j +m)!(j −K)!(j′ +m)!(j′ −K)!

× 1

Γ (K −m+ 1)Γ (K −m+ 1)
eiπ(j+K) Γ (J − j + 1)Γ (−J + j)Γ (−J + j′)

Γ (J + j′ + 2)Γ (−J −m)Γ (−J −m)

×Σt
Γ (J + j′ −K +m− t+ 1)Γ (−J − j′ +K −m+ t)Γ (K −m+ t+ 1)

Γ (J +m− t+ 1)Γ (−J +K + t)t!

×F (−j′ −m, j′ −m+ 1,−t;K −m+ 1,−J −m; 1)F (j′ → j)e−(J−K+m−2t)ζ .

(3.8)
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Comparing the F in (3.3) and that in (3.8), we get the following relation of the
vector addition coefficient with the F in (3.8)

F ( −j −m, j −m+ 1,−t;K −m+ 1,−J −m; 1)

= eiπt

√
(J + j + 1)!(J − j)!(J +m− t)!(j +m)!(j −K)!t!

(2j + 1)(J −K − t)!(K −m+ t)!(j −m)!(j +K)!

×(K −m)!

(J +m)!
(
1

2
(J +K),

1

2
(J −K) +m− t,

1

2
(J −K),−1

2
(J −K) + t; j,m).

(3.9)

We obtain the desired relation (3.2) by inserting (3.9) into (3.8) together with the
replacements J −K +m− 2t = m′, ζ → iθ, and using the following relation which
is easily seen from the relation Γ (z)Γ (1− z) = π/ sin(πz),

eiπ(j+m)Γ (−J − j′ +K −m+ t)Γ (J + j′ −K +m− t+ 1)

Γ (−J +K + t)Γ (J −K − t+ 1)

× Γ (J − j′ + 1)Γ (−J + j′)

Γ (J +m+ 1)Γ (−J −m)

Γ (J − j + 1)Γ (−J + j)

Γ (J +m+ 1)Γ (−J −m)
= 1.

The relation corresponding to the symmetry of the first of (2.4) holds due to the
following relation from (3.6)

F ( −j −m, j −m+ 1,−t;K −m+ 1,−ρ−m; 1)

=
Γ (−ρ−m)Γ (t+ 1)

Γ (−ρ−K)Γ (K −m+ t+ 1)

Γ (K −m+ 1)Γ (j −K + 1)Γ (j +m+ 1)

Γ (m−K + 1)Γ (j −m+ 1)Γ (j +K + 1)

×F (−j −K, j −K + 1,m−K − t;m−K + 1,−ρ−K; 1).

It is evident that the representation condition is satisfied as seen from (3.2):

Σj′′d
(J,K)
j′(m)j′′(θ1)d

(J,K)
j′′(m)j(θ2) = d

(J,K)
j′(m)j(θ1 + θ2).

Though the orthogonal relation of (3.2) is known in the form,

Σm

∫ π

0
sin2 θd

(J ′,K′)
j′(m)j (θ)d

(J,K)
j′(m)j(θ) =

π

2

(2j′ + 1)(2j + 1)

(J +K + 1)(J −K + 1)
δJ ′,JδK′,K ,

(3.10)

we show it explicitly by direct integration. The symmetry properties of vector ad-
dition coefficients and some properties of the Racah coefficients are given in (A.5)∼
(A.10)2) :

We rewrite the d-matrix elements (3.2) by using (A.10) as follows:

d
(J,K)
j′(m)j(θ) = Σse

iπ(J+−M++2J−−s)
√

(2j′ + 1)(2j + 1)

×(j′m, j −m; s0)(J−M−, J− −M−; s0)W (j′jJ−J−; sJ+)e
−imθ+2iM−θ, (3.11)
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where J± = (J ± K)/2,M± = (m ± m′)/2. The following expression is to be
integrated:

T = Σm

∫ π

0
sin2 θd

(J ′,K′)
j′(m)j (θ)d

(J,K)
j′(m)j(θ)dθ

= Σm,M−,M ′
−,M+,M ′

+
Σs′,se

iπ(J+−J ′
+−M++M ′

++2J−−2J ′
−+s′−s)(2j′ + 1)(2j + 1)

×(j′m, j −m; s0)(j′m, j −m; s′0)(J−M−, J− −M−; s0)(J
′
−M

′
−, J

′
− −M ′

−; s
′0)

×W (j′jJ−J−; sJ+)W (j′jJ ′
−J

′
−; s

′J ′
+)

∫ π

0
sin2 θe2i(M−−M ′

−)θdθ,

which becomes

T=
π

2
ΣM−,M ′

−,se
iπ(J+−J ′

++M−−M ′
−+2J−−2J ′

−)(2j′ + 1)(2j + 1)

×(J−M−, J− −M−; s0)(J
′
−M

′
−, J

′
− −M ′

−; s0)

×W (j′jJ−J−; sJ+)W (j′jJ ′
−J

′
−; sJ

′
+)

×ei(M−−M ′
−)π 1

Γ (2 +M− −M ′
−)Γ (2−M− +M ′

−)
,

where the following formula is used :∫ π

0
sinα θeiβθdθ =

πΓ (1 + α)eiπβ/2

2αΓ (1 + (α+ β)/2)Γ (1 + (α− β)/2)
, Re(α) > −1.

Now, we obtain the following from (A.10)

ΣM−,M ′
−
(J ′

−M
′
−, J

′
− −M ′

−; s0)(J−M−, J− −M−; s0)
1

Γ (2 +M)Γ (2−M)

= ΣM−,M ′
−,M,te

iπ(2J ′
−+M+s+t)(2s+ 1)

× (J ′
− −M ′

−, J−M−; tM)(J ′
− −M ′

−, J−M−; tM)

× W (J ′
−J

′
−J−J−; st)

1

Γ (2 +M)Γ (2−M)
,

which becomes

Σ M−,M ′
−
(J ′

−M
′
−, J

′
− −M ′

−; s0)(J−M−, J− −M−; s0)
1

Γ (2 +M)Γ (2−M)

= ΣM,te
iπ(2J ′

−+M+s+t)(2s+ 1)

× W (J ′
−J

′
−J−J−; st)

1

Γ (2 +M)Γ (2−M)
.

However, it is easily seen that the following holds for the possible values of t,

ΣMeiπM
1

Γ (2 +M)Γ (2−M)
= δt,0.

Thus, we get

T =
π

2
Σse

iπ(J+−J ′
++2J−−2J ′

−)(2j′ + 1)(2j + 1)

× W (j′jJ−J−; sJ+)W (j′jJ ′
−J

′
−; sJ

′
+)

2s+ 1

2J− + 1
δJ−,J ′

−
.
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By using the relation in (A.3.4), we get our result:

T =
π

2

(2j′ + 1)(2j + 1)

(2J+ + 1)(2J− + 1)
δJ+,J ′

+
δJ−,J ′

−

=
π

2

(2j′ + 1)(2j + 1)

(J +K + 1)(J −K + 1)
δJ,J ′δK,K′ .

§4. Integration of (2.1)

We integrate (2.1) directly and give a useful expression. By using the following

(cosh ζ − cos θ sinh ζ)ρ−j = e(ρ−j)ζΣs
Γ (j − ρ+ s)

Γ (j − ρ)s!
(1− e−2ζ)s(cos

θ

2
)2s,

and inserting (2.3) into (2.1), we integrate the result to get

bd
(ρ,K)
j′(m)j(ζ) =

√
(2j′ + 1)(2j + 1)

√
Γ (ρ− j′ + 1)Γ (ρ+ j′ + 2)

Γ (ρ− j + 1)Γ (ρ+ j + 2)

×

√
(j′ −m)!(j′ +K)!(j −m)!(j +K)!

(j′ +m)!(j′ −K)!(j +m)!(j −K)!
Σn1,n2e

iπ(n1+n2)

× Γ (−j′ −m+ n1)Γ (−j′ +K + n1)

Γ (−j′ −m)Γ (−j′ +K)Γ (K −m+ n1 + 1)n1!

× Γ (−j −m+ n2)Γ (−j +K + n2)

Γ (−j −m)Γ (−j +K)Γ (K −m+ n2 + 1)n2!

× Γ (K −m+ n1 + n2 + 1)Γ (j + j′ −K +m− n1 − n2 + 1)

Γ (j + j′ + 2)

× F (j − ρ, j + j′ −K +m− n1 − n2 + 1; j + j′ + 2; 1− e−2ζ)e(ρ−2j+K−m+2n2)ζ ,

(4.1)

where the sum over s is written by the hypergeometric function. It follows from
(4.1) that the boost matrix elements are expressed in terms of finite number of
hypergeometric functions.

Rewriting (4.1) by using the relation (A.1.3) in order to see the relation between
(3.2) and (4.1), we obtain the following expression

bd
(ρ,K)
j′(m)j(ζ) =

√
(2j′ + 1)(2j + 1)

√
Γ (ρ− j′ + 1)Γ (ρ+ j′ + 2)

Γ (ρ− j + 1)Γ (ρ+ j + 2)

×

√
(j′ −m)!(j′ +K)!(j −m)!(j +K)!

(j′ +m)!(j′ −K)!(j +m)!(j −K)!

1

Γ (K −m+ 1)Γ (K −m+ 1)

×Σn1,n2e
iπ(n1+n2)

Γ (−j′ −m+ n1)Γ (−j′ +K + n1)Γ (K −m+ 1)

Γ (−j′ −m)Γ (−j′ +K)Γ (K −m+ n1 + 1)n1!

× Γ (−j −m+ n2)Γ (−j +K + n2)Γ (K −m+ 1)

Γ (−j −m)Γ (−j +K)Γ (K −m+ n2 + 1)n2!
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× Γ (K −m+ n1 + n2 + 1)Γ (j + j′ −K +m− n1 − n2 + 1)

×
[

Γ (ρ− j +K −m+ n1 + n2 + 1)

Γ (ρ+ j′ + 2)Γ (K −m+ n1 + n2 + 1)

× F (j − ρ, j + j′ −K +m− n1 − n2 + 1; j − ρ−K +m− n1 − n2; e
−2ζ)

+
Γ (j − ρ−K +m− n1 − n2 − 1)

Γ (j − ρ)Γ (j + j′ −K +m− n1 − n2 + 1)
e−2(ρ−j+K−m+n1+n2+1)ζ

× F (ρ+ j′ + 2,K −m+ n1 + n2 + 1; ρ− j +K −m+ n1 + n2 + 2; e−2ζ)
]

× e(ρ−2j+K−m+2n2)ζ . (4.2)

The summation terms on the right side of (4.2) can be expressed in terms of the
hypergeometric functions of 3F2 and the hypergeometric functions can be rewritten
by using (A.1.4). Then, the boost matrix elements become as follows:

bd
(ρ,K)
j′(m)j(ζ) =

√
(2j′ + 1)(2j + 1)

√
Γ (ρ− j′ + 1)Γ (ρ− j + 1)

Γ (ρ+ j′ + 2)Γ (ρ+ j + 2)

×

√
(j′ −m)!(j′ +K)!(j −m)!(j +K)!

(j′ +m)!(j′ −K)!(j +m)!(j −K)!

1

Γ (K −m+ 1)Γ (K −m+ 1)

× eiπ(j+j′+m+K) Γ (−ρ+ j′)Γ (−ρ+ j)

Γ (−ρ−m)Γ (−ρ−m)

[
Σt

Γ (−ρ−m+ t)Γ (−K −m+ t+ 1)

Γ (−ρ−K + t)t!

× F (−j′ −m, j′ −m+ 1,−ρ−m+ t;K −m+ 1,−ρ−m; 1)

× F (j′ → j)e(ρ+K+m−2t)ζ)

−Σt
Γ (ρ−m+ t+ 2)Γ (K −m+ t+ 1)

Γ (ρ+K + t+ 2)t!

× F (−j′ −m, j′ −m+ 1,K −m+ t+ 1;K −m+ 1,−ρ−m; 1)

× F (j′ → j)e−(ρ+K−m+2+2t)ζ
]
. (4.3)

It follows from (4.3) that the symmetry with respect to j ↔ j′ holds.
When the analytic continuation of the number ρ to the integer J together with

the ζ → iθ is made, the factor Γ (−J −m+ t)/Γ (−J −K + t) in the first term gives
rise to the two sum terms from t = 0 to J +m and from J +K + 1 to ∞. It is easy
to see that the latter term cancels out the second term of (4.3) and the remaining
finite term becomes the d-matrix elements (3.2) of SO(4).

It follows that the exchange symmetry of K and m given in the first of (2.4)
holds due to the following relations seen from (A.4)

F ( −j −m, j −m+ 1,−ρ−m+ t;K −m+ 1,−ρ−m; 1) = eiπ(K−m)

× Γ (−ρ−m)Γ (t+ 1)Γ (K −m+ 1)Γ (j −K + 1)Γ (j +m+ 1)

Γ (−ρ−K)Γ (K −m+ t+ 1)Γ (m−K + 1)Γ (j +K + 1)Γ (j −m+ 1)

× F (−j −K, j −K + 1,−ρ−K + t;m−K + 1,−ρ−K; 1), (4.4)

F ( −j −m, j −m+ 1,K −m+ t+ 1;K −m+ 1,−ρ−m; 1) = eiπ(K−m)
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× Γ (−ρ−m)Γ (K −m+ 1)Γ (j −K + 1)Γ (j +m+ 1)Γ (ρ+m− t+ 1)

Γ (−ρ−K)Γ (m−K + 1)Γ (j −m+ 1)Γ (j +K + 1)Γ (ρ+K − t+ 1)

× F (−j −K, j −K + 1,m−K + t+ 1;m−K + 1,−ρ−K). (4.5)

Appendix

The hypergeometric functions, the vector addition coefficients, Racah coefficients
and the vector addition coefficients of SO(4) are given in the appendix.

A.1. Hypergeometric Functions

F (a1, a2, ...; b1, b2, ...; z) ≡ Σn
Γ (a1 + n)Γ (a2 + n)...

Γ (a1)Γ (a2)...

Γ (b1)Γ (b2)...

Γ (b1 + n)Γ (b2 + n)...

zn

n!
,

(A.1)

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z)

= (1− z)−aF (a, c− b; c;
z

z − 1
), (A.2)

F (a, b; c; z) =
Γ (c)Γ (c− a− b)

Γ (c− a)Γ (c− b)
F (a, b; a+ b− c+ 1; 1− z)

+
Γ (c)Γ (a+ b− c)

Γ (a)Γ (b)
(1− z)c−a−bF (c− a, c− b; c− a− b+ 1; 1− z), (A.3)

F (a, b,−n; e, f ; 1) = einπ
Γ (f)Γ (1 + b− f)

Γ (1 + b− n− f)Γ (f + n)

× F (e− a, b,−n; e, 1 + b− n− f ; 1), n = 0, 1, 2, · · · (A.4)

A.2. Vector addition coefficient of SO(3)

(j1m1.j2m2; j3m3) = (−1)j1+j2−j3(j2m2.j1m1; j3m3)

= (−1)j1+j2−j3(j1 −m1.j2 −m2; j3 −m3)

= (−1)j1−m1

√
2j3 + 1

2j2 + 1
(j1m1.j3 −m3; j2 −m2). (A.5)

A.3. Racah coefficient

The Racah coefficients vanish unless the triads abe,cde,bdf, and acf form a tri-
angle.

W (abcd; ef) = W (badc; ef) = W (cdab; ef) = W (acbd; fe), (A.6)

= (−1)e+f−a−dW (ebcf ; ad) = (−1)e+f−b−cW (aefd; bc). (A.7)
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Σ(2e+ 1)W (abcd; ef)W (abcd; ef ′) =
1

2f + 1
δf,f ′ , (A.8)

W (abcd, 0f) = eiπ(b+c−f) 1√
(2b+ 1)(2c+ 1)

δabδcd.

W (aαbβ; cγ)W (a′αb′β; c′γ)

= Σ(2s+ 1)W (a′sαc; ac′)W (bsβc′; b′c)W (a′sγb; ab′), (A.9)

The Racah coefficient and the vector coefficients are related by

( j1m1, j2m2; jm1 +m2)(jm1 +m2, j3m3; j4m4)

= Σ
√

(2s+ 1)(2j + 1)(j2m2, j3m3; sm2 +m3)(j1m1, sm2 +m3; j4m4)

× W (j1j2j4j3; js). (A.10)

The 9j-symbol is defined by the Racah coefficients as follows

Σs (−1)j21+j22−j23+j31+j32−j33(2s+ 1)

× W (j11j12j33j23; j13s)W (j21j22sj12; j23j32)W (j31j32j11s; j33j21)

=


j11 j12 j13
j21 j22 j23
j31 j32 j33

 , (A.11)

A.4. The Properties of d-matrix elements of SO(3)

The d-matrix elements of SO(3) have the following symmetries:

d
(j)
m′,m(θ) = eiπ(m−m′)d

(j)
−m′,−m(θ),

d
(j)
m′,m(θ) = eiπ(m−m′)d

(j)
m,m′(θ),

d
(j)
m′,m(θ) = d

(j)
−m′,−m(−θ),

d
(j)∗

m′,m(θ) = eiπ(m−m′)d
(j)
m′,m(θ).

A.5. Representation of SO(4)

The representation generators Dij = −Dji of SO(4) are defined by the following
commutation relations:

[Dij , Dkl] = i(δikDjl + δjlDik − δilDjk − δjkDil). (A.12)

It is known that the group SO(4) is isomorphic to SO(3)⊗ SO(3) which means the
following. If we define the quantities

J
(±)
i =

1

2
(
1

2
ϵijkDjk ±Di4), (A.13)
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each of the quantities J
(±)
i satisfies the commutation relations of SO(3). Thus, the

representation of SO(4) can be determined by those of SO(3) which are well known:

F (±)|j(±)m(±) > = j(±)(j(±) + 1)|j(±)m(±) >

J
(±)
3 |j(±)m(±) > = m(±)|j(±)m(±) >, (A.14)

where F (±) denotes the invariant operator of SO(3) given as

F (±) = Σ(J
(±)
i )2. (A.15)

The invariant operators of SO(4) are given by

F =
1

2
ΣD2

ij , G =
1

2
Di4ϵijkDjk, (A.16)

they are expressed in terms of those of SO(3) as follows:

F = 2(F (+) + F (−)), G = F (+) − F (−). (A.17)

On the other hand, the representation of SO(4) may be characterized by the
following:

F |J+J−jm >= 2{J+(J+ + 1) + J−(J− + 1)}|J+J−jm >,

G|J+J−jm >= {J+(J+ + 1)− J−(J− + 1)}|J+J−jm >,

F (3)|J+J−jm >= j(j + 1)|J+J−jm >,

D12|J+J−jm >= m|J+J−jm > . (A.18)

where

F (3) = (D23)
2 + (D31)

2 + (D12)
2. (A.19)

It follows that the representation is defined by the group chain SO(4) ⊃ SO(3). It
is easy to show that the ket |J+J−jm >= |JKjm > is connected with the direct
product of those of SO(3):

|J+J−jm >= Σ(J+m+, J−m−; jm)|J+m+ > |J−m− > . (A.20)

It follows from (A.17) that (A.20) is satisfied by the relations J+ = (J +
K)/2, J− = (J −K)/2. It is noticed that the three quantities J+J−j are subject to
the triangle rule.

The matrix elements of Dij(i, j ≤ 3) with respect to the bases (A.18) are given in
the same form as for SO(3), and it is better to give the matrix elements ofD34 because
those of Di4, i = 1, 2 are given by D34 through the relation [D34, D23 ± iD31] =

±(D14 ± iD24). It follows from (A.20) and D34 = J
(+)
3 − J

(−)
3 that the d-matrix

elements (3.2) hold because of the elements of exp(−iθD34).
Of course, the bases (A.20) are orthonormalized as easily seen,

< J ′
+J

′
−j

′m′|J+J−jm >= δJ ′
+J+δJ ′

−J−δj′jδm′m,
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and then the product ket can be expressed in terms of the ket |J+J−jm >

|J+m+ > |J−m− >= Σjm(J+m+, J−m−; jm)|J+J−jm > .

The matrix elements of D23 ± iD31 with respect to the bases (A.20) are the same as
in the SO(3) and those of D34 are given as follows:

D 34|J+J−jm >= {2(−1)J++j−J−
√

J+(J+ + 1)(2J+ + 1)(2j + 1)

×Σj′(j −m, 10; j′ −m)W (J+jJ+j
′;J−1)−mδj′j}|J+J−j′m >, (A.21)

where the quantity W (abcd; ef) denotes the Racah W coefficient.

A.6. Direct product

We consider the case given by a direct sum of generators Dij = D
(1)
ij +D

(2)
ij which

leads to the direct product representation. The bases |J+J−jm >, |J1+J1−j1m1 >
and |J2+J2−j2m2 > corresponding to (A.20) are used in what follows.

The triangle rules for J+J−j, J1+J1−j1 and J2+J2−j2 are satisfied as in the (A.20)
and thus the base |J+J−jm > spans (2J++1)(2J−+1) dimensional space. The total
number of the direct product bases becomes (2J1++1)(2J1−+1)(2J2++1)(2J2−+1).
It follows from the triangle rules j1j2j and J+J−j that the quantities J1+J2+J+and
J1−J2−J− will be subject to the triangle rule. Then, the total number of the base
|J+J−jm > for the possible values of J+.J− becomes as follows:

Σ
J1++J2+
J+=|J1+−J2+| Σ

J1−+J2−
J−=|J1−−J2−|(2J+ + 1)(2J− + 1)

= (2J1+ + 1)(2J2+ + 1)(2J1− + 1)(2J2− + 1), (A.22)

which agrees with those of the product bases.
Thus, the bases |J+J−jm > of the representation of Dij are related with the

bases of the product representation as follows:

|J+J−jm >=Σ (J1+J1−j1, J2+J2−j2; J+J−j)(j1m1, j2m2 : jm)

× |J1+J1−j1m1 > |J2+J2−j2m2 >, (A.23)

where the sum over j1, j2,m1,m2 is taken and the kets on the right are meant as in
(A.20). The factor on the right side in (A.23) is the vector addition coefficient of
SO(4) and must satisfy the following orthonormalization:

Σ (J1+J1−j1, J2+J2−j2; J
′
+J

′
−j

′)(J1+J1−j1, J2+J2−j2; J+J−j)

× (h1m1, j2m2; j
′m′)(j1m1, j2m2; jm)

= δJ ′
+J+δJ ′

−J−δj′jδm′m. (A.24)

It is noted that the conditions for j′j and m′m appear from the vector addition
coefficient of SO(3).It is easily seen that the bases (A.23) are given by the relations
corresponding to (A.20) and satisfy the relations corresponding to (A.18).

It is to show that the vector addition coefficient except for the vector addition
coefficient of SO(3) is given by

(J1+J1−j1, J2+J2−j2; J+J−j) = (−1)2(J1+−J−)
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×
√

(2J+ + 1)(2J− + 1)(2j1 + 1)(2j2 + 1)


j J− J+
j2 J2− J2+
j1 J1− j1+

 , (A.25)

where the quantity enclosed by the square brakects is 9j symbol which is given in
(A.11) and has the symmetry of interchange of any two rows or two columns. The
orthogonality (A.24) of the vector addition coefficient is easily confirmed by direct
calculation.

It is obvious that the relation Dij = D
(1)
ij +D

(2)
(ij) for i, j ≤ 3 leads to the same

matrix elements because the vector addition coefficient of SO(3) is contained in

(B.2.2) and the same fact for Di4 = D
(1)
i4 + D

(2)
i4 must hold. However, the relation

[D34, D23±D31] = ±(D14± iD24) hold. Thus,it is sufficient to show that the matrix

elements of D
(1)
34 +D

(2)
34 lead to those of D34. In the following, we show this fact by

using the vector addition coefficient (A.25).
The matrix elements of D34 are given as follows:

< J+J−j
′m|D34|J+J−jm >= (−1)J+−J−+j2

√
J+(J+ + 1)(2J+ + 1)(2j + 1)

× W (J+jJ+j
′ : J−1)(j −m, 10; j′ −m)−mδj′j , (A.26)

while the matrix elements of D
(1)
34 +D

(2)
34 are given in terms of the product bases as

follows:

< J +J−j
′m|(D(1)

34 +D
(2)
34 )|J+J−jm >

=Σ (J1+J1−j1, J2+J2−j2; J+J−j)(J1+J1−j
′
1, J2+J2−j

′
2; J+J−j

′)

× (j1m1, j2m2; jm)(j′1m1, j
′
2m2; j

′m)

× [(−1)J1+−J1−+j12
√

J1+(J1+ + 1)(2J1+ + 1)(2j1 + 1)W (J1+j1J1+j
′
1; J1−1)

× (j1 −m1, 10; j
′
1 −m1)−m1δj′1j1 ]

+Σ(J1+J1−j1, J2+J2−j2;J+J−j)(J1+J1−j
′
1, J2+J2−j

′
2; J+J−j

′)

× (j1m1, j2m2; jm)(j′1m1, j
′
2m2; j

′m)

× [(−1)J2+−J2−+j22
√

J2+(J2+ + 1)(2J2+ + 1)(2j2 + 1)W (J2+j2J2+j
′
2; J2−1)

× (j2 −m2, 10; j
′
2 −m2)−m2δj′2j2 ]. (A.27)

We show the validity of (A.25) by the fact that two terms of the right side on
(A.27) together are equal to the left term by rewriting the terms. It is easily seen
that the m1,m2 terms on the right side together become the m term on the left
because of the normalization (A.24) of the vector addition coefficient of SO(4). The
first term of the right side on (B.2.6) can be rewritten by using the formulas (A.9):

Σ (−1)J1+−J1−−j1+j′1+j2−j−1
√

J1+(J1+ + 1)(2J1+ + 1)(2j1 + 1)((2j + 1)(2j′1 + 1)

×W (J1+j1J1+j
′
1;J1−1)W (j1jj

′
1j

′; j21)(J1+J1−j1, J2+J2−j2; J+J−j)

× (J1+J1−j
′
1, J2+J2−j

′
2; J+J−j

′)(j −m, 10; j′ −m). (A.28)

We substitute the explicit form of the vector addition coefficient of SO(4) and first
perform the sum over j′1 with use of (A.9) to get

Σ (−1)2j
′
1(2j′1 + 1)W (j′1J1−j

′s;J1+j2)W (J1+j1J1+j
′
1;J1−1)W (j1jj

′
1j

′; j21)
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= (−1)J1−−J1++j2−j′Σ(2j′1 + 1)

×W (J1−j
′
1sj

′; J1+j2)W (1j′1jj2; j1j
′)W (J1−j

′
1J1+1; J1+j1)

= (−1)J1−−J1++j2−j′W (J1+s1j; j
′J1+)W (J1−sj1j; j2J1+).

Next, we sum over j1 and use (A.8) to give

Σ (2j1 + 1)W (j1J1−js1; J1+j2)W (J1−sj1j; j2J1+)

= (−1)s−s1Σ(2j1 + 1)W (J1+J1−jj2; j1s1)W (J1+J1−jj2; j1s) =
1

2s+ 1
δs,s1 .

and sum over j2 with use of (A.8) to give

Σ(2j2 + 1)W (J2+j2J−s; J2+J1−)W (J2+j2J−s; J2+J1−) =
1

2J− + 1
.

The remaining term becomes

( −1)j−j′−1
√

J1+(J1+ + 1)(2J1+ + 1)(2j + 1)(2J+ + 1)

× (−1)2s(2s+ 1)W (J1+s1j; j
′J1+)W (j′J−J1+J2+;J+s)

×W (jJ−J1+J2+; J+s)(j −m, 10; j′ −m)

= ( −1)j−j′−1
√

J1+(J1+ + 1)(2J1+ + 1)(2j + 1)(2J+ + 1)

× (−1)2s(2s+ 1)W (J1+s1j; j
′J1+)(−1)2J++2s−2J2+−j−j′

×W (J−J+sJ1+;J2+j)W (J1+sJ+J−; j
′J2+)(j −m, 10; j′ −m)

= ( −1)2J+−2J2+−2j′−1
√

J1+(J1+ + 1)(2J1+ + 1)(2j + 1)(2J+ + 1)

×W (j′1J−J+; jJ+)W (J1+1J2+J+; J1+J+)

× (j −m, 10; j′ −m). (A.29)

where (A.9) is used.
Similarly, the second term on the right side on (B.2.6) becomes by symmetry

( −1)2J+−2J1+−2j′−1
√

J2+(J2+ + 1)(2J2+ + 1)(2j + 1)(2J+ + 1)

×W (j′1J−J+; jJ+)W (J2+1J1+J+; J2+J+)

× (j −m, 10; j′ −m). (A.30)

The sum of (A.29) and (A.30) together with the m term and the explicit forms

W (J1+1J2+J+;J1+J+) =
J1+(J1+ + 1) + J+(J+ + 1)− J2+(J2+ + 1)√
4J1+(J1+ + 1)(2J1+ + 1)J+(J+ + 1)(2J+ + 1)

,

W (J2+1J1+J+; J2+J+) = (J1+ ↔ J2+ from above),

give the term of (A.26) and it follows that the vector addition coefficient is given by
(A.25).
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