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Abstract. One of the fundamental physical quantities necessary to describe the mechanical properties 
of the materials is the bulk modulus. In the present report, a simple method to estimate the values of 
the bulk modulus and its pressure derivative of metallic glasses is presented. The method which is 
based on a jellium model of metals provides a good agreement with measured data. The estimated 
values of the elastic constants have been used to determine the equation of state of bulk metallic 
glasses. It is found that the usual Murnaghan equation of state deviates considerably from the 
experimental results at high pressures. The deviation has been interpreted to arise from the structural 
relaxations. The effect of pressure on the fragility of bulk metallic glasses is discussed briefly. 

Introduction 

In recent years, multicomponent bulk metallic glasses have attracted considerable interest [1-5]. In 
contrast to traditional amorphous metals, these new alloys have low critical cooling rates and fully 
amorphous samples with one side dimension as large as 1 cm can be produced by conventional 
cooling processes. The bulk metallic glasses have unique properties such as extraordinary high 
strength, low ductility, high hardness, excellent corrosion resistance and high thermal stability of 
their supercooled liquids, which permit the study of thermophysical properties in the supercooled 
liquid state in addition to the amorphous solids [6-8]. To exploit the excellent properties of bulk 
metallic glasses, a good understanding on fundamental materials properties is indispensable. In the 
present study, a simple method to evaluate the bulk modulus and its pressure derivative of bulk 
metallic glasses is presented. The bulk modulus is a fundamental physical quantity that characterizes 
the mechanical properties of the materials. It is well known that the bulk modulus is related with the 
interatomic interactions. That is, valuable microscopic information to understand the origin of 
materials properties can be obtained from its study. 

The equation of state is a fundamental relation that characterizes the material. Its knowledge is of 
primordial importance from both, fundamental and technological point of views. In this paper, the 
well known Murnaghan equation has been used to determine the equation of state of bulk metallic 
glasses. The bulk modulus and its pressure derivative are the input parameters needed. A comparison 
of the obtained equation of state with experimental data suggests that at high pressure, the effect of 
structural relaxation should be taken into account. As a related topic, the pressure dependence of the 
fragility has been studied. The result indicates that the fragility in bulk metallic system increases with 
pressure, although in the usual experimental conditions its variation is very small. 

Bulk Modulus and its Pressure Dependence 

As mentioned in the introduction, the evaluation of bulk modulus is of primordial importance to 
describe the mechanical properties of the materials. The calculation of bulk modulus through the use 
of traditional methods such as those based on electronic structure calculations could be accurate. 
However, it is technically too involved, time consuming and not appropriate to study the general 
trend of the materials in a simple way. Therefore, it will be valuable to develop a method to estimate 



 

easily the physical quantities. Recently, it has been shown that the bulk modulus and its pressure 
derivative of bulk metallic glasses can be estimated from the values of the constituent elements and 
their compositions [9, 10]. The result shown in Fig. 1 indicates that the estimation is good. The result 
indicates also that the mechanical properties of bulk metallic glasses are determined essentially by the 
electron density analogously to the case of elementary metals [10].  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Comparison between the calculated and the measured data of bulk modulus (a) and its pressure 
derivative (b). 
  

The physical background of the estimation has been discussed based on the jellium model of 
metals that includes the kinetic, exchange and correlation energies of the electronic system [10]. 
According to the jellium model, the energy of the interacting electron gas is written as [11]  
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where   represents the contribution from the correlation energy and n  is the electron number density. 
The bulk modulus and its pressure derivative are written as 
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The above equations indicate that the values of B and dB/dP are obtained if the electron number 
density parameter rs is available. Concerning the values of rs for the elements, many researchers have 



 

reported their own values based on different degree of sophistication [12, 13]. Although there are 
differences in details, all the results show the same behavior and trend along the periodic table of the 
elements. The result of a simple number of valence electrons counting method applied to the 
evaluation of bulk modulus is illustrated in Fig. 2. The calculation for the pressure derivative of the 
bulk modulus indicates that dB/dP ≈ 5 [10]. This value is close to the value reported for elemental 
metals. The experimental values reported for bulk metallic glasses are in the range dB/dP ≈ 4-6 [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The predicted values of the bulk modulus are shown as a function of the electron density 
parameter rs. The numbers in the figure indicate the glasses given in Table 1. The symbols represent 
the estimated values from the values of the constituent elements and their compositions [9, 10]. 
 
Table 1. List of metallic glasses shown in Fig. 2. 
 

Equation of State and Structural Relaxation 

The evaluated bulk modulus and its pressure derivative can be used to determine the equation of state. 
As an example, the equation of state of Pd39Ni10Cu30P21 has been calculated by employing the 
Murnaghan equation which is used widely in the literature. It is written as 
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No. Glasses No. Glasses No. Glasses 
1 
2 
3 
4 
5 
6 
7 
8 
9 

La55Al25Ni5Cu10Co5 
Au55Cu25Si20 
Ce70Al10Ni10Cu10 
Cu46Zr42Al7Y5 
Cu60Zr20Hf10Ti10 
Fe53Cr15Mo14Er1C15B6 
Fe61Mn10Cr4Mo6Er1C15B6 
Mg65Cu25Gd10 
Nd60Al10Fe20Co10 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Ni40Cu5Ti17Zr28Al10 
Ni45Ti20Zr25Al10 
Ni60Nb35Sn5 
Pd40Cu30Ni10P20 
Pd60Fe20P20 
Pd64Ni16P20 
Pr60Cu20Ni10Al10 
Pt60Ni15P25 
Zr48Nb8Cu12Fe8Be24 

19
20
21
22
23
24
25
26
27

Zr55Al19Co19Cu7 
Zr57.5Cu15.4Ni12Al10Nb5 
Mg70Zn25Cu5 
Zr46.75Ti8.25Cu7.5Ni10Be27.5 
Mg65Cu25Tb10 

Zr41Ti14Cu12.5Ni10Be22.5 

Zr41Ti14Cu12.5Ni9Be22.5C1 

(Zr0.59Ti0.06Cu0.22Ni0.13)85.7Al14.3 

Pd39Ni10Cu30P21 



 

where B0 and '
0B  are the bulk modulus and its pressure derivative at ambient pressure, V(P)/V0 

denotes the relative volume change under compression. The result is shown in Fig. 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The relative volume change under compression in Pd39Ni10Cu30P21 calculated by the 
Murnaghan equation of state. The experimental values are from [14]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Energy profile represented in the configuration space. The effect of pressure on the smoothing 
of energy profile is illustrated. 
 
 
From Fig 3 it is noted that by using the values of the parameters B0 = 159.2 GPa and dB/dP = 6.28 
determined at ambient pressure [14] does not reproduce the behavior of V(P) observed 
experimentally at high pressure. The result is interesting, because, the Murnaghan equation of state 
has been used successfully to evaluate the thermal and mechanical properties of crystalline materials. 
Analysis using another equation of state gives similar result to that shown in Fig. 3 [14]. These results 
suggest that at high pressure, the effect of structural relaxation should be taken into account [14]. In 
Fig. 3, the curves calculated by varying the values of B and dB/dP are shown. The curves reveal that 
the agreement with the experimental data at high pressure is improved by adopting a large value of 
dB/dP. This behavior could be explained as a change in the energy profile in the configuration space 
reflecting the structural relaxations. The idea is illustrated in Fig. 4. A metallic glass is 
thermodynamically in a metastable state. It occupies one of the many local minima configurations. 



 

The difference in energy between these local minima arises mainly from the disorder related energy, 
which is governed by angular interactions between the structural units that form the system. Since in 
metallic systems these interactions are weak, the energy difference is overcome easily by the 
application of pressure. In other words, the energy profile in the configuration space is smoothed by 
the application of pressure. As shown in Fig. 3, the rapid decrease of V/V0 at low pressure is probably 
due to this effect. After the small energy difference is overcame, further change in the configuration 
space is difficult, because in metallic systems, the interactions have spherical symmetry and the 
structural units can be represented by effective hard spheres occupying close packed like structures. 
The smooth change of V/V0 observed at high pressure in Fig. 3 supports this conjecture. 

Pressure dependence of the Fragility 

The concept of fragility has been used widely and has played a fundamental role in understanding the 
relaxation behavior of glass forming liquids [15]. Some years ago, it was shown that the fragility of 
simple nonmetallic and metallic glass forming systems increases with the increase in the Poisson’s 
ratio [16]. This relationship has attracted much attention because it provides a connection between the 
elastic property and the structural relaxation behavior. In Fig. 5, a similar correlation is shown. Here, 
instead of Poisson’s ratio, the relation between fragility and bulk modulus is shown. From this 
correlation we recognize that in bulk metallic glass forming systems, the fragility increases as the 
bulk modulus increases. The estimated value of dm/dB from the correlation is (0.1-0.2) GPa-1 [17].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Correlation between the fragility and the bulk modulus in some bulk metallic glass forming 
systems. Values of the fragility and bulk modulus are taken from [18]. 
 

In the above section, it was shown that for the metallic systems, the typical value is dB/dP ≈ 5. 
From the correlation shown in Fig. 5 and this value of dB/dP, we can estimate the following value for 
the pressure derivative of the fragility in metallic glass forming systems, dm/dP = (0.5-1.0) GPa-1. 
This quantity is very small and difficult to detect precisely in the usual experimental conditions. Since 
the fragility gives a measure on the degree of how easy the structural relaxation occurs, the result 
found indicates that it is difficult to induce changes in structural relaxation processes with the 
application of pressure in metallic glass forming systems. This observation seems consistent with the 
hard sphere like picture of metallic systems discussed above. However, further high pressure study is 
required to make a conclusive statement. 
 



 

Conclusion 

A simple method to estimate the values of the bulk modulus and its pressure derivative from the 
values of the constituent elements and their compositions has been presented and applied to bulk 
metallic glasses. The physical background of the estimation has been investigated based on the 
jellium model of metals. The result reveals that the mechanical properties of bulk metallic glasses are 
determined essentially by the electron density analogously to the case of elementary metals The 
estimated values of the elastic constants have been used in the Murnaghan equation to state to 
calculate the volume change under compression. A comparison of the obtained results with 
experimental data indicates that the effect of structural relaxation should be taken into account. A 
discussion on the pressure effects in structural relaxation has been given using the concepts of 
configuration space and fragility. The analysis indicates that the pressure derivative of the fragility in 
metallic glass forming systems is small. 
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